A mechanistic modeling framework for predicting metabolic interactions in complex mixtures - Ineris - Institut national de l'environnement industriel et des risques Access content directly
Journal Articles Environmental Health Perspectives Year : 2011

A mechanistic modeling framework for predicting metabolic interactions in complex mixtures

Abstract

Background : computational modeling of the absorption, distribution, metabolism, and excretion of chemicals is now theoretically able to describe metabolic interactions in realistic mixtures of tens to hundreds of substances. That framework awaits validation. Objectives : our objectives were to evaluate the conditions of application of such a framework ; confront the predictions of a physiologically integrated model of benzene, toluene, ethylbenzene, and m-xylene (BTEX) interactions with observed kinetics data on these substances in mixtures and ; assess whether improving the mechanistic description has the potential to lead to better predictions of interactions. Methods : we developed three joint models of BTEX toxicokinetics and metabolism and calibrated them using Markov chain Monte Carlo simulations and single-substance exposure data. We then checked their predictive capabilities for metabolic interactions by comparison with mixture kinetic data. Results : the simplest joint model (BTEX interacting competitively for cytochrome P450 2E1 access) gives qualitatively correct and quantitatively acceptable predictions (with at most 50% deviations from the data). More complex models with two pathways or back-competition with metabolites have the potential to further improve predictions for BTEX mixtures. Conclusions : a systems biology approach to large-scale prediction of metabolic interactions is advantageous on several counts and technically feasible. However, ways to obtain the required parameters need to be further explored.
Fichier principal
Vignette du fichier
2012-002.pdf (222.06 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

ineris-00961768 , version 1 (20-03-2014)

Identifiers

Cite

Shu Cheng, Frédéric Y. Bois. A mechanistic modeling framework for predicting metabolic interactions in complex mixtures. Environmental Health Perspectives, 2011, 119 (12), pp.1712-1718. ⟨10.1289/ehp.1103510⟩. ⟨ineris-00961768⟩
74 View
227 Download

Altmetric

Share

Gmail Facebook X LinkedIn More