Re-examination of safety parameters using kinetic theory of nano-granular flows
Résumé
The origin of the kinetic theory of granular flow was originally credited to Bagnold [1]. By using a very primitive expression of the particle collision frequency, he derived an expression for the repulsive pressure of the particles in uniform shear flows. His repulsive pressure was proportional to the square of the velocity gradient and the particle diameter and directly proportional to the particle density. This theory was later extended by Savage [2] and Gidaspow [3]. Such theories provide insight on the dependence of the viscosity, and various moduli (elastic, non elastic, viscous...) in terms of the granular temperature and the associated shear-rates. Until recently, such parameters were difficult to measure because of the lack of specifically designed equipment. This challenge was successfully taken up and resolved by P. Marchal of ENSIC who designed a new rheometer for powders (figure 1). This equipment can put in evidence the importance of the granular temperature on the elastic and viscous behaviors of the granular flows. Such rheological behavior is important in risk analysis for nanopowders, because as the nanopowder may be subjected to process shear rates and stresses, its structural and topological changes, in terms of the transformation of agglomerates into primary nanoparticles, have strong impacts on emission factors of nanosized particles that can be released in the environment or into a workplace from such dense-phase nanopowder processes. Such transformation can be analyzed by studying the nano-granular rheological signature of the system. Such risk assessment approach using these new fundamental rheological safety parameters is described in this paper.
Domaines
Sciences de l'ingénieur [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...