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Although the concept of endocrine disruptors first appeared almost

30 years ago, the relatively recent involvement of these substances in the

etiology of metabolic pathologies (obesity, diabetes, hepatic steatosis, etc.)

has given rise to the concept of Metabolic Disrupting Chemicals (MDCs).

Organs such as the liver and adipose tissue have been well studied in the

context of metabolic disruption by these substances. The intestine, how-

ever, has been relatively unexplored despite its close link with these organs.

In vivo models are useful for the study of the effects of MDCs in the intes-

tine and, in addition, allow investigations into interactions with the rest of

the organism. In the latter respect, the zebrafish is an animal model which

is used increasingly for the characterization of endocrine disruptors and its

use as a model for assessing effects on the intestine will, no doubt, expand.

This review aims to highlight the importance of the intestine in metabolism

and present the zebrafish as a relevant alternative model for investigating

the effect of pollutants in the intestine by focusing, in particular, on cyto-

chrome P450 3A (CYP3A), one of the major molecular players in endoge-

nous and MDCs metabolism in the gut.
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What are MDCs and what impact do
they have on metabolic organs?

Of the 85 000 man-made chemicals currently produced

worldwide, 1000 of them are considered or suspected

to be endocrine-disrupting chemicals (EDCs) [1]. This

is probably a significant underestimate since many sub-

stances are not well characterized, yet. Additionally,

more than 9 million premature deaths, worldwide, are

due to the contamination of air, water, food, and con-

sumer goods. Chemical-related diseases are, thus, one

of the most important preventable forms of mortality

[2]. Consequently, there is an urgent need for a strict

assessment of compounds placed on the market and

increased control of the substances released into the

environment. Further attesting to this need is the fact

that many persistent substances, although – having

been banned for years, are still present in the environ-

ment in their native or metabolized forms [3].

Metabolic endocrine-disrupting chemicals (MDCs)

Recently, established links between EDCs and metabolic

diseases like obesity have been reported increasingly.

Obesity, a pandemic disease affecting 1 billion people

worldwide in 2022 (more than three times the 1970s fig-

ures) [4], is linked to several metabolic diseases itself like

type II diabetes, cardiovascular disorders, metabolic syn-

drome (MetS), metabolic dysfunction-associated fatty

liver disease (MAFLD), cancer and sterility [5–7].
Consequently, EDCs are investigated increasingly for

their potential to increase the prevalence of metabolic

diseases around the world [6]. Several publications estab-

lished a link between EDCs and obesity, initially by ser-

endipity [8]. In 2001, while studying the effect of

perinatal exposure to bisphenol A (BPA) on the repro-

ductive system in rats, Rubin et al. showed its implica-

tion in body weight gain [9]. Later, in 2005, Newbold

et al. showed that exposure of newborns to diethylstil-

bestrol can lead to obesity in female mice [10]. In less

than a decade, the links between childhood exposure to

EDCs and obesity have become stronger which has led

to the concept of obesogens [8]. These are “molecules

that inappropriately regulate lipid metabolism and adi-

pogenesis thus promoting obesity” [11]. In addition,

these obesogens promote adipogenesis and weight gain

which increases the retention of lipophilic pollutants

thus perpetuating their harmful effects over time [12].

Furthermore, some obesogens may have transgenera-

tional effects. For example, the fungicide tributyltin

increases the weight of white adipose tissue, the size and

the number of adipocytes and hepatic lipid accumulation

in F1, F2, and F3 generation of mice following an

exposure of the F0-pregnant mice. This suggests that an

early-life obesogen exposure may have lasting effects

which most likely involve epigenetic remodeling [13].

Four hundred and twenty-two million people were

known to be affected with diabetes in 2022 and this

number is projected to increase in the coming years

[14]. The causes of diabetes are, therefore, of particu-

larly interest, especially in light of the fact that envi-

ronmental factors are an increasingly important

etiology for metabolic diseases. The link between

EDCs, type II diabetes and MetS is attested by the

adverse effects of EDCs on insulin secretion by the

pancreatic b-cells and by their peripheral actions, nota-

bly on muscle cells or adipocytes which are implicated

in the development of insulin resistance. However, fur-

ther research is needed to establish solid links between

type 1 diabetes and EDCs [15]. As a result, the con-

cept of Metabolic(-endocrine) disrupting chemicals

(MDCs) arose in 2015 [16]. This concept attempts to

encompass, at first, both the notion of obesogens and

chemicals potentially responsible for type 2 diabetes,

MetS and liver abnormalities before extending to alter-

ations of other metabolic organs such as the intestine.

The principal organs investigated to determine

MDCs effects

Historically, the effects of EDCs have been studied,

mainly, in the context of reproduction and, more

recently, neurodevelopment. The question of the impact

of EDCs on other physiological functions such as immu-

nity and metabolism has emerged more recently. Four

organs are, currently, the main focus for research on the

impacts of MDCs and metabolic diseases: the liver, adi-

pose tissue, the pancreas, and the intestine, including

possible dimorphic effects. Here, we provide a brief

overview of the mechanisms and pathologies involved in

the MDCs context for the liver, adipose tissue, and the

pancreas before looking in more detail at the intestine.

Liver

Since the liver is responsible for the metabolism of

many endogenous or exogenous molecules, it is an

organ particularly well suited for the study of the

response to xenobiotics, especially MDCs. A general

increase in the incidence of obesity has occurred over

the last decades and has been accompanied by an

increase in the worldwide prevalence of MAFLD, an

obesity co-morbidity, from 25% in 1990–2006 to 38%

in 2016–2019 [17]. Recently, MDCs have been identi-

fied, clearly, as risk factors in the etiology of this type

of disease. By altering the activity of nuclear receptors
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and the aryl hydrocarbon receptor, MDCs modulate

essential pathways for the regulation of lipid balance

in the liver (such as carbohydrate and glucose metabo-

lism), disrupt mitochondrial function and promote

inflammatory processes in the liver. These effects lead

to the development of MAFLD and potentially

MASH (Metabolic dysfunction-Associated Steatohepa-

titis) [18–20]. Additionally, once the storage capacity

of white adipose tissue (WAT) has been attained, the

liver begins to exhibit ectopic fat deposits that can

lead, eventually, to the formation of non-physiological

lipid droplets by inflamed adipocytes [21].

Adipose tissue

White adipose tissue is a major target organ for MDCs.

These compounds cause problems with calorie storage,

especially since WAT is a preferred storage site for

many persistent organic pollutants (POPs) that can be

released over time [22]. Indeed, although adipose tissue

has a storage function, it is also capable of releasing pol-

lutants. This release of stored MDCs thus constitutes a

long-term internal exposure that can affect metabolism

over time. For example, mice grafted with adipose tissue

previously exposed to 2,3,7,8-tetrachlorodibenzodioxin

(TCDD) display signs of inflammation, gluconeogenesis

and fibrosis both in the adipose tissue and the liver,

10 weeks after grafting [23].

Pancreas

The pancreas plays a fundamental role in regulating

metabolism, notably through digestion and glycemia

regulation. The disruption of its physiology by MDCs

can lead to the appearance of serious metabolic

pathologies such as diabetes. Although the responsibil-

ity of EDCs in the onset of diabetes mellitus, including

the various types and subtypes of this complex disease,

is strongly attested by an association with an exposure

to several substances, a causal link needs to be clearly

established. However, there is no longer any doubt

that environmental contaminants such as BPA and

TCDD are strong risk factors in the development of

type 2 diabetes, notably through an alteration in the

process of insulin secretion by b-pancreatic cells

[24,25]. The link between diabetes and BPA can even

be established through a metabolic reprogramming fol-

lowing gestational exposure. This can extend over sev-

eral generations [26].

While the liver and adipose tissue have been rela-

tively well studied, other organs, such as the pancreas

and the intestine, have been less studied with respect

to MDCs-related metabolic pathologies.

Intestine

To get an overall view of the state of the researches con-

ducted on the gut in the context of MDCs, we present

here a review of articles published on the subject over

the last 10 years. This compilation of publications was

produced using the terms “(intestine AND “endocrine

disruptors” AND metabolism)” between 2014 and 2024

in PubMed�, eliminating non-English-written papers

or papers dealing with pharmacokinetics or methodol-

ogy or not relevant to the human context. The publica-

tions are referenced according to the type of model

used, the type of experiment (in vitro, in vivo or in silico),

the EDC(s) investigated, the methods used, and the

effects measured on the intestine. The results of this lit-

erature search are presented in Table 1.

Interestingly, there is a wide range of in vitro or in

vivo mammalian (human, rodent, pig) and fish (mostly

zebrafish) models used in this context. Various EDCs

have been assessed, including bisphenols, phthalates,

and numerous pesticides. While some of the publica-

tions are literature reviews of previous work, the

experimental papers produced during this period show

great diversity both in the impact of EDCs on metabo-

lism and in the methods used to explore it. Studies

show a range of effects, including increased intestinal

permeability, impaired glucose metabolism leading to

MetS, impaired hormone signaling and disruption of

the immune function, reflecting the many physiological

processes in which the intestine is involved, and which

may be deregulated by EDCs. Methods used to high-

light the impact of EDCs on the intestine and its

metabolism are mainly based on measurements of key

actors in intestinal metabolism, including protein

expression (e.g. cholesterol) or gene expression of

nuclear receptors (e.g. pregnane X receptor) and

enzymes involved in the metabolism of xenobiotics. It

is remarkable to note that numerous studies addressed

the effects of EDCs on the intestinal microbiome

underlining the recent and growing interest of the

microbiome in the metabolism. In fact, even if the

impact of EDCs on the gut microbiome has been

investigated increasingly (2 publications in 2014 to 8 in

2018 to 21 in 2022, using the search terms “(micro-

biome AND “endocrine disruptors”)” in PubMed�),

the impact of EDCs on the organ itself remains less

investigated, even if the mechanisms by which EDCs

impact the intestinal metabolism have grown over the

last 10 years (Table 1). Yet, this organ is preferentially

exposed to these substances as it is one of the first to

come into contact with EDCs during an oral exposure.

In this review, we seek to highlight the importance of

studying the consequences of MDCs on the intestine,
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Table 1. Summary of intestinal EDCs-metabolism-related studies published between 2014 and 2024.

Species Experiment Chemicals Methods Impact on the intestine References

Amphibian and fish

(various species)

In vitro/in vivo BPA, triclosan, estradiol,

heavy metal, etc.

Review Dysbiosis [143]

Fish (Danio rerio) In vivo BPA, SiO2 nanoparticles Bioimaging of fluorescent

nanoparticles

Accumulation in the

intestine

[144]

Bisphenols, pesticides,

metals, phthalates, etc.

Review Dysbiosis, genotoxic and

mutagenic risk at the

intestinal level

[145]

Bisphenol AF Intestinal histological

analysis

No apparent alterations [146]

Human In vitro Lilial Intestinal barrier model

(Caco-2)

Not relevant for

assessing lilial toxicity

[147]

BPA Review Dysbiosis [148]

Monosodium glutamate Intestinal cell line, ELISA Impaired

enteroendocrine

glucagon-like peptide-1

hormone secretion

[149]

Acetyl-triethyl/tributyl-

citrates, phthalates

Intestinal transfected

reporter human cell line

(LS180), RT-qPCR (e.g.

pxr), cholesterol uptake

assay

EDCs promote

hypercholesterolemia

through intestinal PXR

[95]

Human and rodent In vitro/in silico BPA, chlorpyrifos,

diethylhexyl phthalate

(DEHP), per- and

polyfluoroalkyl

substances

Review Dysbiosis and

intestine-brain axis

(neurotoxicity)

[40]

Human and rodent In vitro/in vivo Resveratrol Review Inhibits estrogen

intestinal metabolism

[150]

Bisphenols, pesticides,

metals, phthalates, etc.

Review EDCs-related dysbiosis

promotes metabolic

diseases such as

obesity

[37]

Human, rodent, fish In vitro/in vivo BPA analogs Review Impaired serotonin

promoting obesogenic

effects

[46]

Various obesogens Review Dysbiosis and increased

intestinal permeability

[151]

Mouse In vitro BPF and bisphenol S

(BPS)

Fluorescence-activated cell

sorter analysis, cytokines

measurements

Increased IL-17 (po-

inflammatory) secretion

in intestinal immune

T cells

[152]

In vivo Polybrominated diphenyl

ethers

Intestinal permeability assay

with fluorescein

isothiocyanate

No effect on intestinal

permeability

[153]

Di-isononyl phthalate Histology, RT-qPCR for

inflammation and gut

integrity genes, cytokines

and hormones

measurements

Changes in

histopathology,

cytokines level,

immune function and

tight junctions

[51]

BPA, DEHP, TCDD and

polychlorinated

biphenyl (PCB)

RT-qPCR for xenobiotics

processing intestinal genes

(e.g. cyp3a11),

lipoprotein-lipase gene and

inflammatory markers

Highly sensitive jejunum

(for lipase and

xenobiotics receptors)

[154]
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take stock of existing in vitro and in vivo intestinal

models for assessing these substances and show how the

use of zebrafish could enable the development of models

and bioassays for investigating the expression and the

effects MDCs on enzymes such as the CYP3A family,

particularly sensitive to MDCs, to facilitate the assess-

ment of chemicals on the metabolism.

How do MDCs impact metabolism at
the intestinal level?

MDCs promote dysbiosis

The intestinal epithelium is highly versatile as it

enables the absorption of various nutrients such as

glucose, amino acids, and peptides as well as minerals

such as calcium [27–29]. The intestine is also involved

in the absorption, synthesis, secretion, storage and

degradation of lipids, whether they come from the diet

(triacylglycerols, cholesteryl esters, and phospholipids)

or are endogenous (phospholipids and cholesterol)

[30]. Moreover, intestinal epithelial cells are also

involved in the steroidogenesis of various hormones.

The gut is one of the main sites for the production of

glucocorticoids, as has been demonstrated in rodents

and humans [31]. This versatility of metabolic activities

in the organ is closely linked to its bacterial flora, the

composition of which plays a major role in the proces-

sing of various dietary compounds such as proteins

and lipids, as has been shown in mice [32]. Thus, the

microbiota is involved in maintaining energy balance

but also in fatty acid oxidation and even in the

Table 1. (Continued).

Species Experiment Chemicals Methods Impact on the intestine References

BPS Cytokines, cholesterol and

triacylglycerol

measurements

Transgenerational

intestinal inflammation

[52]

RT-qPCR (duodenum) of

glut2, apelin

Impaired intestinal

glucose absorption and

glucose metabolism

(increased risk of

MetS)

[155]

TCDD, PCB, BPA, DEHP

in mixture

RT-qPCR (gut segments) of

various estrogen and

xenobiotics receptors

Mimics intestinal

estrogenic activity

[156]

BPA, BPF, BPS Humoral and cellular

immune response analysis

Altered immune function

(promotes intestinal

inflammation)

[157]

BPA ELISA determination of

allergen-specific antibodies

and mast cells

No activation of mast

cells in the intestines

[158]

BPS Metabolic experiments

(glucose/insulin tolerance),

histological analysis

Dyslipidemia, obesity,

intestinal lesions and

dysbiosis

[42]

In vitro/in vivo BPA Immunofluorescence,

lysozyme activity, cells

isolation, antibodies, flow

cytometry, cytokines

measurement

Impaired immunity and

increased inflammatory

response

[159]

Pig In vitro/in vivo Plasticizers, pesticides,

POPs, and mycotoxins

Review EDCs bioaccumulation [160]

In vivo BPA Cell counting, evaluation of

neurons surface

Neurodegenerative and

proinflammatory

[161]

BPA dosing in caecum,

immunohistochemistry of

enteric cells

Enteric neurons

calcium-binding protein

increase

[162]

Rat In vivo 4-Nitrophenol RT-qPCR,

histomorphometry and

immunohistochemistry

analysis

Intestinal damage

related to ER and AhR

signaling pathways

[163]
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proliferation of intestinal epithelial cells [33]. Modifica-

tion of the gut microbiome (composition and abun-

dance), called dysbiosis, can lead to gut inflammation

and subsequent disruption of the gut epithelial barrier

and alteration of the gut motility. In fact, diversity

and stability of the microbiome are essential to the

proper functioning of the organism, modulation

caused by the environment could cause bad health out-

comes. In the case of a microbiota balance loss, vari-

ous bacterial endotoxins such as lipopolysaccharides

and cell capsule carbohydrates may be released and

promote deleterious effects to the host, e.g. altered per-

meability of the intestinal barrier which can encourage

the penetration of pathogenic organisms, leading to an

inflammatory reaction [34]. As a consequence, the flux

of metabolites between the luminal compartment and

the tissue compartments is dysregulated which can lead

to potential systemic inflammation, insulin resistance

and lipid storage along with alterations in both appe-

tite and lipid and glucose metabolism. Taken together,

these effects can lead, ultimately, to various metabolic

diseases such as obesity, type 2 diabetes and MetS as

has been demonstrated in mice [35,36]. Yet, exposure

to MDCs can lead to changes in the intestinal micro-

biota and in the production of their metabolites.

Calero-Medina et al. [37] showed in humans that vari-

ous classes of MDCs such as BPA and analogues dis-

rupted the microbiota leading to a dysbiosis

characterized by an increased proportion of Microbac-

terium and Alcaligenes. Likewise, in mice, an exposure

to metals such as cadmium, reduces the presence of

intestinal Bacteroidetes and Firmicutes. Moreover,

beyond direct disruption by the interaction of MDCs

with their regulators, many cytochromes P450 (CYPs)

such as the CYP3A family, could see their enzymatic

activity altered by intestinal dysbiosis, leading to mod-

ify levels of endogenous substances or xenobiotics

metabolized by this enzyme family [38]. The ability of

MDCs to disrupt the intestinal microbiome may there-

fore have deleterious consequences for its metabolism.

MDCs disrupt the intestinal

microbiome-mediated relationships with other

metabolic organs

Extra-enteric gastrointestinal functions are one of the

many physiological activities in which the intestine is

involved. The gut is connected to numerous organs

with which it forms specific bilateral axes (e.g. entero-

cerebral, enterohepatic, enteropancreatic) and even tri-

lateral interactions (e.g. enterohepatopancreatic). This

ultra-connectivity inserts the intestine into the regula-

tion of most of the body activities. Although many of

the mechanisms enabling this connectivity are medi-

ated by neurological and hormonal signaling through

the direct secretion of intestinal and axis-organs molec-

ular messengers, it is also mediated by the intestinal

microbiota [39]. Exchanges between the intestinal

microbiota and linked organs take place via the

metabolites provided by the microorganisms. A genu-

ine communication with the host organism is estab-

lished which plays a part, for example, in glucose or

lipid metabolism. Thus, changes in intestinal micro-

biome composition and activity can lead to the disrup-

tion, in addition to damage to the intestinal tract itself

mentioned above (e.g. inflammation and impaired per-

meability), of essential axes such as the gut-brain axis

promoting neurotoxicity [40] but also other axes

involved in metabolic activities which promotes meta-

bolic diseases such as obesity or diabetes [41]. More-

over, the disruption of the microbiome could even

provide information about a particular metabolic

pathology and the type of contaminants that could be

the cause of this disease. For example, the identifica-

tion of specific bacteria and their abundance in the

dysbiosis that bisphenol S (BPS) can cause in mice

could be used both as a biomarker of obesity and for

detecting BPS [42]. Finally, dysbiosis caused by MDCs

could be responsible for a disruption of the

intestinal-genital axis which is associated with the

appearance of endometriosis [43].

MDCs also impact the intestinal metabolism in

non-microbiome-related ways

Several other mechanisms, unrelated to microbiota,

can have deleterious effects on the gastrointestinal

tract (GIT). Recently, BPA, one of the most studied

obesogens, was shown to be implicated in the increase

of serotonin gut levels in exposed mussels and rodents

[44,45]. In fact, BPA and its analogs increase the sero-

tonin production by enterocytes, for a process which

leads to increased insulin (which favors storage pro-

cesses) secretion, lipid accumulation in the liver and

lipogenesis in WAT, thus, promoting the onset of met-

abolic diseases in human and rodents models [46]. In

another example of metabolic disruption caused by

bisphenols, Mu et al. [47] performed zebrafish expo-

sure to BPA and BPF showing alteration of the lipid

metabolism in the intestine. Exposure to emerging pol-

lutants can also promote the synthesis of numerous

proinflammatory cytokines such as tumor necrosis fac-

tor alpha (TNFa) which is one of the main effectors

of inflammatory bowel disease (IBD) by modifying

tight junction proteins transcription which alters intes-

tinal permeability [48,49].In addition, MDCs such as
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PCBs are also involved in a decrease of tight junctions

expression which can lead to an alteration of the intes-

tinal permeability facilitating the entry of pathogens

[50]. Intestinal endocrine functions can be altered in

presence of MDCs such as di-isononyl phthalate by

lowering estradiol levels in the colon in female mice

[51]. These events have been shown to be transmitted

to the off-spring [52].

Xenobiotics metabolism in the intestine

In addition to its role in the absorption of nutrients,

the GIT is also involved in xenobiotic biotransforma-

tion. These compounds pass through the intestinal epi-

thelium and are modified by a complex detoxification

system to minimize their toxic effects. The regulated

permeability of the intestine, ensured, in particular, by

the epithelial tight junctions [53], forms the first physi-

cal barrier met by exogenous compounds [54]. A sec-

ond barrier includes a chemical dimension mediated

by radical enzymes derived from the microbiome [55],

which are able to carry out complex chemical transfor-

mations including hydrolysis, lyase reactions, reductive

transformations, and functional group transfer reac-

tions [32].

Numerous CYPs are expressed in the intestine,

mostly localized in the small intestinal mucosa at the

epithelial level [56]. Despite strong inter-individual var-

iations in their expressions, the CYP3A family and

CYP2C9 are the most abundant enzymes expressed in

the human intestine (80% and 14% respectively when

immune-quantified). CYP3A4 is the most highly

expressed member of the CYP3A family [57]. These

enzymes act during phase I of metabolism by modify-

ing the redox potential of xenobiotics through

mono-oxygenation (involving O2) or, more rarely,

through reduction. These alterations allow their elimi-

nation following conjugation by phase II metabolic

enzymes e.g. UDP-glucuronosyltransferase 1A7 allow-

ing glucuronidation in the first-pass intestinal metabo-

lism, N-acetyltransferase 2 allowing N-acetylation as

detoxification step in the intestinal epithelium or gluta-

thione S-transferases, essential for the metabolism of

xenobiotics and protection against reactive oxygen spe-

cies [58]. CYPs are also responsible for the oxidative

metabolism of endogenous molecules (steroid hor-

mones, fatty acids and vitamin D, for example). The

enzymatic activities are often transcriptionally regu-

lated by signaling pathways mediated by xenobiotic

receptor/transcription factors, such as PXR (pregnane

X receptor) or AhR (aryl hydrocarbon receptor), the

activation of which depends upon the binding to a

ligand [59].

The diversity of mechanisms that lead to intestinal

disorders which can cause broader metabolic dysfunc-

tion following exposure to MDCs should be noted.

Without being able to assess each of these mechanisms

independently, it is interesting to focus on molecular

actors capable of signaling a metabolic disorder follow-

ing exposure to MDCs at the level of the intestine. To

this end, the investigation of various enzymes such as

CYPs, involved both in the metabolism of MDCs or,

more broadly, xenobiotics, and in endogenous metabo-

lism can provide information about the metabolic dis-

ruption caused by exposure to pollutants and offers

interesting research opportunities for the years to come.

CYP3A4, a central metabolic enzyme
expressed in the intestine

In humans, the CYP3A family belongs to the CYPs

group of enzymes that plays a role in the endogenous

metabolism (e.g. metabolism of cholesterol by

CYP3A4). This family also is involved in exogenous

metabolism (e.g. pesticides and drugs) and biotrans-

forms almost 50% of the drugs on the market [60].

Known as a major representative of the CYP3A fam-

ily, CYP3A4 is present mainly in the liver and in the

intestine [61]. van Waterschoot et al. [62] have demon-

strated the importance of this CYP at the intestinal

level. It acts as a protective factor for the liver in a

tissue-specific transgenic mice model that expresses

human CYP3A4 either in the liver or the intestine.

Through its detoxification capacities, CYP3A4 acts

like an important barrier and limits systemic exposure

to orally absorbed xenobiotics thus demonstrating the

strong link between the two organs and the fundamen-

tal protective role played by the intestine [63].

While CYP3A4 is essential for the metabolism of

endogenous and exogenous substances in humans, it is

interesting to note that orthologs exist in many model

species. In Table 2, we present several orthologs of

human CYP3A4 in several in vivo models.

Table 2. Orthologues of human CYP3A4 in various model species.

Species Orthologues Localization References

Human CYP3A4 Hepatic/intestinal [61]

Pig CYP3A46 Hepatic/intestinal [164]

Cynomolgus

monkey

CYP3A4 Hepatic/intestinal [165,166]

Rat CYP3A9 Hepatic/intestinal [167]

Mouse CYP3A11 Hepatic/intestinal [168]

Zebrafish CYP3A65 Mostly intestinal in

larvae/hepatic and

intestinal in adults

[169,170]
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CYP3A4 regulators

Although CYP3A4 is regulated mainly by PXR, other

transcription factors also regulate the expression of

this enzyme.

Constitutive androstane receptor

The constitutive androstane receptor (CAR) is involved

not only in xenobiotic purification processes and drug

metabolism but also in lipid and glucose metabolism in

the liver. CAR, thus, plays an essential role in energy

homeostasis and it plays a protective role against obe-

sity and diabetes under normal physiological conditions

[64,65]. Human CAR also regulates CYP3A4 expres-

sion, as shown in the hepatocyte cell line, HepG2 [66].

In fact, CAR appears to transactivate CYP3A4 by bind-

ing to a PXR-binding site as shown with luminescent

luciferase reporter genes in CV-1 kidney cells (monkey)

[67]. Finally, regulation of CYP3A4 by CAR can also

be observed in the intestine, as demonstrated in a

human colon cell line (LS174T) [68,69].

Hepatocyte nuclear factor 4 alpha

The hepatocyte nuclear factor 4 alpha (HNF4a) regu-
lates hepatic CYP3A4 expression, thus allowing ontog-

eny of the liver and lipid homeostasis in humans [70,71].

Nowadays, it is well known that this nuclear receptor

also is expressed in other tissues such as the intestine,

where it regulates differentiation, maturation, regenera-

tion, and cell renewal in mammals (mainly in entero-

cytes) [72]. This explains why deregulation of HNF4a
can lead to serious intestinal pathologies associated with

inflammatory bowel diseases [72]. HNF4a also plays an

essential role as a direct transactivator of several CYPs

involved in xenobiotic metabolism, such as CYP2C9

and CYP2C19 [73]. As an indirect transactivator,

HNF4a promotes the up-regulation of CYP3A4 by

PXR and CAR in the liver in response to xenobiotics by

binding to specific distal response elements upstream of

the PXR and CAR response elements which are located

in the proximal promoter of cyp3a4 [74].

Glucocorticoid receptor

The glucocorticoid receptor (GR) is a ligand-inducible

transcription factor that regulates stress, metabolism,

development and reproduction [75]. The involvement

of the GR in the regulation of CYP3A4 has been dem-

onstrated in the HepG2 human cell line [76]. Dexa-

methasone (DEX), a GR ligand, also has been shown

to induce the intestinal expression of human CYP3A4

(and of its rat ortholog, CYP3A9, in primary cell cul-

tures) [77]. The same study showed that DEX also

induces the expression of PXR, result which supports

the work of Cooper et al. [78] who demonstrated that

GR positively regulates the expression of PXR thus

promoting CYP3A4 induction in HepG2 cells.

Aryl hydrocarbon receptor

The aryl hydrocarbon receptor (AhR), initially known

as a transcription factor linked to the toxicity of various

xenobiotic compounds such as TCDD [79], also may be

responsible for metabolic disorders linked to MDCs.

Indirectly, it can alter the expression of PPARc (peroxi-

some proliferator-activated receptor gamma) and, thus,

disrupt adipogenesis and ultimately lead to obesity [80].

When exposed to PCBs, AhR can promote an increase

in de novo lipogenesis and a decrease in mitochondrial

fatty acid oxidation. These effects facilitate the accumu-

lation of lipids in the liver, which is the first stage in the

development of hepatic steatosis [81]. In addition,

high-fat diet fed mice exposed to TCDD show worsen-

ing steatosis and liver fibrosis [20]. Among its other

functions, the AhR has been shown to be involved in

the regulation of various physiological processes as

demonstrated by AhR-KO mice, which display abnor-

malities in the liver, the GIT and in vascular develop-

ment [82], by invertebrate (drosophila) and vertebrate

(mice) models [83], which exhibit effects in nervous sys-

tem development and by AhR-KO mice [84], which

show involvement in the immunology of barrier organs

such as the skin, the lung and the intestine. Also, AhR

could be involved in the regulation of CYP3A4 expres-

sion through a crosstalk with PXR, as has been sug-

gested by studies employing a permanent hepatocyte

cell line (HepaRG) and primary human hepatocytes

[85]. Thus, over the last decade, the AhR has gone

beyond its status as a simple purifier of xenobiotics and

new functions are now being attributed to it. Indeed,

this receptor appears to be involved in multiple physio-

logical metabolic reactions and to bind several endoge-

nous ligands (indole derivatives or tryptophan

metabolites, for example). Furthermore, the high degree

of conservation of the AhR across species, its constitu-

tive expression during development and the phenotypic

alterations in the AhR-KO mice demonstrate the impor-

tant role that this transcription factor plays in the physi-

ological stability of the organism.

Pregnane X receptor

The nuclear receptor pregnane X receptor (PXR) was

initially identified as a regulator of the expression of
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genes associated with the metabolism of xenobiotics. It

is now known for its involvement in lipid metabolism

and the maintenance of the intestinal barrier, its

numerous cross interactions with other transcription

factors (see below), its involvement in the metabolism

and distribution of bile acids and cholesterol and in

the development of hepatic steatosis [86–88]. Ubiqui-

tous in the body, PXR is particularly abundant in the

liver and the intestine [89]. It acts as an important reg-

ulator of the gut-liver axis, both in its interaction with

xenobiotics and the regulation of bile acid homeostasis

genes [90]. In fact, PXR is well known for its involve-

ment in the response to xenobiotics, the activation of

PXR induces the expression of genes encoding xenobi-

otic metabolism enzymes such as CYP3A4, for which

it is a major regulator. PXR is transactivated by a spe-

cific ligand binding to its ligand-binding domain

(LBD). This enables it to form a heterodimer with

RXR (retinoid X receptor) before binding to PXR

response elements (PXRE) and regulating CYP3A4

expression [91]. PXR is also involved in the expression

of certain conjugation enzymes (e.g. sulfotransferase)

and certain transporters (e.g. P-glycoprotein) [92]. It is,

therefore, involved in phases I, II, and III of xenobi-

otic metabolism and it plays a major protective role.

PXR is renowned for its involvement in the metabo-

lism of multiple xenobiotics, including drugs such as

tamoxifen (anticancer agent), nifedipine (anti-

hypertensive), clotrimazole (antifungal) or other EDCs

such as phthalates [78]. However, PXR also interacts

with certain endogenous ligands such as lithocholic

acid (steroid) and certain products of the microbial

flora [93]. Thus, it appears that PXR regulates the

body’s homeostasis through diverse mechanisms such

as the secretion of bile acids [94] and cholesterol [87],

in addition to its protective role against the toxicity of

exogenous substances. MDCs could therefore deregu-

late PXR-mediated signaling pathways at intestinal

level, leading to metabolic pathology such as hyper-

cholesterolemia [95].

Interactions of PXR with other transcription factors

The human PXR receptor crosstalks with other tran-

scription factors to regulate the expression of genes

involved in the metabolism of lipids, glucose, choles-

terol, bile acids and xenobiotics. For example, it inter-

acts with HNF4a to regulate cholesterol, with the

FOXO1 (forkhead box protein O1) transcription fac-

tor to regulate glucose levels and with PGC-1a, a

coactivator of the PPARc receptor involved in gluco-

neogenesis [87,96]. PXR also appears to crosstalk with

the AhR receptor for regulating CYP3A4 gene

expression, as it has been found in a liver human cell

line (HepaRG) and primary human hepatocytes [85],

thus echoing previous research in mammals [97].

In vitro and in vivo intestinal models,
to assess the impact of MDCs on the
intestine

The development of bioassays and tests to evaluate the

potential disruption of the endocrine system by diverse

molecules is a major challenge for current research. Sev-

eral experimental models have surfaced over the years.

While in silico models are becoming increasingly impor-

tant, in vitro and in vivo models still play an essential

role in MDCs assessment. On the one hand, in vitro

models are used to explore the mechanistic aspects of

EDCs at the cellular level and, on the other hand, inte-

grative in vivo models allow the evaluation of the poten-

tial disruption at the organismal level. Given the lack of

studies on the impact of MDCs in the intestine, the

development of suitable models for the evaluation of

these effects in the intestine is a challenge for the future.

For intestinal research, a variety of models are used

today, each with its own advantages and disadvantages

when compared to the human intestine. We present here

an overview of currently used intestinal in vitro and in

vivo models (Tables 2 and 3).

The use of in vitro models

Numerous in vitro human intestinal models exist. For

example, the human Caco-2 cell line is a useful model

since it can employ either undifferentiated cells or a

differentiated monolayer that mimics the intestinal

barrier. In their undifferentiated proliferating state,

Caco-2 cells exhibit a very flexible metabolism which

allows fine characterization of the potentially deleteri-

ous metabolic changes that may occur upon exposure

to MDCs. At confluence, Caco-2 cells spontaneously

differentiate, after 21 days, into a monolayer of polar-

ized cells that express some specific morphological and

functional properties of enterocytes [98]. This model

can be used, thus, to assess the transport functions of

intestinal cells and to study the intestinal barrier (mor-

phology, biomarkers and permeability, in particular)

[99], the integrity and function of which may be

altered upon exposure to MDCs. The first intestinal

organoid, derived from human adult intestinal crypt

stem cells, was developed in 2009 following the devel-

opment of gastric organoids and just preceding the

development of prostate, lung and cerebral organoids

[100]. Intestinal organoids also can be derived from

induced pluripotent stem cells. A further degree of
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complexity can be added by introducing microbiota, a

crucial component of the colonic microenvironment,

through the injection of bacteria into the organoid

lumen [101]. Finally, more complex organoids can be

derived from intestinal tissue obtained following surgi-

cal resections. These tissue fragments, cultured on an

air-liquid interface, give rise to organoids containing

not only epithelial cells, but also fibroblasts, immune

cells, muscle fibers and cells that compose the

nervous-enteric system. This model thus recapitulates

the entire microenvironment required for organoid

functionality [102].

In vitro animal models also have evolved. Although

mammalian models are now widely used, intestinal fish

models are still rare. The first intestinal cell line

derived from the rainbow trout (Oncorhynchus mykiss)

appeared only in 2011 [103] and efficient epithelial bar-

rier model only appeared much later in 2017 [104]. No

in vitro intestinal model is currently available for the

zebrafish. The characteristics of various in vitro intesti-

nal models are given in Table 3.

The use of in vivo models

Despite increasingly stringent regulations (mostly due

to ethical considerations) and concerns about the

transposability of potential adverse effects to humans,

animal models still play important roles both for the

investigation of the pharmacology and toxicity of sub-

stances as well as for the comprehension of the etiolo-

gies and development of pathologies in humans. In

addition, the use of animal models to study endocrine

and metabolic pathologies, such as obesity and its co-

morbidities, is particularly widespread and many spe-

cies are used as effective tools to understand these dis-

eases [105]. For example, studies involving rodents has

allowed the identification of the role of adipose tissue

inflammation in the etiology of type 2 diabetes [106].

Caenorhabditis elegans was used to discover the benefi-

cial effects of flavonoids on triglyceride levels [107]

and zebrafish often have been used to study hypergly-

cemia or hypertriglyceridemia [108]. Moreover, studies

of the effects of MDCs have employed a large diver-

sity of species as compared to conventional toxicologi-

cal studies in which rodents predominate [109]. The

use of species other than rodents, over and above the

specific scientific interest that each particular species

may present (genetic manipulation, imaging and other

tools), also can be justified by the increasingly relative

relevance of rodents for the study of EDCs. Despite

the obvious usefulness of rodent models (as mamma-

lian species) to mimic the effects of substances that

would be observed in humans, recent research has

called into question their relevance for the study of

EDCs. Habert et al. [110] showed that there are major

differences in the impact of BPA on steroidogenesis

between the fetal testes of rodents and humans and

even between rats and mice. In Table 4, the character-

istics of various in vivo intestinal models are given

which indicate to what extent human gastrointestinal

pathophysiology can be approximated.

The zebrafish as a model of growing
importance in toxicology

Fish represented one quarter of the animal models used

in the European Union in 2019 [105] and their use con-

tinues to increase. Among the fish, a little tropical cypri-

nid from the rivers of India and Malaysia, Danio rerio

(zebrafish), is extensively used. This species is well

known for its genetic proximity to humans since 70% of

human genes have homologs in zebrafish [111].

Table 3. Examples of in vitro intestinal models.

In vitro intestinal models References

Human Caco-2 cell line

Enterocyte model isolated from a human

colorectal adenocarcinoma

[171]

HT-29 cell line

Derived from a colon adenocarcinoma,

used in bioavailability and cell

mechanism studies

T84 cell line

Used to study the hormonal control of

human colon carcinoma cell growth

Organoids – isolated crypt or stem cells

to study differentiation and early

immune response. 3D cell line culture to

study regional absorption mechanisms

and drug transport

[172]

Rodent In situ intestinal perfusion

Drug absorption profiling and mechanistic

approaches for the absorption process

(more precise than transgenic models)

[173]

Fish RTgutGC, the first fish intestinal epithelial

cell line (RT: rainbow trout), later used

as epithelial barrier model

RTgutF, the first rainbow trout intestinal

fibroblast cell line. Combination of

RTgutGC and RTgutF provides new fish

intestinal barrier model

New rainbow trout intestinal in vitro

platform

[103,104,174

–176]

ECGI-21, new grouper intestinal cell line

to study viral pathogenesis and

gastrointestinal pathologies

[177]

No zebrafish in vitro intestinal model has

been developed yet
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Moreover, 82% of the human genes associated with the

development of pathologies are related to D. rerio

orthologs [112]. Zebrafish embryos develop, in less than

a week, most of the major organ systems present in

mammals, including the cardiovascular, nervous, and

digestive systems. Its zootechnical properties make it an

easy model to use in laboratory investigations. Zebra-

fish are small, they have a short reproductive cycle, fast

growth and they rapidly attain sexual maturity. Further,

embryonic development occurs in just a few days. More

importantly, the zebrafish is a complete model that

allows the exploration of the in vivo toxicological effects

of substances on an entire vertebrate organism. It is less

expensive than rodents and it is progressively becoming

a reference model. The increasing use of zebrafish for

pharmacological and human toxicological studies since

the 1990s shows the particular interest of the scientific

community for this little fish [113]. The zebrafish is

employed more and more frequently as a replacement

for rodent models. It provides the 3Rs (Replacement,

Refinement, Reduction) value to studies, particularly at

the embryonic stage (before 5 days post-fertilization).

At this stage, it is not considered an animal by law and,

thus, represents an alternative model to animal experi-

mentation [111]. The zebrafish is positioned as “a flexi-

ble model which fits between in vitro models and

mammalian rodent models of toxicity” [114]. In

addition to its zootechnical properties, D. rerio is an

excellent model for the study of the response of specific

genes to pollutants. Transgenic organisms which have

fluorescent markers (e.g. Green Fluorescent Protein,

GFP) linked to the expression of genes of interest are

easily obtained [115]. Finally, mutants also can be easily

developed to facilitate in vivo experimentation. For

example, transparent zebrafish, named Casper, facilitate

observation of the whole organism and allow fluores-

cence measurement from the embryonic stages to the

adult [116]. Danio rerio is, thus, becoming an increas-

ingly relevant model to explore endocrine disruption

and its metabolic consequences in humans, particularly

through the use of transgenic animals as a screening

tool [108,117].

The zebrafish intestine, a model close to humans

The formation of the endoderm during gastrulation in

xenopus, mouse and zebrafish embryos exhibit similar-

ities in gene expression and cellular mechanisms that

allow the development of the GIT. However, the sig-

naling pathways involved in the development of the

mesoderm differ from one species to another, mainly

due to differences in the regulation of the Nodal genes

[118]. Thus, although the development of embryonic

structures is common to all vertebrates early on, the

appearance of the mesoderm marks the first difference

with respect to the signaling pathways involved. Once

developed, the GIT in zebrafish is different from that

in mammals as it displays no stomach. Its digestive

tract is composed of the mouth, the esophagus, the

intestine, which is divided into three distinct parts

(anterior intestine, middle intestine and posterior intes-

tine) and the anus [119,120]. Despite these anatomical

differences, numerous studies have shown similarities

in the development and structure of the intestine

between mammals and zebrafish. The intestinal epithe-

lium, for example, is particularly well-preserved

throughout evolution, performing the primitive func-

tions of nutrient assimilation and microbiota interac-

tion [121–123]. The intestinal epithelial cells can be

divided into two categories, depending upon whether

they play an absorptive or secretory role. In humans,

the enterocytes (M cells and BEST4+ cells) are

involved in absorption whereas enteroendocrine, tuft,

goblet and Paneth cells are involved in the secretion of

diverse compounds including mucus [124]. Intestinal

cells are arranged in villi in humans and zebrafish have

a comparable folded structure, called rugae. Human

villi form crypts which contain intestinal stem cells

that migrate along the villi during differentiation and

Paneth cells. Zebrafish rugae do not form crypts but

Table 4. Examples of in vivo intestinal models.

In vivo intestinal models References

Human hPSC-derived human intestinal organoids

(HIOs) transplantation in

immunocompromised mice showing the

key features of human intestinal

metabolism

[178]

Rat Correlated to human permeability and

gastric emptying rate of liquids, ideal for

studying intestinal drug absorption

[178]

Differences in the expression of

metabolism enzymes such as CYP3A4,

rat ortholog CYP3A9 being 11-fold

higher in the duodenum and 193-fold

higher in the colon than in humans,

difference in microbiota composition

[62,167]

Mouse Characteristics close to the rat model,

however information on the enzymes

involved in metabolism is limited mainly

to CYPs and ABC transporters

[178]

Pig Greater anatomical and genetic proximity

to humans which results in better

replication of human gastrointestinal

physiology and diseases

[179]

Zebrafish See dedicated table below (Table 5)
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rather interfold bases containing progenitors of entero-

cytes and secretory cells. The apical domain contains

differentiated cells in both humans and zebrafish.

Although the histological organization is slightly dif-

ferent (unlike mammals, zebrafish do not have a sub-

mucosal layer and the smooth muscle layer is simpler

and directly attached to the mucosa), the zebrafish

intestinal epithelium is broadly similar to that of

mammals, with a specialization of epithelial cells to

ensure the various physiological functions of the intes-

tine [125,126]. Zebrafish present the same heterogeneity

in cellular specialization as attested to by single-cell

RNA sequencing. However, they do not have Paneth

and M cells, both of which are involved in intestinal

immunity, although a vacuolated M cell type is recog-

nizable which performs the mammalian-like functions

Table 5. In vivo intestinal zebrafish models currently used in experimental research.

Models Relevance to humans Specificities References

I-FABP GFP/

RFP-transgenic

zebrafish

Intestinal-type fatty acid-binding protein (I-FABP)

is implicated in fatty acid trafficking and

metabolism in gut and is present in both

zebrafish and mammals

GFP and RFP fluorescent reporters reflect the

expression of I-FABP in the developing and

mature gut. Could be used as an in vivo model

to assess functional analysis of the intestine

[180]

Tg(cyp2n13p:egfp) larval

model

Orthologue of human cyp2j2, involved in liver

xenobiotic metabolism (including antihistamine

drugs)

Four transgenic models for assessing

drug-induced organ toxicity at different phases

of drug metabolism enabling in vivo screening

of substances, particularly useful during drug

development.

While these biomarkers are not exclusive to the

GIT, since they are also present in the liver,

their expression is much more pronounced at

the intestinal level, underlining the primary role

of the gut in oral substance metabolism

[181]

Tg(gsr:egfp) larval model Glutathione s-reductase (gsr) involved in

xenobiotic metabolism

Tg(gstt1b:egfp) larval

model

Glutathione s-transferase theta 1b (gstt1b)

endobiotic metabolism

Tg(cyp2k18:egfp) larval

model

Orthologue of human cyp2w1, marker of colon

cancer and hepatocellular carcinoma

[182]

Microbiome-free ZF

larvae fed on

microbe-free live food

rearing protocol

Depending on which bacteria with which the

model is infected

Allows the study of interactions between host

commensal and pathogenic bacteria by

controlling zebrafish larvae microbiome

composition

[183]

Mutant (tp53M214K) in

Helicobacter pylori

CagA oncoprotein

context

Orthologue mutation of methionine 246

missense mutations identified in human

tumors

p53 loss is sufficient to induce high rates of

adenocarcinoma and small cell carcinoma in

the zebrafish intestine

[184]

APC-mutants larval

model

Mimics the mutations found in Familial

Adenomatous Polyposis (FAP) patients

Premature stop codon leading to digestive tract

neoplasia

[185]

Tumor cells

transplantation using

rag2E450fs mutants

Relevant to human biology, comparable to

xenograft mouse models

A xenograft model enabling visualization of

cancer development, not specific to

gastrointestinal oncology

[186]

[187]

Tg(ifabp:EGFP-krasV12) Mimics intestinal tumor formation in humans A transgenic model detecting overexpression of

k-RasV12, an oncogenic factor in the intestine

which promotes intestinal carcinogenesis,

enteritis, epithelial hyperplasia, and tubular

adenoma in adult fish

[188]

Larval and adult models

for enterocolitis and

IBD etiology

The similarities observed between the intestinal

physiology of humans and zebrafish are also

present in the pathological context, particularly

in enterocolitis and IBD

A relevant model to study intestinal

inflammation through the expression of

proinflammatory marker as TNFa, leukocytosis,

bacterial overgrowth, alteration of goblet cells,

epithelial disruption, etc. pathologies are

induced by exposure to substances (TNBS for

example)

[125]

APOA-I-mCherry

transgenic zebrafish

larval model

First evidence of cholesterol transport in the

intestinal endosomal-lysosomal trafficking

system. Model is relevant to humans due to

the difficulty of imaging the transport of

nutrients and proteins in vertebrates and the

similarities between zebrafish and human

intestine

A novel assay for imaging apolipoprotein A-I and

live dietary cholesterol trafficking in the

zebrafish intestine by feeding transgenic larvae

expressing an APOA-I fluorescent fusion

protein (APOA-I-mCherry) with TopFluor-

cholesterol, a fluorescent cholesterol analog

[189]
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in passive immunity [125,127]. Similarities in the struc-

tures and cellular compositions, at the anatomical and

cellular level, of the zebrafish and human intestines are

illustrated in Fig. 1.

The specialization of the epithelial cells is reflected

by specific gene expression in the different zones along

the intestine. These genes have been identified in sev-

eral mammalian and fish species (human, mouse, zeb-

rafish, and stickleback) [128]. When the zebrafish

intestine is artificially divided into seven equal parts on

the basis of specific gene markers, the epithelial cells

show a large number of orthologous genes between

Fig. 1. Comparison of the anatomical segments and cellular compositions of zebrafish (A) and human (B) intestines. Intestinal

cross-sections show the structural differences between zebrafish rugae and human villi. Histological sections show the main cell types for

both species.
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zebrafish and mice. There is a strong correlation in the

expression of specific markers between the two species

in the first 5 segments (equivalent to the small intestine

in mammals) [129]. Thus, some equivalences can be

identified. The zebrafish anterior intestine is similar to

the duodenum and jejunum of mammals as based on

the ada and rbp2a gene markers, respectively, and it

shares similar functions (absorption of lipids, carbohy-

drates, and proteins). The zebrafish middle and poste-

rior intestines are similar to the mammalian ileum and

colon, as based on the fabp6 and lamp2 marker genes,

respectively, and they share similar functions. The

middle segment absorbs bile salts, like the ileum,

whereas the posterior segment absorbs ions and water,

similarly to the colon [126,128,130].

Zebrafish intestinal in vivo models

Several zebrafish intestinal models are available which

can serve as tools for the study of the intestine from

diverse perspectives, including toxicology. Here, we pre-

sent the models currently used to investigate the intestine

and its specific features (Table 5). Mutant and transgenic

zebrafish models can be used to assess the toxicity of sub-

stances on the GIT, to study (a) the inflammation of the

intestinal tissue, including in chronic diseases such as

enterocolitis and IBD, and (b) the development of intes-

tinal cancers and potential target therapies. Of the vari-

ous zebrafish intestinal models, larval models are

frequently used as they offer several advantages. In addi-

tion to the large number of individuals generated at this

stage, the larvae can be manipulated easily. Moreover,

live imaging is easy, as is the colonization of the digestive

tract by specific bacteria. Finally, high-throughput drug

screening is possible at this stage.

Current approaches

Recently, several large-scale European projects have led

to the creation of bioassays which use zebrafish models.

For example, the European OBERON project, which

was launched in 2019, aims to obtain “an integrative

strategy of testing systems for identification of EDCs

related to metabolic disorders” [131]. In this context

focusing on human health, a number of in vivo zebrafish

models have been developed. Considering the proxim-

ities between zebrafish and humans, and the existence of

a Steatogenic Assay on Zebrafish (StAZ), a new bioas-

say using larvae from a zebrafish line expressing a blue,

fluorescent liver protein reporter to screen and charac-

terize steatogenic EDCs [132] has been developed. The

Zebrafish Obesogenic Test (ZOT) was also used in this

project. This test assesses the effects of substances on

WAT in zebrafish larvae, in order to ascertain the obeso-

gen potential of an EDC [133].

The zebrafish at the embryonic stage, thus, allows

the creation of models and bioassays alternative to

animal models that are useful for assessing the impact

of EDCs on metabolic diseases. It is, therefore, realis-

tic to imagine the development of similar bioassays for

the intestinal. Models developed for other organs (liver

or adipose tissue) rely on precise molecular targets,

such as a hepatic protein in the StAZ bioassay and

specific intestinal targets also can be envisioned for the

investigation of deregulations of gut metabolism.

The zebrafish CYP3A65 gene: a
potential marker of intestinal
disturbance in the context of MDCs?

As an orthologue of human CYP3A4, highly expressed

in the intestine and extensively involved in gut metabo-

lism, CYP3A65 could represent a first-rate molecular

target for the development of a relevant intestinal bio-

assay. This cytochrome is mainly expressed in the

anterior part of the zebrafish intestine (Fig. 1) [134].

The cyp3a65 gene has 54% similarity to human cyp3a4

[135]. Its expression seems to be regulated by both

zfPXR and zfAhR, both of which are orthologs of the

human transcription factors PXR and AhR according

to the limited literature available on this cytochrome.

In fact, Chang et al. [136] suggest that zfAhR and

zfPXR are both necessary for cyp3a65 expression, con-

sistently with Jackson and Kennedy [137] who advance

that zfPXR plays a role in its expression and Salanga

et al. work which point out that although zfPXR is

involved in CYP3A65 expression, the depletion of this

transcription factor does not lead to the silencing of

the cytochrome expression which suggests a compensa-

tory mechanism [138]. Finally, Kubota et al. [139],

showed that the expression of CYP3A65 is regulated

by both zfAhR and zfPXR through an interaction

resembling reciprocal crosstalk between the two tran-

scription factors. These results recall the complex regu-

lation of human CYP3A4 described above. Overall,

research to date has led to different hypotheses for the

regulation of CYP3A65, involving zfAhR and/or

zfPXR, thus calling for further investigation into the

expression of this cytochrome.

Factors regulating CYP3A65 expression:

comparison with humans

Recent studies in zebrafish have demonstrated that

CYP3A65 is strongly regulated by zfPXR and zfAhR,

in humans, other transcription factors such as CAR,
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HNF4a and GR have been shown to regulate

CYP3A4 expression (see dedicated section above).

CAR is considered “lost” in teleost fish such as zebra-

fish [140], whereas PXR shows strong interspecies dif-

ferences. In fact, in addition to its large number of

ligands, PXR displays some interesting species-

specificity. For example, zebrafish PXR (zfPXR) has a

smaller LBD pocket [141]. This could explain why the

same chemical may have different effects on PXR

activity following binding to zebrafish or human PXR

(hPXR) [142]. Similarly, the pharmacophore analysis

of PXR in several species (mouse, rat, chicken, zebra-

fish, human) shows strong differences. For example,

the same molecule (Benzo[a]pyrene) is active in some

species (zebrafish, rat, humans) and inactive in others

(rabbit) [141]. In fine, although some species are closer

to humans, no perfect model exists, all differ from

humans to a greater or lesser extent in terms of PXR

activity.

The study of the expression of zebrafish CYP3A65

for the investigation of exposure to MDCs could pro-

vide information on the impact of these substances on

human CYP3A4. For example, following the logic of

the intestinal transgenic embryonic models already in

use, we suggest that a model that allows the measure

of CYP3A65 expression by GFP fluorescence, follow-

ing exposure to a substance, could be used to screen a

wide range of molecules and their effect on CYP3A65

expression. This model could be employed, also, to

investigate possible crosstalk between the AhR and

PXR signaling pathways, which could indicate possible

effects of these substances on human intestinal

CYP3A4 expression.

Conclusion

The role of MDCs in the development of metabolic

diseases in humans has stimulated important research

efforts which range from mechanistic to epidemiology

studies. In this review, the pleiotropic role of the intes-

tine and its importance in numerous physiological

functions, from its role as a barrier and endocrine

organ to its role in the metabolism of xenobiotics and

endogenous compounds are underlined.

Intestinal CYPs represent relevant molecular and

biochemical targets for investigation on the effects of

MDCs as they are highly expressed, they are involved

in the metabolism of endogenous compounds, and

they are targeted by numerous pharmaceuticals.

This review highlights the CYP3A family, among

the CYPs, as being particularly relevant because of

its level of expression and the number of chemicals

that could potentially disrupt CYP3A expression/

activity. The development of relevant biological

models to explore the modes of action and the effects

of MDCs at the intestinal level is of prime impor-

tance for the development of specific bioassays to

determine the biological activities of key target genes

and evaluate physiological processes. The zebrafish

model is of particular interest in this context given

the similarities of its GIT with that of humans. Sev-

eral in vivo zebrafish intestinal models have recently

emerged for the investigation of various human

pathologies, such as colon cancer and IBD, as well

as for the study of gut microbiota, intestinal nutrient

transport and the toxic consequences of drugs on the

GIT. One can expect that the development and the

implementation of specific in vivo zebrafish models

will constitute novel opportunities for the further

study of the modes of action and the effects of

MDCs in the intestine in concert with additional new

approaches to evaluate integrated multi-organ

toxicity.

Take-home messages

1. The role of the intestine on the effects of MDCs,

has been unexplored as compared to other organs.

2. Several CYP450s are regulated at the transcrip-

tional level, by one or several xenobiotic receptors

(e.g., the CYP3A family).

3. The zebrafish model shares numerous similarities

with humans, particularly its GIT.

4. The zebrafish model represents an opportunity to

study the complex interactions of MDCs at the

intestinal level and the subsequent development of

pathologies.

5. Expect the development of pathological intestinal

zebrafish models that could be used for

a. Drug development.

b. Regulatory assessment of chemicals.

c. Fundamental research on the mode of actions

of such chemicals.
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