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Abstract: 

Slope stability calculation depends on the soil properties (cohesion and the friction angle) of the soil. 
Heterogeneous terrains are frequently observed in civil and mining projects where the properties are 
highly spatially variable. Based on a real data from case studies, this paper presents a probabilistic 
analysis of the slope stability of highly heterogeneous terrains with a very high coefficient of variation 
(COV) of the cohesion distribution. The existing deterministic and probabilistic approaches for 
calculating slope stability lack the capability to effectively consider the significant heterogeneity 
present in the terrain The objective of the paper is to develop a new bounded interval distribution 
having a COV that is as high (> 150%) as the COV of the cohesion distribution The results obtained with 
this new distribution are compared to 4 other semi-infinite distributions. To consider the correlation 
between cohesion and the friction angle, a specific formulation was developed to generate friction 
angles varying between fixed minimum and maximum limits and having the desired correlation 
coefficient, mean, and standard deviation. The new cohesion and friction angle distributions were 
incorporated and tested in a probabilistic numerical model. The new distribution can presently be 
applied to geotechnical studies for terrains and heterogenous materials with properties exhibiting high 
spatial variability. 
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1 Introduction and objective 

The slope instability is a major problem in civil, mining, and geohazard engineering. The inherent 
spatial variability of geo-material properties influences material behaviour and geo-structural 
response [1,2]. Analytical and numerical approaches are generally used to assess their local and global 
stability and to calculate a safety factor. In fact, using a deterministic approach that does not account 
for spatial variability can sometimes cause slope failure even when the “deterministic” factor of safety 
(FoS) is greater than 1.0. Spatial variability is particularly important since the response of the terrain 
depends on its geomechanical properties, with failure often initiating and spreading from the weakest 
areas of the massif [3]. Probabilistic approaches provide a more robust assessment, delivering a 
comprehensive response articulated in terms of reliability and the probability of failure [4,5]. 

Probabilistic approaches of slope stability problems are not new, and have been used since the 1970s 
[6,7,8,9], mainly by combining limit equilibrium methods with various probabilistic approaches [10]. 
Those approaches have included the Monte Carlo Simulation (MCS) method [11,12,13,14,15]. The MCS 
method calculates the probability of slope failure based on the assumption of the probability density 
function (pdf) of the random input variables [12]. 

The advantages of MCS method are: standard errors in the results are very easy to determine, the 
convergence speed is independent of the magnitude of the random variables and the complexity of 
the performance function is not related to the simulation procedure. The disadvantage of the MCS is 
that the number of simulations and the computation time increase considerably with the reduction of 



 

 

the probability of failure. MCS is also used in numerical calculations, in particular to vary the properties 
of the terrain (plastic and/or elastic), of rock joints [16], or of bimrocks [17]. Most often, it is the values 
of the parameters under consideration that are distributed, but with the RS-DEM method (the Random 
Set Discrete Element Method, the theory of which is attributed to Kendal [18]) only the intervals of the 
input parameters are considered. The finite element method (FEM [3], Random FEM [19], stochastic 
finite element [20]), finite difference method (FDM [21,22,23]) and discrete element method (DEM, 
[24] have been adopted more recently as alternatives to the limit equilibrium method. This paper 
provides a new distribution that can represent data with high spatial variability, using example data 
(cohesion and friction angle) generated for use with the combined MCS and FDM methods. 

The paper specifically addresses the case of a mining deposit structure resulting from the excavation 
of mines and tunnels. A mining deposit consists of high heterogeneity materials [25,26,27,28,29,30]. 
This heterogeneity – also referred to as "natural variability" - is due to the nature of the different 
constituents, their granulometry, the method of construction, the reaction with runoff, consolidation, 
etc. This level of heterogeneity justifies considering a spatial distribution of the mechanical properties 
instead of a vertical gradient, as is often the case for consolidated homogeneous soil layers [30]. The 
objective of the paper is to develop a suitable distribution for the cohesion with high dispersion, and 
to then apply it to real cases. 

2 Distribution of widely dispersed data 

Slope stability is a major problem [31,32,33] in geotechnical engineering. It depends, among other 
things, on the nature of the soil and its heterogeneity. The paper discusses the distribution of 
geomechanical properties affecting the global stability of the slope of mining deposits. 

The stability calculation is based on the factor of safety value (FoS). Analytically, it depends on the ratio 
of the driving forces and those related to the shear strength of the geomaterial. The shear strength is 
expressed in terms of a failure criterion such as Mohr-Coulomb criterion. This criterion is described by 

a cohesion C and a friction angle . Because these two parameters vary spatially, they are random 
variables. Additionally, the coefficient of variation (COV) is a dimensionless parameter that 
characterises the heterogeneity of the soil [34]. The cohesion and friction angle data of a mining 
deposit in Greece - Soulou [35] only show that the coefficient of variation (COV) of the measured 
cohesions is very high (COV = 143%, Table 1). The literature on heterogeneous soils [30, 34, 36, 37, 38] 
reports a greater variability in the cohesion parameter (clay soil = 75% < COV < 186% = fly ash) than in 
the angle of friction (sand = 7% < COV < 72% = soils with high clay content). 

27 samples cohesion friction angle variation interval 

mean µC = 14.2 kPa µ = 25.9° C: [0 kPa; 72 kPa] 

standard deviation C = 20.3 kPa  = 7.8° : [8°; 39°] 

COV = /µ COV = 143 % COV = 28 %  

Table 1 : Statistical parameters of cohesion and friction angle measured in laboratory tests (27): case of a 
mining deposit [35] 

For the case study presented in Table 1, it is therefore impossible to obtain a good statistical 
representation of cohesion measurements with a conventionally adopted normal distribution. The 

parameters C and , like most mechanical parameters, are positive data. To ensure that 99.8% of the 

data is positive under a normal distribution, it is essential that µ-3 ≥ 0, corresponding to COV  33%. 
The distribution of the friction angle can be effectively approximated by a normal distribution. This is 

evident as the coefficient of variation (COV) is 28 %, which corresponds to µ-3.57  = 0, and which, in 
turn, represents 99.98% of positive data. The friction angle was measured in the interval [8°; 39°] which 

corresponds to: [µ - 2.32 ; µ + 1.68 ]. This means that 99% of the data below µ will be correctly 

distributed by a normal distribution whereas only 95% will be for those above µ. To overcome this 



 

 

drawback, data censoring (if X> Xmax then X=Xmax and if X< Xmin then X=Xmin) can be performed during 
the random generation of the friction angles, as shown in Fig. 1, the interval-censoring concerns just a 
few data items and does not significantly disrupt the normal distribution, which could therefore be 
adopted for the friction angle. 

 

Fig. 1 : Normal distribution of the friction angle, before and after interval-censoring 

The analysis of cohesion measurements [35] reveals a substantial difference between the median 
value (6.6 kPa) and the mean value (14.2 kPa), because 11 out of the 27 measurements are nearly zero. 
This indicates a skewed distribution with an extended right-hand tail, emphasizing the necessity of 
considering this information when the skewness coefficient is unknown. Using the definition of the 
non-parametric skewness coefficient, the skewness in this case turns out to be notably pronounced 

because 0.37 0.2
median



−
=   [39]. 

As of the current state of knowledge, there have been no probabilistic studies specifically addressing 
highly heterogeneous geomaterials (COV > 100%). Among the many existing continuous distributions, 
relatively few can effectively reproduce data with a very high COV. In fact, to effectively represent the 
distribution of cohesion (a positively skewed variable with significant variability), there are two 
possibilities among the continuous distributions: distributions defined on a bounded interval or 
distributions defined on a semi-infinite interval. A priori, because cohesion is a positive variable 
belonging to a bounded interval, the natural choice should be the first possibility. This would mean 
ignoring the complexity of the distribution and/or density functions, which may prevent the 
consideration of certain distributions that are very difficult to implement in software. 

This work first presents the most used distributions in geomechanics and their results. It then describes 
the development of a new distribution capable of accounting for these high levels of dispersion. 

2.1 Continuous distributions defined on a bounded interval 

In the literature, two distributions defined on a bounded interval [0; Cmax] can reproduce data with 
high COV: generalized ARGUS [40] and Beta: 

ARGUS: Probability density function: 
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Cumulative Distribution Function:
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where  (>0) and p (>-1) are the shape parameters (curvature and power) and (a,z) is the upper 

incomplete Gamma function ( ( ) 1, a t

z
a z t e dt


− − = ). This distribution has been adjusted for positive 

skewness by transforming the variable x → Cmax – x, as opposed to the original formula [40]. 

Beta (for CminxCmax): 
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where z (,) is the incomplete Beta function ( ( ) ( )
11

0
, 1

 
−− = −

z

z t t dt ). 

The Beta distribution has several advantages over the ARGUS distribution: the density function is easily 
calculated (the Gamma function is easily programmable), the mean and standard deviation have 
analytically invertible forms, and the cohesions can be represented with a COV equal to or below 202%. 

Knowing the mean and standard deviation of the data, it is easy to determine the shape parameters  

and :   
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The density function remains positive if  > 0 or  > 0., i.e.,
( )( )max minC µ µ C

COV
µ





− −
=  . Moreover, 

to avoid high densities (a U-shape is not suitable for geotechnical data) near the maximum bound (Fig. 

4), it is necessary that  ≥ 1, i.e.: 

max min
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With  ≥ 1, this means that the cohesion values are correctly distributed (without high density near 

Cmax), for a COV  135%. 

The generalized ARGUS distribution is less practical to use since its mean and standard deviation are 
expressed as functions that are too complex to be evaluated without mathematical software: 
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with M being the confluent hypergeometric function of the 1st kind: ( )
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Furthermore, the relations are not invertible and as a result,  and p cannot be calculated analytically 

as a function of µARGUS and ARGUS. With a mean of 14.2 kPa, the maximum COV that can be achieved 

with ARGUS is 110% ( = 15.62 kPa). 

2.2 Continuous distributions defined on a semi-infinite interval 

There are many distributions defined on a semi-infinite interval ([0; +∞[) that can reproduce the 
cohesion data with positive skewness (Table 2). Those tested all have at least 2 parameters, to simulate 
high COVs. Presuming the exclusion of the generation of invalid data above Cmax, excessively high 
cohesion values calculated using these distributions are subsequently right-censored; in cases where 

C > Cmax, C is constrained to Cmax. This process disturbs the calculation of µ and  less than rejecting the 
data or truncating the distribution. The censored means and standard deviations are then calculated 
using the following formulae: 
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Table 2 shows the relative errors incurred when mapping densities from the interval [Cmax; ∞] to Cmax 
for 6 distributions defined on a semi-infinite interval and for the normal distribution (for reference). 

The 6 semi-infinite distributions best able to reproduce both µC and C are shown in Fig. 2. 

Distribution/statistical parameter 
Mean (kPa) 

( ),
c c c

    =   

Standard dev. 

( ),
c c c

    =   

Relative 
error 

COV 

Data (unknown distribution) µC = 14.2 C = 20.3 - 143% 

Normal () 17.1 16.2 28.8% 95 % 

Log-normal (LN) 13.4 14.8 27.9% 110% 

Inverse gaussian (IG) 13.4 15.7 23.2% 118% 

Generalized inverse gaussian (=-0.33, GIG) 16.0 17.7 18.0% 111% 

Generalized inverse-Gamma (=0.37, GIGA) 11.2 19.6 21.5% 175% 

Birnbaum–Saunders (BS) 13.5 17.0 17.0% 126% 

Generalized beta prime (=1.30, GBP) 17.3 14.4 36.3% 83% 

Table 2 : Cohesion (kPa) distribution, means and standard deviations computed after censoring for different 

semi—infinite distributions, with initial statistical parameters for the cohesion (µC = 14.2 kPa, C = 20.3 kPa). 



 

 

 

Fig. 2 : Distributions defined on a semi-infinite interval with initial parameters (µC, C) for the cohesion, and 
after right-censoring. 

To compensate for these errors, the parameters of these distributions have been modified so that the 

means and standard deviations calculated after right-censoring are equal to µc and c. This amounts 
to numerically solving the system: 

0

0

  

  

 = − =

 = − =

C

C           (11) 

The analytical relations for the censored means and standard deviations (   and  ) are complex and 

can be found in appendix B. The right-censored distributions are shown in Fig. 3. The effects of the 
censoring are visible near the minimum bound (Cmin = 0 kPa): these semi-infinite distributions tend 
closely resemble the bounded interval distributions (Beta). All of these distributions are equivalent 

with respect to the objective of reproducing the data such that µ = µC and  = C, but only the derived 
RAFF distribution has the desired behaviour at x = Cmax. For the semi-infinite distributions, this 
undesired behaviour is due to the right-censoring (above Cmax), but for the Beta distribution, this is due 

to the term ( )
1

max
C x

 −

−  that tends towards infinity when <1 as x tends towards Cmax. Table 3 shows 

the potentially large differences between the censored and non-censored parameters. The distance 
between these parameters shows which distributions are suitable for high COVs (low d). 

 

Distribution Mean 
Standard 
deviation Distance 
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r r C  
2 2

( ) ( ) = − + −
r C r C
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 µr = -0.52 r = 37.1 22.4 

LN µr = 23.6 r = 107.7 87.9 

IG µr = 21.2 r = 56.7 37.0 



 

 

GIG (=-0.19) µr = 8.7 r = 22.7 6.0 

GIGA (=0.37) µr = 16.6 r = 31.9 11.8 

BS µr = 16.3 r = 28.9 8.8 

Table 3 : Means, standard deviations and distances (kPa) computed after right-censoring for different 
distributions defined on semi-infinite intervals, with censored parameters 

 

Fig. 3 : Best fit of 5 distributions of the cohesion defined on a semi-infinite interval (right-censored parameters 

are computed in order to have  = µc = 14.2 KPa and  = c = 20.3 kPa) compared to bounded distributions 

(Beta and RAFF). 

2.3 New bounded interval distribution 

The ARGUS and Beta distributions are not able to correctly reproduce the distribution of the measured 
cohesions. Considering the drawbacks inherent to each of these 2 distributions, we propose a new 
distribution based on the Beta distribution formula while drawing inspiration from the ARGUS 
distribution to prevent the increase of the Beta density in the vicinity of Cmax. The formula of the 
distribution, called RAFF (Risk Assessment of Final pits during Flooding, a project supported by the 
Research Fund for Coal and Steel) in the rest of the paper, is the following: 
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The term (Cmax -x) was preferred to max
C x−  or (Cmax-x)² to avoid a distribution function lacking an 

analytical form, or to avoid one that is too complex, in the knowledge that the probability density 
functions would have similar profiles and that the parameters would be capable of reproducing a high 

COV. It should be noted that A (equation 14) is easily calculated for positive values of . When  is 



 

 

negative (the case for high COVs), the constant A remains a real number even if its individual elements 

are complex numbers. It can be shown that if  < 0, then 
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After simplifications, we verify that A is a ratio of positive real numbers: 
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This explains that ( ) ( ) ( )min
1

min max
0

e
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A
x dC x xC

  − − −
− − =  regardless of the sign of . 

For a negative , it is best to evaluate A with Mathematica-type mathematical software (or to program 
relation 15), since the algorithms able to compute the incomplete Gamma function with a negative 

value of  are complex and remain a topic of research in applied mathematics [41]. For  > 0,  (, ) 

can be calculated with Excel (using the Gamma function and the Gamma distribution:  (,) =  () 

(1-CDF  (, )). For  = 0, the distribution remains defined and becomes: 
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To streamline the subsequent equations, we will assume that Cmin = 0, aligning with the actual 
conditions of the cohesion measurements. The mean and standard deviation have formulae with a 
level of complexity intermediate between that of Beta and ARGUS: 
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The fact that these 2 statistical parameters depend on the Gamma function (incomplete or not) does 

not make it possible to analytically link the 2 shape parameters  and  to µ and . With a mean of  

14.2 kPa, a COV of 200% ( = 28.4 kPa) can be achieved with the RAFF distribution. Fig. 4 represents 
the probability densities function (pdf) for different COV values. For the cohesion data of a mining 
deposit (COV = 143%), the distribution obtained with RAFF fulfils the objectives set: reproduction of µ 

= 14.2 kPa and  = 20.3 kPa without censoring, and with a positive skewness. To reproduce high COVs 

(110%<COV<200%), the  and  parameters vary over restricted intervals: -2<<0 and 10-59<<0.5 (Fig. 
5). Contrary to what the "COV RAFF = 200%" curve (Fig. 4) may suggest, the higher the COV, the greater 
the weight of the distribution near Cmin becomes. 



 

 

 

Fig. 4 : Comparison of 4 distributions defined on a bounded interval, for different COV values 

For a COV of 200%, 80% of the data falls between Cmin and Cmin +10% (Cmax -Cmin), while the remaining 
20% is distributed between Cmax -10% (Cmax -Cmin) and Cmax (Fig. 5). Given this high level of dispersion, 
the data naturally clusters around the two extreme values (Cmin and Cmax). 

 

Fig. 5 : Evolution of parameters  and  (RAFF distribution) and of weights near Cmin and Cmax as a function of 
the coefficient of variation (COV) 

Apart from the constant A (which can be calculated in advance for given  and ), the RAFF probability 
density function (pdf) does not make use of special functions which are difficult to evaluate in software. 
Unfortunately, this is not the case for the RAFF cumulative distribution function (necessary for the 



 

 

RAFF random number generator) which contains the term ( )( )min
, x C  − . This drawback can be 

circumvented by using its series expansion in the vicinity of 0: 
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Because this is an expansion in the vicinity of 0, the maximum error occurs at x = Cmax. This can be 
effectively improved by changing the coefficient of xn so that CDF = 1 at x = Cmax. The relation (19) then 
becomes: 
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With a polynomial of order 14, the maximum relative and absolute errors can be limited to the machine 
precision (10-16), whereas these can increase to 2.10-5 when using relation (19). Fig. 6 illustrates the 
improvement achieved in comparison to relation (19): for n ≥ 5, the error is less than 10-n when using 
(20). The distribution and probability density functions of the RAFF distribution using the parameters 
that enable the reproduction of the cohesion data of [35] are shown in Fig. 7. 

 

Fig. 6 : Comparison of maximum errors  for series expansions (original and modified) of the RAFF CDF 



 

 

 

Fig. 7 : Cumulative (CDF) and probability density functions (pdf) of the RAFF distribution that reproduces the 
cohesion data of [35]. 

It is not possible to determine the RAFF quantile function (w(p)=C if p=CDF(C)) using the Lagrange-
Bürmann inversion theorem because the RAFF CDF is not an analytic function (equations (19) and (20) 

are not formal series because of the non-integer power of x). 

However, it is possible to approximate the quantile function by postulating the following relations:  

• if 0<p<CDF(C1):  ( )
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With these relations, the maximum absolute error is less than 0.0125 kPa. For the random values of 
the cohesion Ci greater than 1 kPa, the maximum relative error is 0.025%. For mining, civil engineering 
or geomechanical applications, this cohesion error is acceptable and simplifies the generation of 
random variables for the RAFF distribution. 

2.4 Comparison of different distributions 

To compare the ability of the different continuous distributions of positive variables (distributions with 
semi-infinite intervals being censored) to represent specific mean and standard deviation pairs, we 

determined the envelope curves in (µ,) space, as illustrated in Fig. 8 (where the variable X is the 
cohesion). The envelope curves correspond to the extreme case where one part of the data is equal to 
the minimum value (Xi = Xmin, i from 1 to m) and the other part is equal to the maximum value (Xi = 

Xmax, i from m+1 to n). The expectations for X and X2 are therefore:   ( )max max min

m
X X X X

n
= − −E  and 

( )2 2 2 2

max max min

m
X X X X

n
= − −  E . 



 

 

The expectation for X2 can also be written:  ( )2

max min max min
X X X X X X= + −  E E . Taking equation (10), 

we thus obtain: 
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Note that the GIG (Generalised Inverse Gaussian) distribution is not shown in Fig. 8 because its range 
of validity has been maximised by its 3rd parameter, which does not make it comparable with other 

(2-parameter) distributions. The RAFF and Beta distributions with <1 (U-shape) have a validity range 
equivalent to this theoretical limit. In Figure 8, we present the (µ, σ) data for both cohesion C and 

friction angle , incorporating the typical variation intervals observed for C and . In contrast to 
cohesion C, where coefficients of variation (COVs) are generally of substantial magnitude, the COVs 

associated with friction angle  are moderate. This suggests that a normal distribution  can be 

employed to assess the variability of . 

In general, the closer these envelopes are to the theoretical limit, the better the distribution in 

question can correctly reproduce the pair (µC, C). However, given the sometimes-complex evolution 

of these limits, it is best to choose the distributions whose envelopes are closest to (µC, C). In our case, 
the most interesting semi-infinite and bounded interval distributions are respectively the BS and RAFF 
distributions. 

 



 

 

Fig. 8 : Range of validity (µ/Cmax, 2/ Cmax) of different continuous distributions (unbounded distributions having 
been censored), range of variation of the COV for cohesion (yellow) and friction angle (green). 

 

The BS distribution (for which COV< 5) has a noticeable restricted domain of validity in comparison 
to that of the other distributions. The Beta (β < 1) and RAFF distributions have larger domains of validity 
(>40%) than the other distributions, but if the U-shape is to be avoided, the Beta β < 1) distribution 
ends up being no more preferable than the semi-infinite distributions. On the other hand, the domain 
of validity of the ARGUS distribution is restricted by the values of the standard deviation; it is not 
possible to simulate data with a standard deviation higher than 0.236 Cmax. In conclusion, this figure 
underscores the challenge of identifying a distribution that accurately replicates data with a high 
coefficient of variation (COV) when both the standard deviation and mean are elevated. For instance, 
the dataset (µ = 0.33 Cmax, σ = 0.472 Cmax) exhibits a COV of 143%. But except for RAFF, none of the 

distributions - excluding Beta with β < 1 due to infinite density at Cmax - can effectively capture this 
specific dataset. 
These first results show the superiority of the proposed probability distribution in reproducing the 
behaviour of materials with a very high spatial variability. 

3 Data generation with RAFF distribution 

3.1 Random variable generators 

After having developed and identified the distributions capable of reproducing the distribution of the 
cohesion (RAFF) and of the friction angle (), the objective is to generate populations of data 
corresponding to these distributions. This is the role of the random variable generator, which is based 

on the search for the random variable X = F-1 (u) with u  (0,1), F being the cumulative distribution 
function (CDF). Knowing that F is not always defined (case of GIG), or, conversely, given that F-1 is 
known, three methods exist to build a random generator. 

The first and simplest method is the one for which the analytical solution of the inverse of the 
distribution function is known. The analytical forms of F-1 for the , LN and BS distributions (table in 
the appendix) depend on the inverse of the error function (Erf-1). This function has usually been 
implemented in software, which solves the problem. 

The 2nd method consists of a specific (existing) algorithm. The most famous is probably the Box-Muller 
transformation [42] which makes it possible to generate a normal random variable using: 

    ( ) ( )1 22 ln cos 2X u u  = +−       (21) 

with u1 and u2, being two uniform random variables. 

It is also possible to use the effective approximations of Erf-1, such as that developed by [43]: 
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The algorithm may include a more or less complex test. For example, for the inverse Gaussian 
distribution [44]: 
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The 3rd method consists in creating one's own algorithm if it does not exist or if its domain of validity 
is incompatible with the needs of the study. For example, this is the case of the GIG distribution for 
which generators exist [45,46,47,48], but in addition to their complexity, they do not guarantee the 
validity of the results for all combinations of their 3 parameters. It is then necessary to solve F(X)=u 
numerically. There are then 2 specific cases depending on whether F is defined or not defined. If F is 
defined, Newton's method is very effective with a suitable initial value. Thus, it is sufficient to iterate 

n times the relation: 
( )

( )
0

0 0

0

F

f

x u
x x

x

−
= −  with u  (0,1) and x0 = distribution mode. In practice, n = 11 is 

sufficiently precise to generate values for the cohesion random variable. However, even when defined, 
F may be too complex (relation 13) to be programmed as it stands. In this case, it is effective to use a 
series expansion of F, which is simply a polynomial calculation (relation 19). If F is not defined, F(x0) is 
at any rate an integral form which must then be evaluated numerically. 

3.2 Cohesion and friction angle correlation 

The cohesion and the friction angle are generally correlated, a known correlation for soils [49]. The 
random generation of the Mohr-Coulomb failure criterion parameters must consider the correlation 

between the two parameters  and C. It is known that simplified probabilistic analysis, in which spatial 
variability is ignored by assuming perfect correlation, can lead to an underestimated probability of 
failure [3]. The values of the correlation r vary between -0.11 and -0.83 [50]. For the remainder of this 
study, the value of r = -0.5 was adopted (even if for a real case, r can vary according to the clay content). 
The consequence of this choice is that the distribution of the friction angle is no longer an identified 

distribution (like the normal distribution, Fig. 1), but a distribution capable of reproducing r = -0.5, µ 

and  while varying between min and max. 

From a practical point of view, it is preferable to be able to generate the friction angles at the same 
time as the cohesions without having to restart the generation of these 2 variables if the correlation 
coefficient is too far from the desired value (with r = -0.5). The common method to establish a 
correlation (with a correlation coefficient r) between the variable Y and the variable X from any 

distribution  involves setting [51]: 
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The major drawback of this procedure is that it generates Y values without considering the possible 
range of variation of Y. With the data from this study, up to 8% of the friction angles are greater than 

38° or less than 8°. To limit this problem, other distributions than (0,1) were tested. Since  (Y) is 

distributed in the interval [min; max], the candidates (Beta, Wigner semicircle and Marchenko-Pastur, 

Table 4) are bounded interval distributions whose PDF profiles are compatible with that of . Note 

that  (negative skewness) cannot be distributed with RAFF, which is defined for positive skewness. 

The random variable  (correlated to C via r) is generated by the following relation assuming an initial 

distribution : 
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To assess the effectiveness of , 5 x 4 x 20,000 draws from a population of 793 individuals 
(corresponding to the number of grid cells in the slope discussed in the following chapters) were 

carried out with the 5 cohesion distributions (, LN, GIG, BS and RAFF) coupled to the 4   

distributions. The analysis of the results showed that the  = Beta distribution is more effective than 
the others. As regards the Wigner distribution, this is not surprising since it itself can be reduced to a 

specific Beta distribution (with ==3/2). Table 4 is an example of these results with C = RAFF. 

Depending on the distribution of C, the rejection rate varies between 2.70% (GIG) and 3.20% (). The 



 

 

error on the mean of  with  = Beta varies between 0.10% (RAFF) and 0.18% (BS). The error on the 

standard deviation of  with  = Beta varies between -1.22% (RAFF) and -1.86% (LN). RAFF is the 

distribution of C that best generates the correlated values of the variable . Using  = Beta instead of 

(0,1) reduces the rejection rate by 43%, the error on the mean by 64% and the error on the standard 

deviation by 73%. The random values of  = Beta are generated with Johnk's algorithm: 
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Parameters  and  are calculated using relations (5) and (6). 

 

Distribution min ; max Rejection rate (mean [min ; max]) µ/µ-1 /-1 

Beta -0.61 ; 40.0 3.18% [0.63% ; 5.68%] 0.10% -1.22% 

Wigner semicircle 1.33 ; 42.1 4.95% [2.27% ; 8.32%] -0.07% -1.87% 

Normal -18.1 ; 64.6 5.54% [2.40% ; 8.95%] -0.28% -4.58% 

Marchenko-Pastur 3.35 ; 44.2 6.27% [2.90% ; 9.84%] -0.33% -2.94% 

Table 4 : Rejection rates for various assumed distributions of , based on the results of 20,000 draws involving 
793 items, with C distributed according to RAFF. 

Since the Beta distribution is defined on the interval [0, 1], the relation to generate a random variable 

 correlated to C with a correlation coefficient r is the following: 
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4 Discussion and conclusion 

4.1 Application test for slope stability analysis 

The numerical approach of strength reduction method (involving friction angle and cohesion, and also 

known as “C- reduction”) is used to numerically calculate slope stability [49,50,51]. The mean 
principle of the method is to reduce the initial values of the friction angle and the cohesion until a 
factor of safety equal to 1 (FoS=1) is obtained. The numerical model that will serve as an example for 
probabilistic calculations is shown in Fig. 9. It corresponds to the mining deposit slope around Lake 
Most [50] with a slope angle of 24°. The assumption of a spatially distributed pattern of geomechanical 
properties is warranted, particularly in the case of mine deposits comprised of reworked waste rock, 
tailings, and other highly heterogeneous materials. To perform the stability calculation, the software 
adopted (Flac3D, [52]) uses the strength reduction method. The surface of the model is discretised into 
meshes. Each mesh can be assigned specific values for geomechanical properties, allowing for the 
spatial distribution of cohesion and friction angle in accordance with a particular distribution (see Fig. 
10) featuring a specific spatial correlation. It is essential to ensure an adequate number of meshes to 
mitigate any substantial bias, comparable to the approach employed in [3]. 



 

 

 

Fig. 9 : Geometry and average properties of the numerical model for the study of slope stability of a deposit 
(Most lake example, Erreur ! Source du renvoi introuvable.). 

 

 

Fig. 10 : Distributions of cohesion C and friction angle  in the deposit upper layer (Fig. 9): data taken from 
Masoudian et al. (2019). 

To show the contribution of the new distribution to the stability analysis of a slope, 3 calculations were 
carried out: 2 Monte-Carlo simulations with RAFF and LN distributions, and a deterministic calculation 

using uniform properties. For this purpose, 256 random draws of (Ci, i, r=-0.5) were made with the 

RAFF and Log-normal distributions, while reproducing µC, C, µ and . The results of these 
calculations (Fig. 11) show the influence of the distribution of C on the distribution of FoS. All these 
distributions can be compared to the deterministic calculation (FoS = 1.47) where all the meshes of 

the slope have the cohesion µC and the friction angle µ. The high mean of the LN distribution is due to 
the strong influence of right-censoring above Cmax: it is an assumed bias that contributes to artificially 
increasing the weight of the distribution near the maximum bound. Conversely, this bias does not exist 
with a bounded interval distribution (RAFF), which explains why the mean FoS with an LN distribution 
for C is up to 19% higher than the mean FoS computed using a RAFF distribution. Similarly, the standard 
deviation of the FoS with RAFF distribution for C is 90% higher than using an LN distribution for C. The 
choice of the C distribution is therefore of paramount importance in view of its significant impact. With 
a steeper geometry, resulting in FoS values shifted by -0.2, a noteworthy portion of the RAFF 
probability densities (excluding LN) would then fall below 1. This would lead to significantly distinct 
rupture probabilities for the RAFF distribution. These results show that unbounded distributions (such 

as LN) tend to increase µFoS and decrease FoS, which underestimates the probability of failure 
compared to the RAFF bounded distribution. 



 

 

 

Fig. 11 : Influence of C distributions on the FoS distribution (normal or Weibull), r = -0.5. 

4.2 Discussion 

The discussion concerns the role of the choice of the right representative distribution of the cohesion 
for highly heterogeneous soils. The Log-normal distribution is a popular choice in the geotechnical 
engineering field for the cohesion of soil (being a strictly non-negative property). And if this distribution 

can reproduce data with a high COV, this is only possible under certain conditions for µC and C. For 

example, a COV of 143% is reached with LN if µC < 0.143 Cmax (in this case: C <0.203 Cmax, Fig. 8): these 

limit values are 28% lower than the data used in this article (µC = 0.197 Cmax and C = 0.282 Cmax). In 
general, semi-infinite distributions can reproduce high COVs but only with limited standard deviations 
(often less than 0.3 Cmax). In addition, the errors made with censorship on the right are very important 
with high COVs (since the right tail has a greater weight in the distribution). With equation (10), µC = 

14.2 kPa,  C = 20.3 kPa (COV=143%) and Cmax = 72 kPa, errors on the means and standard deviations 

are µ = -6 % and  = -27 %. With a lower COV (50 %), i.e., µC = 14.2 kPa,  C = 7.1 kPa, errors on µ 

and  become negligible: µ = -0.008% and  = -0.1%. To avoid questions about data censoring, the 
best solution is to adopt a bounded interval distribution such as RAFF, which is capable of reproducing 
data with a high COV. 

In fact, given the importance of the right-censoring of semi-infinite distributions, it is important to ask 
whether the right-censoring accurately represents the distribution of data near the maximum cohesion 
value Cmax. If the measurement interval is bounded, this means that at least one measurement is equal 
to Cmax. As the mean and standard deviation were calculated with 27 measurements, this means that 

the probability of the last bin of C is at least 3.7%, which is close to ( )pdf
maxC

x dx


  for the semi-infinite 

distributions studied in this paper. The argument that right-censoring accurately represents that data 
distribution near Cmax can be dismissed for two reasons. The first is that it is enough to add an n+1st 

bin (if the data is divided into n bins with width C) which would be assigned zero frequency. But with 

censoring, it is this bin that would be assigned a probability equal to ( )pdf
maxC C

x dx


+  instead of 0. The 

second reason relates to the rejection of exceptional values. Indeed, a value higher than Q3+1.5(Q3-
Q1) can be considered as exceptional and can therefore be rejected (Q1 and Q3 are the 1st and 3rd 
quartiles). Conversely, a cohesion cannot be less than Q1-1.5(Q3-Q1) because this quantity is negative 



 

 

when the data are mostly concentrated near the minimum bound (0): no low value can therefore be 
rejected. The tests carried out with the different (cohesion) distributions of this study all showed that 
Cmax > Q3+1.5(Q3-Q1) which reinforces the idea that the distribution must be strictly decreasing in the 
vicinity of Cmax and that consequently, a bounded interval distribution (which respects this decrease) 
is preferable to a semi-infinite distribution (which does not respect this decrease because of the right-
censoring). 

4.3 Conclusion 

The probabilistic calculation of the slope stability of highly heterogeneous soils such as mine deposits 
requires an adapted distribution. The terrains of the mine deposits correspond to a material with a 
very high coefficient of variation of the cohesion (143% for the example discussed here). This high level 
of dispersion made it necessary to develop a new bounded interval distribution (RAFF) capable of 
reproducing such a high variability (up to COV=200%). Relations (sometimes approximate) were 
developed to build the random generator for this new distribution. Given the frequent exploration of 
the correlation between cohesion and friction angle, a specialized relationship was formulated to 
generate friction angles with a targeted correlation coefficient. This approach prioritizes adherence to 
the designated range of phi by minimizing rejections or by interval-censoring. The results obtained 
with the new distribution are compared to four other semi-infinite distributions that have been 
censored to respect the variation domains of the randomly distributed parameters. A figure illustrating 
the domains of validity for various distributions (Fig. 8) has been specifically constructed to determine 
whether the data corresponds to an extreme case, necessitating adoption of the RAFF distribution. 
The newly introduced bounded distribution (RAFF) underwent testing using cohesion data sourced 
from mining deposits within the framework of slope stability calculations (MCS) reproducing the 
geometry of the banks of Lake Most (Czech Republic).  

The choice of the distribution of C significantly impacts FoS and probabilities of failure. For semi-infinite 
distributions, right-censoring introduces a bias that artificially amplifies the weight of the distribution 
near the maximum bound. This amplification can lead to a decrease in the mean FoS and an increase 
in its standard deviation compared to a bounded interval distribution (RAFF). Despite a conventional 
belief suggesting negligible errors from right-censoring in semi-infinite distributions near the maximum 
bound, these errors can be noteworthy, especially for very highly heterogeneous cohesions resulting 
in a low FoS. In a reliability study, it is therefore important to test multiple distributions that represent 
the significant data in the study, thereby ensuring more robust results for both the factor of safety and 
the probability of failure. 

This new bounded distribution (RAFF) has been specifically crafted for addressing slope stability 
concerns in mining deposits. Its applicability extends broadly to various scenarios involving the 
reliability assessment of heterogeneous materials, encompassing applications such as compaction 
calculations in similar operations. 

5 Appendices 

A) Statistical parameters of 4 non censored semi-infinite continuous distributions. 
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Table A.1: Statistical parameters of 4 non-censored semi-infinite continuous distributions (K is the 
modified Bessel function of 2nd kind, and Erf is the error function) 

B) Formulae for the censored distributions 

• Interval-censored mean and standard deviation of the normal distribution: (µr, r) 
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• Right-censored mean and standard deviation of the log-normal distribution: LN(µr, r) 
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• Right-censored mean and standard deviation of the BS distribution (using parameters r, 
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• Right-censored mean and standard deviation of the GIG distribution (µr, r, r) 

The integrals below do not have analytical solutions and must therefore be evaluated numerically. 
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