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Abstract 

Physical hazards of chemical mixtures, associated for example with their fire or explosion risks, are 

generally characterized using experimental tools. These tests can be expensive, complex, long to 

perform and even dangerous for operators. Therefore, for several years and especially with the 

implementation of the REACH regulation, predictive methods like quantitative structure-property 

relationships have been encouraged as alternatives tests to determine (eco)toxicological but also 

physical hazards of chemical substances.  

Initially, these approaches were intended for pure products, by considering a molecular similarity 

principle. However, additional to those for pure products, QSPR models for mixtures recently appeared 

and represent an increasing field of research. 

This study proposes a state of the art of existing QSPR models specifically dedicated to the prediction 

of the physical hazards of mixtures. Identified models have been analyzed on the key elements of 

model development (experimental data and fields of application, descriptors used, development and 

validation methods). It draws up an overview of the potential and limitations of current models as well 

as areas of progress towards enlarged deployment as a complement to experimental characterizations, 

for example in the search for safer substances (according to safety-by-design concepts). 

 

Keywords: Quantitative Structure-Property Relationships, physical hazards, flammability, explosivity, 

mixtures. 
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1. Introduction 

Human beings and the environment are confronted with mixtures of chemical substances/products, 

in constant evolution. These are manufactured industrial products containing different constituents 

mixed intentionally (e.g. pesticides, cosmetics, fuels, additives) or accidentally. For example, the fuel 

sector presents important industrial challenges with the continuous search for improved performance 

(combustion properties) of fuels mixtures from various sources (petroleum, renewable biomass) [1]. 

The addition of alcohols, ethers and oxygenates in alternative fuels impacts their properties (e.g. 

ignition) [2].  

The characterization of the physical hazards of chemical substances is required to apprehend the risk 

of fire or explosion, for instance, in the perspective of their safe handling, storage and transportation. 

But, beyond the intrinsic hazards of each constituent, other parameters have to be considered in their 

evaluation (for classification purpose or in process safety analyzes) [3-5]: the concentration of each 

component in the mixture, their respective physical properties (e.g. volatilities), miscibility (in liquid 

mixtures) and heterogeneity (of solid mixtures), molecular interactions between constituents in the 

mixture (like in non-ideal liquid mixtures). These factors can strongly increase or decrease the value of 

the property of the mixture and can even reveal synergistic or antagonistic effects.  

For this reason, knowledge of the hazardous properties of pure compounds can be not sufficient (and 

conservative) for risk assessment purpose. Indeed, some mixtures may be more dangerous than their 

constituents when used as pure compounds. This is notably the case of flammable liquid mixtures 

presenting a so-called Minimum Flash-Point Behavior [6, 7]. Such mixtures present an important 

positive deviation from ideality such a way that the flash point reaches a minimum value (in the 

concentration profile), lower than that of the pure products. For instance, as shown in Figure 1, the 

flash points measured by Liaw et al. [6] on octane-ethanol mixtures reached a minimum of about 5°C 

at 0.5 in mole fraction whereas pure octane and ethanol presented flash points of 15°C and 13°C, 

respectively. In such case, the flash point of the most flammable compound is not a conservative value 

and its use for risk assessment purpose would lead to underestimate the flammable potential of the 

mixture.  

Similarly, changes in mixture compounds should imply new hazards evaluations to check if the 

modification of composition can increase for example the flammability of the mixture. Such question 

is asked for new multi-component substances but also in risk assessment studies. For instance, the 

evaporation of an inert component (during a process or during long term storage) can increase the 

flammability of the mixture. [8] 

To investigate physical hazards of mixtures and the impact of the mixture composition, the required 

characterization tests can be costly, complex, long to perform and even dangerous for the operator. It  

can be inconceivable to experimentally characterize the hazards for too large numbers of substances, 

even more when concerning mixtures, which represent large part of industrial substances. For this 

reason, computational methods represent valuable tools to complete the experimental approach and 

fill data gaps, prioritize experimental campaigns or provide a large amount of data for screening 

applications in industry for example.  

Some mixing rules exist to estimate some properties of mixtures, like Le Chatelier’s law [9] for the 

prediction of flammability limits or thermodynamic-based methods for the flash point (e.g. the 
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methods of Gmehling & Rasmussen [10] and Liaw [11]). These lasts are notably cited as possible 

estimation methods, for the classification of flammable liquids (under some conditions) in the 

recommendations for the Transport of Dangerous  Goods [12] and in the Globally Harmonized System 

of classification and labelling of chemicals (GHS) [13]. But they require knowledge of the values of the 

target property for the different constituents and sometimes additional thermodynamic parameters 

(like activity coefficients). Moreover, such mixing rules are only available for few properties related to 

physical hazards.  

For several years and especially with the implementation of the REACH regulation (Registration, 

Evaluation, Authorisation and Restriction of Chemicals)  [14], QSAR/QSPR (quantitative structure-

activity/property relationships) have been encouraged and used as fast and economical alternatives 

to tests to determine the (eco)toxicological hazards of chemical substances but also physical hazards 

such as explosivity and flammability. Recommendations, based on five principles, were even proposed 

by the OECD (Organisation for Economic Cooperation and Development) in 2004 for the validation of 

QSAR/QSPR models in order to facilitate their use in a regulatory framework [15]. These methods are 

also of particular interest in the optimization of experimental campaigns for the definition of 

formulations in a safer-by-design approach. 

But these methods are based on a similarity principle according to which molecules with similar 

structures present similar properties. So, the QSPR approaches as well as their development and 

validation principles were originally designed for the development of predictive models of pure 

product properties. The prediction of the mixtures properties presents additional scientific and 

methodological challenges to take into account the specificities of mixtures. In 2012, Muratov [16] 

analyzed existing methods toward QSAR/QSPR predictions for mixtures, highlighting the use of mixture 

descriptors of non-additive type to account for interaction effects between constituents. 

Recommendations were also given on methods for examining and using the databases, but also for 

the appropriate validation of these models.  

Recently, reviews of existing QSAR models capable of predicting toxicological properties of mixtures 

was carried out by Ineris (Mombelli [17]) and by Belfield et al. [18], identifying and examining in detail 

respectively 54 and 40 relevant scientific papers (mainly acute toxicity oriented and more associated 

to environmental impacts (than human health effects) for pesticides, pharmaceuticals, industrial 

products, priority pollutants). The limitations of the existing models were exposed, and 

recommendations were proposed to improve the relevance and quality of predictions. At first, they 

pointed out the emerging state of these developments. For instance, no computer tool (available 

online) already implements such models. If the performances of most models were proposed to be 

comparable to those of pure compound models, this could be to confirm in the future when more 

models and data will be available. The authors in particular encouraged to better taking into account 

the potential interaction effects between constituents in the definition of mixture descriptors and 

considering more realistic exposure scenarios (towards more complex environmental mixtures than 

the theoretical mixture of different chemicals). To achieve these goals, the gathering of larger 

databases including mixtures associated with realistic exposure scenarios is recommended. A 

particular attention should be required on their reliability, storage, and accessibility. Moreover, 

information issued from other modeling approaches (like Adverse Outcome Pathways and read-across 

techniques) could help to incorporate more information on interaction effects into the models. At last, 

when dealing with more complex mixtures, sophisticated machine learning approaches could improve 
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the model performances even if they are in general less transparent and interpretable than linear 

regressions (in the perspective of regulatory applications). 

Considering physical hazards (associated with combustion, flammability, explosivity risks), the 

availability of QSPR models increased in the last two decades [19-22]. But they are still mostly limited 

to few specific hazardous physico-chemical properties (such as flash point or flammable limits), for 

which experimental data are the more likely available. Moreover, they were up to now mainly limited 

to pure compounds. These QSPR models for pure compounds can be associated to mixing rules, as 

demonstrated for the prediction of flash point of binary mixtures [23]. Such approach demonstrated 

good results, predictions being mostly limited by the applicability of the mixing rules and the reliability 

of the predictions for the flash points of each constituent. First QSPR models directly dedicated to the 

physical hazards of mixtures were only published recently, for the flash point some years ago (Saldana 

[24] and Gaudin [25]).  

For this reason, this study proposes to review existing literature associated to the development of 

QSPR models dedicated to the prediction of physical hazards of mixtures to draw up an overview of 

the potential and limitations of current models and to identify possible perspectives to help the 

deployment of these new methodological approaches that are complementary to experimental 

characterization. 

2. Scope of investigation and literature collection 

In this study, chemical mixtures of pure compounds are particularly addressed, i.e. pure compounds 

that have been put together, mixed or brought into contact. The specific case of impurities is not 

considered. Moreover, the properties of mixtures of substances are addressed but not the possible 

reactivity observed when substances come into contact (chemical incompatibilities). 

This review is focused on publications available in the scientific literature accessible in June 2022 via 

the Web of Science platform [26]. This review targets in particular hazardous physico-chemical hazards 

used for the classification of substances in the 16 physical hazard classes of the GHS (e.g. explosive, 

flammable liquids or gazes, oxidizing substances) or in the annex VII of the REACH regulation (e.g. self-

ignition temperature).  

A search with too simple and generic keywords brings up a large number of publications that are not 

related to predictive models such as QSPR and/or physical hazards. For example, a search with the 

keywords "Prediction" and "Mixture" brings up more than 39,000 references, but none of which are 

relevant among the first 50 proposed (ranked by relevance by the Web of Science platform). 

Therefore, refined queries were needed to identify as much as possible all publications related to QSPR 

models dedicated to physical hazards while eliminating irrelevant articles. The first one searches all 

references for which the titles, abstracts or keywords contain both the word "mixture”, a term related 

to predictive methods ("QSPR" or "structure-property") and a term related to the targeted properties 

("flammability" or "explosibility" or "flash point" or "self-ignition" or "auto-ignition" or "combustion" 

or "explosiv*" or "detonation" or "deflagration" or "decomposition heat" or "heat of decomposition" 

or "decomposition temperature" or "impact sensitivity" or "friction sensitivity" or "combustion heat" 

or "heat of combustion"). The second is focused only on the title of the references by adding "predict*" 

among the terms related to predictive methods. 
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The combination of these two queries brings out 139 references among which some publications still 

do not concern QSPR models or aren’t dedicated to the targeted properties (such as the octane 

number of fuels [27] or the diffusion coefficient  of organic compounds [28]). Articles only mentioning 

the issue of prediction of mixture properties without proposing predictive models or only quoting 

existing models are also excluded at this stage. 

Finally, 23 publications corresponding to the proposition of QSPR models for physical hazards of 

mixtures were selected (listed in Table 1). These articles reflect an emerging but active field of research 

since they were all published between 2013 and 2022. 

In some publications, several models (investigating for instance the potential of different methods) are 

proposed for the same property. In such cases, all the proposed models are not considered 

independently but only one single model is considered in the statistical analyses proposed in the 

following (whether the authors have mentioned a preferred model or not). 

3. Results and discussion 

This study doesn’t propose a catalogue of models with their details presented individually. 

Such information is available in the original publications. It rather proposes a general state of 

art of the availability of these models, of the methods used and of their limits in the 

perspective of future developments towards new and/or better models to predict the physical 

hazards of mixtures. 

3.1. Endpoints and target chemical families  

For mixtures, even more than for pure products, the availability of sufficient quality experimental data 

is the main limitation to the access of QSPR models. Indeed, the reference experimental data used for 

the development and validation of the models are of great importance since their reliability will 

influence the performance of the model by the propagation effect of their uncertainty. Moreover, the 

data included in the training set define the domain of applicability of the model. Thus, in order to 

obtain efficient QSPR models, a sufficiently large number of reliable experimental data sets is needed, 

on the one hand, to present a sufficient variability of properties and structures, and, on the other hand, 

to allow a split into two robust datasets, one for training and another for the external validation. 

It is therefore not surprising that the identified models focus on some particular properties and on the 

same families of substances for which databases are available. In all the publications listed, the data 

used for the development and validation of the models are derived from the compilation of 

experimental results collected in the scientific literature. Indeed, the few databases containing 

information on the physical hazards of substances concern (mainly) pure products, like the OECD 

eChemPortal database [29], or the German ChemSafe database [30]. 

As shown on Figure 2, all the identified models concerned the flammability of organic liquids, with the 

exception of the model of He et al. (2021) [31] which focuses on the decomposition temperature of 

ionic liquids. It should be noted that the property predicted by this last model is not the temperature 

of onset of decomposition (used for example as a pre-selection criterion for the classification of organic 

peroxides, self-reactive materials or explosive materials) but the temperature at 5% decomposition 

(Td,5%). The flammable properties of interest are the most commonly used data for assessing the 
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flammability of liquids and gases, namely the flash point (FP), lower and upper flammability limits 

(LFL/UFL), and auto-ignition temperature (AIT). 

Although mixtures in industry can contain numerous constituents, the studied flammable liquid 

mixtures are relatively simple binary and/or ternary organic mixtures. Among the models developed 

for flash point of binary mixtures, two studies tested their potential on ternary mixtures (Fayet (2019) 

[32] and Torabian (2019) [33]) and showed similar performance to that observed for binary mixtures. 

If the datasets used for the development of models contain sometimes large number of data, they 

remain relatively modest in terms of the chemical diversity of mixtures. As shown in Supporting 

Information (Table S1), most of these models are relatively global, targeting organic compounds rather 

than focused on a specific family. They are constituted around a limited number of classical organic 

compounds (hydrocarbons, alcohol, ketones, acids) used for example in the composition of fuels for 

which an evaluation of flammability is necessary in an industrial context, explaining the availability of 

experimental data.  

For example, the largest database encountered was used by Jiao et al. (2020) [34] to develop their 

model for the flash point. It contained 1458 data but for binary and ternary mixtures from (only) 47 

different pure products. Moreover, this dataset was chemically unbalanced with 3 overrepresented 

compounds (methanol, octane, and ethanol) found in 36%, 27%, and 26% of the data, respectively (as 

shown in Figure 3). 

In the case of models for ternary mixtures, the number of data may sometimes seem particularly large, 

but they generally concern only few different mixtures (based on the same compounds, only 

concentrations changing). For example, the model of Toropova (2020) [35] specifically developed for 

ternary mixtures is based on 808 flash point data but concerned only 8 different mixtures.  

Two exceptions on this point are the models developed by Wang et al. (2018) [36] and by Aljaman et 

al. (2022) [37] for the flash point. In these studies, a database was composed of flash points values for 

both pure compounds (548 and 474 data, respectively) and mixtures (753 binary and 79 ternary for 

Wang et al.; 279 binary, 26 ternary, 6 quaternary and 8 quinary for Aljaman (2022)). This approach 

could appear as a way to the lack of chemical diversity of constituents in the databases of mixture 

properties. But the number of data related to pure compounds is significantly larger than those for 

mixtures. So, the ability of the final model to account for concentration and interaction effects 

between constituents might be to check, in particular for those only represented as pure products in 

the database.  

3.2. Molecular and mixture descriptors 

In a QSPR model for pure compounds, the molecular structure is represented by a series of molecular 

descriptors. Many descriptors have been proposed and are available with different levels of 

complexity. For instance, 1D or constitutional descriptors are based on the knowledge of the sole 

composition of the molecule (ex: number of atoms or specific groups). 2D descriptors consider the 

topological structure, i.e. the way in which the atoms are connected to each other (thus distinguishing 

isomers for example). Finally, 3D descriptors can encode the spatial arrangement of the molecule 

(geometrical descriptors) and information, resulting from quantum chemistry calculations, on 

molecular electronic properties and on the reactivity of molecules (quantum-chemical descriptors). 
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These descriptors can finally consider either the molecules in their entirety (integral descriptors) or 

only some parts of them (fragment descriptors).  

In the case of a mixture model, beyond the molecular structures of each chemical component, other 

parameters can influence the property and in particular the concentration of each constituent and  

interactions between them in the mixture, which can result in synergistic or antagonistic effects. 

To account for these factors, most of the models identified in this review introduced Mixture 

Descriptors Dm calculated by combining the molecular descriptors d for each component via a mixing 

formula according to their respective concentrations. An additivity of the contribution of each 

constituent is in general considered using a simple linear weighting with respect to the molar fraction 

x (or more rarely the volume fraction), according to the following equation: 

𝐷𝑚 = ∑ 𝑥𝑖𝑑𝑖            (1) 

Other mixture formulas have also been proposed to consider the non-linearity of concentration effects 

encountered in mixtures. Some of them aim at taking directly into account a non-linear dependence 

of the property with respect to the molar fraction, while others reflect a deviation from the linear 

behavior with respect to the concentration. For example, 12 formulas (in Table 2) have been tested for 

the search of predictive models of the flash point of binary mixtures by Gaudin et al. [25]. Two main 

types of formulas were proposed. Some are intended to be directly correlated (linearly as in Eq. 1, or 

not) with the property (direct combinations) whereas the others (based on the difference in mole 

fractions between the components of the mixture) might relate to the deviation of the property from 

the linear contribution of each component with their respective concentrations. Moreover, they have 

been defined to fit with some imposed constraints. For instance, they must be independent of the 

order of the two components of the binary mixtures (e.g. 0.1 ethanol in 0.9 octane is the same as 0.9 

octane in 0.1 ethanol) and the mixture descriptors for pure compounds (with a mole fraction of 1) 

should be 1 for direct formulas and 0 for deviation formulas. 

Each formula was investigated independently in multilinear regressions, and the best models were 

obtained for direct formula, either when considering the whole database or when analyzing 

independently the results on the different types of mixtures involved in it (e.g alcohol/alcohol, 

hydrocarbon/alcohol, alcohol/ester…). Moreover, formulas based on the difference in mole fractions 

are limited to the case of binary mixtures, since they cannot be generalized to more complex mixtures. 

Towards application to ternary or more complex mixtures, formulas based directly on the mole fraction 

(or concentration) of each component might be favored. 

Different mixing formulas were finally combined in the last model developed by Fayet et al. in 2019 

[32] with increased performances compared to the models based on a single type of mixing rule 

(MAEext = 7.3°C vs. 10.3°C). 

𝐹𝑃 (°𝐶) = 20.3 + 28,6 ∑ 𝑥𝑖𝑇𝑖
𝐸 + 24.6 ∑ √𝑥𝑖 

1 𝑖
+ 59.6 ∑ √𝑥𝑖𝑉 𝑌𝑋𝑍,𝑖 − 315.0 ∑ √𝑥𝑖𝑄𝐻,𝑚𝑎𝑥,𝑖 −

107.6 ∑ √𝑥𝑖𝑉𝐻,𝑚𝑖𝑛,𝑖 + 2.0(∑ √𝑥𝑖𝜇)
2

        (2) 

For the same property (flash point of binary mixtures), Torobian [33] investigated particularly three 

direct formulas (linear combination, quadratic mean value, or cubic mean value) for the development 
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of multilinear models. They obtained the best results with the simple linear combination. So, they 

focused their final neural network model on this formula. 

Various types of formulas (including those proposed by Gaudin et al. [25]) were also investigated for 

the lower flammability limits by Pan (2019) [38] and for the auto-ignition temperature by Jin (2020) 

[39].  

For the LFL, Pan et al. [38] achieved to similar conclusions than Gaudin et al. for the flash point. Direct 

formula appeared as the more relevant (in MLR focused on a single mixing formula). The best model 

was finally obtained using the norm of the molar contribution formula (Eq. 3). 

𝐷𝑚 = √∑(𝑥𝑖𝑑𝑖)2          (3) 

Jin et al. (2020) [39] also identified direct-type formulas as the most favorable ones for their models 

for the AIT of binary mixtures. In particular, the simple linear weighting (Eq. 1) gave the best results 

based on multilinear regressions and was then used in the final support vector machine model. 

In this work, various integral molecular descriptors (constitutional, topological, geometrical and 

quantum-chemical) were employed. These classical descriptors characterize isolated molecules, 

although some may reflect their potential to create intermolecular interactions. For example, in this 

model, QH,max and VH,min respectively designate the maximum charge and minimum valence for a 

hydrogen atom and reflect the potential of the products involved in the mixture to form hydrogen 

bonds with other constituents. 

This use of mixing formulas to derive mixture descriptors has also been applied on group contributions 

or fragment descriptors. For example, in their group contribution approach for the prediction of the 

TAI of binary mixtures, Ye et al [40] introduced a formulation taking into account the number of 

occurrences of contribution groups in each molecule and their respective volume fractions. 

𝑇𝐴𝐼 = 𝑎 + 𝑏𝑋 + 𝑐𝑋2 + 𝑑𝑋3 + 𝑒𝑋4         (4) 

with 𝑋 = 𝑣1 ∑ 𝑛1𝑖𝑓𝑖𝑖 + 𝑣2 ∑ 𝑛2𝑗𝑓𝑗𝑗         (5) 

where n1 and n2 are the numbers of occurrences of a group in each of the two substances in the binary 

mixture, fi is the associated contribution and vi is the volume fraction of each constituent. 

Similarly, Aljaman et al [37] considered the mass concentration associated with different groups 

present in the molecule (CH3, CH2, CH=CH2, CHO, COO, etc.) for the prediction of flash point of 

oxygenated fuels. 

Most of the identified fragment-models use the Simplex Representation of Molecular Structure 

(SiRMS) approach [41]. This latter considers the decomposition of molecules into fragments of 2 to 6 

atoms called simplexes. An originality of the application of this approach to the case of (binary) 

mixtures is the introduction of so-called unbound simplexes in which some atoms constituting the 

simplex are not bound one to each other. They can belong to both molecules of the binary mixture 

and thus characterize specific intermolecular interactions in the mixture. Two different mixture 

formulas are then applied: Eq. 6 for (intramolecular) bonded simplexes di and Eq. 7 for (intermolecular) 

unbonded simplexes d1+2. 



9 
 

𝐷𝑚 = 𝑥1𝑑1 + 𝑥1𝑑1          (6) 

𝐷𝑚 =  2 𝑥1𝑑1+2          (7) 

This approach was used by Shen et al. (2019) [42] for the auto-ignition temperature and then by Yao 

et al. (2020) [43] and Cao et al. (2020) [44] for the flash point, in all cases for binary organic liquid 

mixtures. 

He et al [31] used another fragment-based approach, by using ISIDA descriptors, to predict the 

decomposition temperature of ionic liquid mixtures. To account for the specificity of ionic liquids 

(consisting of an anion and a cation), some fragments were proposed to characterize explicitly the 

anion-cation interaction within an ionic liquid, but no fragment was proposed to encode possible 

interaction between two ionic liquids. As for the SiRMS approach, mixing rules are used to include 

concentration effects.7 

Finally, in contrast to the previously mentioned works, Toropova et al [35, 45] do not apply any mixing 

formula in their quasi-SMILES approach. quasi-SMILES are defined as extensions of the SMILES 

code [46] for molecules by adding other symbols for encoding additional information that is specific to 

the systems under study. In the case of mixtures, the quasi-SMILES code represents the entire mixture 

and takes the following form: 

[SMILES#1][%X1][SMILES#2][%X2]   (for a binary mixture)  (8) 

[SMILES#1][%X1][SMILES#2][%X2][SMILES#3][%X3] (for a ternary mixture)  (9) 

where [SMILES#i] is the SMILES code of component i and [%Xi] is a string representing its molar fraction 

in the mixture.  

It may be noticed that, in a quasi-SMILES code, the mole fraction is not considered as a continuous 

value but through a character string assigned to a given concentration range. Moreover, the 

concentration is considered in the final model in the same way as the fragments identified in the 

structure of each constituent (in their SMILES code), thus either alone or in combination with a 

particular molecular fragment. 

3.3. Methods for model development 

The analysis of existing QSPR models for mixtures does not highlight any particularity in the algorithms 

used when compared to the models dedicated to pure products. As shown in Figure 4, the models 

identified are mostly based on multilinear regressions (MLR, for Multi-Linear Regression). Few models 

are based on more complex machine learning approaches such as Artificial Neural Networks (ANN), 

Support Vector Machines (SVM) or other non-linear methods (non-linear regressions, k-Nearest-

Neighbors (k-NN), Random Forest (RF), Bootstrap Tree (BT)). If these non-linear approaches could 

maybe help to take into account the complexity of mixtures, no definitive demonstration can be 

highlighted among the existing models. 

Some studies compare different approaches and seem to show some potential of nonlinear methods 

to consider the complexity of phenomena associated with mixture properties. For example, Jiao et al 

(2020) [47] employed 5 different methods (MLR, k-NN, RF, BT and SVM) for the lower flammability 

limit of binary hydrocarbon mixtures and found the best performance for the model based on the 
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Random Forest approach. Nevertheless, considering the limited size of the database used (i.e. 54 data), 

the performances of the different approaches revealed close one to each other (as shown in Table 3). 

3.4. Model Validation 

To evaluate the performance of a QSPR model, different validation methods are employed. If the 

quality of the predictions within the training set allows to estimate the goodness of fit of the model, 

other internal and external validation methods are recommended, notably in the OECD validation 

principles for regulatory purpose [15]: cross-validation and/or bootstrapping to evaluate the 

robustness of the model, Y-Randomization to verify that the model was not obtained by chance and 

external validation on data different from those used for its training (validation set) to evaluate its 

predictive capacity. 

Because the models dedicated to the physical hazards of mixtures are recent, they have all undergone 

validation beyond the simple correlation between experimental and predicted data from their training 

set. Only one study (Jiao et al. (2016) [48]) did not include external validation, for which the models 

were only validated by cross-validation.  

Concerning internal validations, 78% of the studies used cross-validations while other internal 

validations by Bootstrapping or Y-randomization is more rarely used, as shown in Figure 5. No specific 

adaptation of internal validation methods was proposed until very recently and the work of Chatterjee 

et al. (2022) [49]. So, the cross validations used is the reviewed models were based on a classical 

approach (the same than for pure compounds). 

Concerning external validation, Muratov et al. [16], yet in 2012, distinguished three types of external 

validation based on how the validation set differs from the training set: 

- Points-out: The partition between training and validation sets considers each experimental 

data individually without considering the fact that they can be associated to the same mixtures 

and constituents. A mixture can therefore be present in both the training set and the validation 

set (with different proportions between its constituents). This method mainly evaluates the 

ability of the models to predict the properties of existing mixtures in new proportions. 

- Mixture-out: In this type of partition, all data points corresponding to mixtures composed of 

the same constituents are grouped in the same set (training or validation). The expected error 

for such an external validation is higher than for the Points-out strategy but it will evaluate the 

ability of the model to predict the properties of new mixtures beyond the concentration effect 

alone. 

- Compounds-out: The data in the validation set only concern mixtures for which at least one of 

the constituents is absent from the training set. This is the most rigorous method of external 

validation in QSAR/QSPR modeling of mixtures. If the expected prediction error for this 

strategy is the largest, the models validated with such a partition will have demonstrated their 

ability to predict the property under study for mixtures consisting of one or more new 

products. 

Most studied performed external validations based on a Points-out partition (70%), fewer models 

being validated on Compounds-out partitions (35%) (in some case in association to the other types of 

partitions). Points-Out external validation is the simplest to implement but it is not, a priori, the most 
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rigorous way to evaluate the predictive power of the model since the validation set is not strictly 

independent of the training set, some mixtures consisting of the same products and differing only 

slightly in concentration can be found in the both the training and validation sets. 

However, as highlighted earlier in this study, the available databases present a rather limited chemical 

diversity. This fact impacts the goodness of fit of the model but also its reliability of external validations, 

especially in the framework of Mixtures-out or Compounds-out partitions. Indeed, in these cases, the 

validation set is even more restricted in terms of structural diversity. If a Points-out validation set is 

not strictly (chemically) independent from the training set, it has in such cases the advantage of 

offering an external validation on more chemically diverse samples than with Mixtures or Compounds-

out partitions. So, none of these different partitions seems to be ideal with the databases up to now 

used in the case of physical hazards of mixtures. Besides, Wang et al. (2019) [50] applied the three 

types of partitions and finally recommended to retain the Points-out model because of the better 

performances observed in external validation (with an R²ext of 0.965 against 0.879 and 0.923 

respectively for the Mixtures and Compounds-out partitions). 

Finally, all the identified work proposed final models meeting generally expected performances for a 

valid model with correlations (largely) higher than 0.6 in cross-validation [51] and predictive powers 

higher than 0.7 in external validation [52]. Moreover, if larger and more diversified databases would 

be necessary to have more robust evaluations of the predictive power of the models, the quality of 

prediction observed in these works are close to the performances observed for pure compounds. For 

instance, in the case of the flash point, the models dedicated to mixtures present average absolute 

errors in prediction from 3.5K to 10.3K in their external validations. These performances are similar to 

those observed by Rowley et al. [53] in their evaluation of a series of models on 1062 pure organic 

compounds, as shown in Figure 6. 

3.5. Applicability domain 

QSPR models are empirical models whose validity is limited to an applicability domain (AD) delimited 

by the physico-chemical or structural space related to the data for which it has been trained. As already 

explained in section 3.1, the models have been developed on databases of mixtures involving a 

relatively limited number of compounds even if they cover various types of organic compounds 

commonly found for instance in the petroleum industry (alkanes, alcohols, ketones…), as shown in 

table S1. An exception is the model of He [31] focused on ionic liquids.  

65% of the reviewed studies include an evaluation of the applicability domain of the models, using a 

Williams plot analysis, in the large majority of the cases (13/15). Williams plots are the graphical 

representation of the leverage approach [54] which consists in calculating the "leverage" associated 

with each sample with respect to the global distribution of the training set. No particular adaptation 

was performed for the case of mixtures, except that it was based on mixture descriptors rather than 

molecular descriptors. It doesn’t consider the fact that data can concern same mixtures only differing 

slightly in concentration.  

The only works using another approach are the models of Toropova et al [35, 45] that analyzed the 

distribution of fragments identified in the quasi-SMILES. This approach was the same as the one they 

used for pure compound models [55]. 



12 
 

In both approaches, all predictions (for each data point) are considered independently without 

considering that they can relate to the same mixtures and pure compounds. It could be interesting to 

think about the possibility of considering the specific character of the mixtures by considering not only 

the chemical diversity of the molecules involved but also the effects of concentrations and 

intermolecular interactions.  

4. Conclusions 

If the QSPR approach was initially designed for pure compounds, QSPR models for the prediction of 

physical hazards of mixtures recently appeared. Mixing rules based on phenomenological 

thermodynamic principles might still be preferred when available and applicable, but QSPR models can 

help to fulfill their limitations by using QSPR models for pure compounds to access the data on pure 

compounds required in the mixing rules. QSPR models for mixtures could even be developed and used 

when no mixing rule is available. 

The development of such models is still an emerging field with only 23 recent publications (identified 

in the scientific literature from 2013 to nowadays) proposing such QSPR models. These models focus 

on few properties (mainly flammability), like in the case of pure products, for which data existed in 

relatively large numbers (up to about 1500 data). But these data are in general not very varied in terms 

of chemical diversity since they are often limited to few different pure products. Moreover, they are 

mostly dedicated to binary or ternary mixtures. 

To encode the specificities of mixtures (concentration and chemical interactions between 

constituents), the most commonly used approach is based on the calculation of mixture descriptors 

from molecular descriptors of the different constituents and their respective concentrations in the 

mixture. If only few models introduced descriptors characterizing explicitly intermolecular interactions 

between two constituents (via non-bonded fragments), some classical integral molecular descriptors 

can translate the potential of individual constituents to favor interactions with other constituents in 

the mixture.  

Beyond that, these models are developed from the same algorithms as the ones used for pure products 

models, in general by multilinear regressions. More complex nonlinear approaches (like neural 

networks or random forest) could be interesting to take into account the complexity of mixtures, but 

their potential would be to confirm on larger datasets. 

Due to the recent character of this field of research (all works were published after 2013), all these 

models were validated according to classical recommendations for valid models (including external 

validation and with definition of a domain of applicability) ant their performances are similar to those 

obtained for pure compounds. Nevertheless, the robustness of their validations remains impacted by 

the lack of chemical diversity of the available experimental databases.  

Existing QSPR models for the physical hazards of mixtures already complement the experimental 

approach. Nevertheless, the development of new and more reliable QSPR models could be awaited in 

the future to extend their applicability and improve prediction accuracies.  

To achieve this goal, the most critical needs are experimental databases. Indeed, new data are needed 

to extend the field of application of the predictive models which are focus on few properties and on 

classical compounds. New databases are the first steps towards the development of models for other 



13 
 

properties (beyond the flammability of liquids and gases) and over larger ranges of substances 

(including some emerging substances like biobased solvents or emerging refrigerants). The gathering 

of additional datasets might also allow to access better models to fulfill the limits observed in the 

existing models that are generally focused on a limited number of constituents. Such datasets would 

allow to strengthen the assessment of the predictive power of models by using validation sets that are 

both independent of the training sets (by favoring a compounds-out approach) while having a diversity 

of substances chemically representative of the mixtures targeted by the model.  

Beyond these primary needs, methodological progress can be expected. At first, the availability of 

larger databases could open better perspectives for non-linear methods like neural networks that are 

more and more widely used in artificial intelligence approaches.  

Moreover, the methods used for the validation of models and predictions are still the same than for 

pure compounds, expected the first recommendations proposed for the evaluation of the predictive 

power of the models. Reflections would deserve to be engaged on the determination of the 

applicability domain of the models, to take into account the specificities of mixtures. Moreover, the 

recommendations for the validation of predictions (which depend not only on the model but also on 

the substance and the way in which the prediction is going to be used) could also be analyzed in order 

to verify whether specific recommendations should be proposed for the case of mixtures. 
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Table 1 - Summary of the compiled studies on the development of models to predict the physical 

hazards of mixtures 

Author (year) Endpoints Mixture type Chemical type Ref. 

Saldana (2013) flash point binary and ternary organic compounds [24] 

Gaudin (2015) flash point binary organic compounds [25] 

Ye (2015) auto-ignition temperature binary organic compounds [40] 

Jiao (2016) flash point binary organic compounds [48] 

Wang (2018)a  lower flammability limit binary and ternary organic compounds [56] 

Wang (2018)b flash point binary and ternary* organic compounds [36] 

Fayet (2019) flash point binary # organic compounds [32] 

Pan (2019) lower flammability limit binary organic compounds [38] 

Shen (2019) auto-ignition temperature binary organic compounds [42] 

Torabian (2019) flash point binary # organic compounds [33] 

Wang (2019) upper flammability limit binary and ternary organic compounds [50] 

Cao (2020) flash point binary organic compounds [44] 

Jiao (2020)a  flash point 

auto-ignition temperature 

lower flammability limit 

upper flammability limit  

binary and ternary organic compounds [34] 

Jiao (2020)b lower flammability limit binary organic compounds [47] 

Jin (2020) auto-ignition temperature binary organic compounds [39] 

Shen (2020) upper flammability limit binary and ternary organic compounds [57] 

Toropova (2020)a flash point binary organic compounds [45] 

Toropova (2020)b flash point ternary organic compounds [35] 

Yao (2020) flash point binary organic compounds [43] 

Zhou (2020) lower flammability limit 

upper flammability limit 

binary and ternary organic compounds [58] 

He (2021) decomposition temperature binary Ionic liquids [31] 

Ni (2021) lower flammability limit 

upper flammability limit 

binary and ternary organic compounds [59] 

Aljaman (2022) flash point up to 5 

compounds* 

organic compounds [37] 

# with test on ternary mixtures 
* including large number of pure compounds not involved in mixtures 
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Table 2 - Different mixture descriptor formulas tested for the development of a QSPR model for flash 

point prediction of binary mixtures [25] 

Formulas based directly on the 

mole fraction of each component 

𝐷𝑚 = 𝑥1𝑑1 + 𝑥2𝑑2   

𝐷𝑚 = |𝑥1𝑑1 − 𝑥2𝑑2|   

𝐷𝑚 = 𝑥1
2𝑑1 + 𝑥2

2𝑑2 

𝐷𝑚 = √𝑥1𝑑1 + √𝑥2𝑑2   

𝐷𝑚 = (𝑥1𝑑1 + 𝑥2𝑑2 )2  

𝐷𝑚 = √(𝑥1𝑑1)2 + (𝑥2𝑑2)2  

Formulas based on the difference 

in mole fractions 

𝐷𝑚 = (1 − ∆𝑥)∆𝑑  

𝐷𝑚 = (1 − ∆𝑥²)∆𝑑  

𝐷𝑚 = (1 − ∆𝑥)2∆𝑑  

Other formulas 

𝐷𝑚 = (𝑑1 + 𝑑2) 2⁄  

𝐷𝑚 = (𝑑1 − 𝑑2)² 

𝐷𝑚 = |𝑑1 − 𝑑2|   
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Table 3 - Performance of the different models developed by Jiao et al. (2020) [47] for the LFL of 
mixtures 

Method 
R² 

Training (n=43) Validation (n=11) 

MLR 0.9486 0.9186 

k-NN 0.8735 0.8583 

RF 0.9973 0.9831 
BT 0.9926 0.9523 

SVM 0.9900 0.9704 
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Figure captions 

Figure 1 - Flash point profile of ethanol-octane mixtures [6] 

Figure 2 - Properties and complexity of the mixtures studied in the reviewed publications 

Figure 3 - Main constituents represented in the flash point data used by Jiao et al. (2020) [34] 

Figure 4 - Algorithms used in the reviewed publications 

Figure 5 - Validation methods (left) and types of external validation (right) used in the identified 
publications (CV: Cross-Validation ; Boot.: Bootstrapping ; Y-Rand.: Y-randomization ; Ext.: External 
Validation) 

Figure 6 - Predictive power observed in external validation for the models dedicated to the flash point 

compared to the performances observed by Rowley et al. [53] for pure compounds models on 1096 

organic compounds 
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