Two years of volatile organic compound online in situ measurements at the Site Instrumental de Recherche par Télédétection Atmosphérique (Paris region, France) using proton-transfer-reaction mass spectrometry - Ineris - Institut national de l'environnement industriel et des risques Accéder directement au contenu
Article Dans Une Revue Earth System Science Data Année : 2023

Two years of volatile organic compound online in situ measurements at the Site Instrumental de Recherche par Télédétection Atmosphérique (Paris region, France) using proton-transfer-reaction mass spectrometry

Résumé

Volatile organic compounds (VOCs) have direct influences on air quality and climate. They indeed play a key role in atmospheric chemistry as precursors of secondary pollutants, such as ozone (O3) and secondary organic aerosols (SOA). In this respect, long-term datasets of in situ atmospheric measurements are crucial for characterizing the variability of atmospheric chemical composition, its sources, and trends. The ongoing establishment of the Aerosols, Cloud, and Trace gases Research InfraStructure (ACTRIS) allows implementation of the collection and provision of such high-quality datasets. In this context, online and continuous measurements of O3, nitrogen oxides (NOx), and aerosols have been carried out since 2012 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) observatory, located in the Paris region, France. Within the last decade, VOC measurements were conducted offline at SIRTA, until the implementation of real-time monitoring which started in January 2020 using a proton-transfer-reaction quadrupole mass spectrometer (PTR-Q-MS). The dataset acquired during the first 2 years of online VOC measurements provides insights into their seasonal and diurnal variabilities. The additional long-term datasets obtained from co-located measurements (NOx, aerosol physical and chemical properties, meteorological parameters) are used to better characterize the atmospheric conditions and to further interpret the obtained results. Results also include insights into VOC main sources and the influence of meteorological conditions and air mass origin on their levels in the Paris region. Due to the COVID-19 pandemic, the year 2020 notably saw a quasi-total lockdown in France in spring and a lighter one in autumn. Therefore, the focus is placed on the impact of these lockdowns on the VOC variability and sources. A change in the behaviour of VOC markers for anthropogenic sources was observed during the first lockdown, reflecting a change in human activities. A comparison with gas chromatography data from the Paris city centre consolidates the regional representativity of the SIRTA station for benzene, while differences are observed for shorter-lived compounds with a notable impact of their local sources. This dataset could be further used as input for atmospheric models and can be found at https://doi.org/10.14768/f8c46735-e6c3-45e2-8f6f-26c6d67c4723 (Simon et al., 2022a).
Fichier principal
Vignette du fichier
essd-15-1947-2023.pdf (4.89 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

ineris-04159102 , version 1 (12-07-2023)

Licence

Identifiants

Citer

Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, et al.. Two years of volatile organic compound online in situ measurements at the Site Instrumental de Recherche par Télédétection Atmosphérique (Paris region, France) using proton-transfer-reaction mass spectrometry. Earth System Science Data, 2023, 15 (5), pp.1947-1968. ⟨10.5194/essd-15-1947-2023⟩. ⟨ineris-04159102⟩
71 Consultations
49 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More