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Summary 

The subsoil contains many evaporites such as limestone, gypsum or salt. Such rocks are very sensitive 

to water. The deposit of evaporites raises questions of their dissolution with time and the mechanical-

geotechnical impact on the neighboring zone. Depending on the configuration of the site and the 

location of the rocks, the dissolution can lead to surface subsidence, the formation of sinkholes and 

landslides for instance. In this article, we present an approach that describes the dissolution process 

and the coupling with geotechnical engineering. In the first part we set the physico-mathematical 

framework, the hypothesis, and the limitations in which the dissolution process is stated. The physical 

interface between the fluid and the rock (porous solid) is represented by a diffuse interface of finite 

thickness. We briefly describe, in the framework of porous media, the step needed to upscale the 

microscopic scale (pore scale)  model to macroscopic scale (Darcy scale). Although the constructed 

method has a rather large range of application, we will restrict the application to saline and gypsums 

rocks. The second part is mainly devoted to the geotechnical consequences of the dissolution of 

gypsum material. We then analyze the effect of dissolution in the vicinity of a soil dam or slope and 

the partial dissolution of a gypsum pillar by a thin layer of water. These theoretical examples show the 

relevance and the potential of the approach in the general framework of geoengineering problems.  
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1. Introduction 

 

Natural or human induced dissolution of soluble of soluble rocks in contact with water affects 

many soils and subsoils. These perturbations result in a redistribution of the effective or total 

stress field and thus the deformation of the soil and subsoil. The mechanical response of the 

soil and its impact on the surface depends on the location and the geometric features of the 

cavities resulting from dissolution. This damage is mainly related to the “change of phase”, 
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from solid to liquid, of part of the domain. With this change the stress field can reach critical 

states but also plasticity or failure in part of the domain in question. Examples of potential 

effects include subsidence, sinkholes, impacts on geo-structures, etc. (James et al. 1978, 

Castellanza et al. 2008,  Waltham et al. 2005, Bell et al. 2000, Gerolymatou et al. 2008 Swift 

and Reddish 2002). Particular attention must be paid to the understanding and control of this 

phenomenon, which is very important in geoengineering contexts. 

An intrinsic difficulty in the dissolution of underground rocks is the time dependency of 

the geotechnical problem, but there lacks the in-situ data concerning of their space and time 

evolution. Rock dissolution occurs as long as the fluid flow in the subsurface is under-

saturated. In this article we will concentrate mainly on the dissolution of gypsum rocks 

(CaSO4.2H2O), even though the numerical approach implemented to describe dissolution has 

a broader scope. Therefore, we also include reference to some problems involving salt (NaCl). 

A substantial contrast between a problem involving salt and e that involving gypsum is their 

solubility and the corresponding physical instabilities. Let us note, that the solubility, defined 

as the maximum amount of a chemical species that dissolves in a specified amount of solvent 

(water) at a prescribed temperature, of evaporites can range from several orders of magnitude. 

For example, the solubilities of salt, gypsum, and limestone are 360, 2.50, and 0.013 g/l, 

respectively (Freeze et al. 1974). 

Answering the questions posed by the dissolution process is a difficult and non-trivial 

exercise. Indeed, the problem exhibits several multi-scale and multi-physical features, 

couplings and non-linearities. One difficulty is related to the precision required in the 

description and quantification of the recession rate of the solid-liquid interface at the 

macroscopic scale. To circumvent this scientific drawback, a specific mathematics statement 

of the physico-chemical and transport equations at the microscopic or pore scale is 

established. Another difficulty is to tackle dissolution phenomena at in-situ or, geo-structures 

scales. Let underline that such problems are linked to the strong physical coupling with other 

processes, such as the mechanical behavior of rocks. In contrast to the phenomenological or 

“averaged” approaches of the dissolution process (Jeschke et al., 2001; Jeschke and 

Dreybrodt, 2002), our approach begins at the microscopic scale.    

In this paper we briefly present the approach proposed in order to model and solve the 

dissolution problem. The method is built on strong theoretical bases but also supported by 

numerical modelling. The mathematical formalization of the problem of the dissolution 

surface and its kinetics is initially built at the pore scale. A possible candidate numerical 
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approach to describe dissolution is a method that explicitly follows during the process the 

fluid-solid interface In this case, the ALE (Arbitrary Lagrangian-Eulerian) method proposed 

by Donea (Donea et al. 1982) is well suited. An alternative approach no longer views the 

interface as a sharp and discontinuous boundary between solid and liquid, but considers the 

interface having a finite thickness and well-defined properties (notably continuity), in other 

term a diffuse interface (Anderson et al., 1998, Collins et al., 1985). We limit our 

development to two-phase porous media and we suppose fluid saturated porous rocks. 

We present the physical and mathematical basis of the pore scale dissolution model and 

the upscaled Diffuse Interface Model (DIM) using a volume-averaged theory. The part of this 

article that dedicated to the geomechanical consequences considers only gypsum rocks. 

Whatever the hydrogeological configuration, the dissolution of gypsum (lenses, pillars, etc.) 

in the ground raises questions in terms of geomechanical consequences: subsidence, 

sinkholes, stability of pillars or cavities, etc. (Gysel (2002), Toulemont (1987, 1981), Cooper 

(1988), Bell et al (year). The aim of the last section of this paper is to show on several 2D and 

3D theoretical examples, the robustness and the potentialities of the proposed numerical 

dissolution approach.  

The geotechnical problems to be addressed are elastoplastic. The elastoplastic constitutive 

model used to describe the behavior of soil and gypsum are relatively simple. The aim is not 

to develop a precise study of a real case but to provide an illustration of the ability of the 

proposed approach. This last one is valid regardless of the complexity of the constitutive 

model used. We will illustrate these issues in the case of plasticity within a soil mass in the 

vicinity of a dike and in the case of partial dissolution of an elastoplastic pillar. In all the 

studied configurations, the soluble gypsum is located inside porous domains. 

We can see from the numerical modelling that the proposed approach has a predictive 

aspect. Indeed, the mechanical and dissolution coupling allows us to model the time evolution 

of all the fields (stresses, strains, displacements, …) and to determine the critical time beyond 

which severe risks can appear. 

2. Mathematical formulation of the dissolution  

 

This section is devoted to a brief review of the underlying principles of the method used 

for modeling the dissolution. The reader can find more detailed information on the scientific 

background in (Luo et al., 2012, 2014, 2015, Guo et al. 2015, 2016). At the pore scale, the 

dissolution problem can be posed using the classical  balance equations initial and boundary 
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conditions. In order to achieve the expression of  the “macro” DIM model, we start with these 

“small scale” equations to generate Darcy-scale equations, the corresponding Darcy-scale 

quantities and effective coefficients, using volume-averaging theory (Whitaker, 1999). After 

introducing the original model (micro-pore scale) for the dissolution problem, we present the 

upscaling method leading to the “Darcy-scale” equations. We provide a quick review of the 

main ideas and principles on the upscaling the pore scale equations to a macroscopic scale.  

The Darcy scale model that is derived from this upscaling is the one that is used for large-

scale dissolution modeling. 

 

 

 

Figure 1. Sketch of the passage from microscopic to real in-situ scales, closure variables and 2D unit 

cell.  The general notation , , , ,    indicates phases (fluid, soluble phase, heterogeneities, non-

soluble phase…)  

 

The passage of the description of the phenomena from the microscopic to the real 

“geotechnical” scale is depicted in Fig. 1.   

Before going further, note that we restrict our discussion to porous media composed of 

two phases, a solid porous phase and a liquid phase. The porous medium is fully saturated 

with liquid. More general approaches can be found in (Luo et al., 2012, 2014). To distinguish 
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the phases, we will use the subscript “s” to indicate the solid phase and the subscript “l” to 

indicate the liquid phase. 

The so called “original dissolution problem” includes a solid/liquid sharp interface as 

depicted in Fig. 2. At this interface the fluid concentration ( , )C x t  ( x  belongs to interface) is 

equal to the evaporite or equilibrium concentration eqC . A key feature of the DIM method is 

the introduction of a phase indicator defined over the entire domain (solid and liquid). In our 

approach we use the porosity ( , )x t that describe the state and evolution of the dissolution. In 

the sharp or original problem, ( , )x t is discontinuous at the solid-liquid interface (Fig. 2). 

Solving the mathematical problem with this condition requires special front tracking, front 

marching numerical techniques (Mital et al. 2005, Tryggvason et al. 2001, Feng et al. 1994). 

These methods are CPU-time consuming and face numerical difficulties, in case of non-

smooth geometries. With the DIM method we can be circumvented such difficulties because 

we do not tackle explicitly the interface space and time evolution. The partial differential 

equations are written instead for a continuous scalar variables, such as the porosity ( , )x t  

and the mass fraction ( , )Al x t  (mass fraction of species A in the l-phase), which leads to a 

diffuse interface description as illustrated in Fig. 2.  

 

 

Figure 2. Porosity and concentration space-evolution when crossing sharp and a diffuse interfaces. 

 

2.1. Pore scale model 

Let us consider a binary liquid phase ( l ) containing chemical species A and B, and a 

solid phase ( s ) containing only chemical species A, as depicted in Fig. 3 (right).  
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Figure 3: Sketch of in-situ cavity and focus near rock-solid/fluid interface 

Let write the mass balance for two phases and the chemical species A. Let underline that all 

variables are time dependent. For the sake of readability, we simplify the notations such as for 

example: ( , ,...)l l t  x . 

( ) 0l
l l

t





+ =


v                                                                                                                 (1) 

( ) 0s
s s

t





+ =


v                                                                                                                 (2) 

( )
( ) ( )l Al

l Al l l Al Al
t

 
   


+ =  


v D                                                                             (3) 

Here, l , s , lv , sv , 
Al

 and
Al

D  are the density of l-phase, density of s-phase, the l-phase 

velocity, the s-phase velocity, the mass fraction of species A in the liquid and the diffusion  

tensor respectively.  

In the following analysis, the s-phase is supposed immobile ( 0s =v ). The momentum balance 

for the fluid follows Navier-Stokes equations  

2  l
l l l l l l lP

t
  

 
+  = − + +  

 
g

v
v v v                                                    (4) 

where lP
 
represents the water pressure in the l-phase, l the liquid dynamic viscosity and g 

the gravity vector. Under some assumption (Luo et al. 2012) we have at the fluid/solid 

interface lsA , the classical equilibrium condition, i.e.,  
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      at        Al eq lsA =                       (5) 

The boundary conditions for the mass balance at the solid-liquid interface with normal 

outward vector lsn  can be written as follows (Fig. 3): 

( )( ) ( ) at  ll sAlls l Al l ls Al ls s ls A  − −  =  −n w D nv w                                                       (6) 

where, lsw  is the interface velocity also called recession velocity. This equation may be used 

to compute explicitly the interface velocity in the ALE method for instance and can be 

expressed as follows: 

1

(1 )
ls ls ls All

s

l
A

Al

D 





 = 

−
 n w n                                                                                            (7) 

 

2.2. Upscaled macro-scale non-equilibrium model  

A DIM model can be written in an appropriate way in the framework of porous medium 

theory. In this subsection, we describe the macroscopic Darcy-scale equations obtained by 

upscaling the above set of pore scale equations, using the volume averaging theory (Quintard 

and Whitaker, 1994, Whitaker, 1999). The reader will find in paper (Guo et al., 2016) the 

details of this change of scale. The representative elementary volumes (Bachmat and Bear, 

1987) is illustrated in Fig. 4. We define the intrinsic average of the mass fraction Al and the 

superficial average of the velocity lV  as  

( ) ( )1

V V

1 1
V and  V

V V
l

l l

Al Al l Al Al l l l l l

l l

d d    − = = = = = = r  V v v v r                  (8) 
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Figure 4. Averaging volume at pore scale level   

 

After transformation the averaged form of balance equation of species A can be expressed as  

( )
( )( )

( )
( )

1
-  

V
ls

l Al

l Al l l Al Al ls l Al Al

A

dA
t

 
     


+  =     −

 
cb

a
d

v D n v w                    (9) 

With (a), (b), (c), (d), the accumulation, the convection, the diffusion and (d) the phase 

exchange terms, respectively. With several assumptions and some mathematics manipulations 

of the various equations, we derive the followings equations for the DIM model (Luo et al. 

2012): 

( ) ( )( )* * * * *.   1Al
l l l l Al l l Al Al l Al eq Al

t
       


+  =   + − −


V D                                    (10) 

( ) ( )
*

* *l l
l l l eq Al

t

 
   


+ = −


V                                    (11)  

( )*s l
s s eq Al

t t


 
    

 
− = = −

 
                                  (12) 

where, *

l is the effective density, ( )l  =  the mass exchange parameter and *

AlD  is the 

macroscopic diffusion/dispersion tensor. Recall that /l lV V = is the classical definition of the 

porosity, /s sV V = is the solid volume fraction which can be expressed in term of void ratio 

e, / (1 )s e e = + . The value of the macroscopic effective coefficients (value at the Darcy 

scale) are obtained thanks to the solution of the “closure problems” over a unit cell, whose 

shape and topology is specific to the considered porous medium as pictured in Fig. 5. 

 

 

Figure 5.  Pictures of unit cells defining the domain of the closure problems.  

Their expression according to Luo (Luo et al., 2012) are:  
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( )1 11

ls

Al Al l ls l l l l

A

dA
V

 − −
 
 = + −
 
 


*

D D I n b b v                                                                             (13) 

( )
( )

1

1
ls

l
Al ls

eqA

D s dA
V







= 

−
 n                                                          (14) 

* 1

 
l l Al

l Al

  


=


                                                (15) 

lb  and ls  two variables, solutions of the boundary value closure problems. 

It is noteworthy that these physical properties, 
Al

*
D , *

l  and   at the macroscopic scale are 

by no means not phenomenological nor measured experimentally. The macroscopic properties 

are based on physical properties established at the pore scale.  

In the case of DIM the mass exchange coefficient expression ( )  =  as a function of 

porosity is quite arbitrary. In any case ( )  = must fulfill the condition shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

Figure 6.  Porosity evolution and rate condition in the whole porous media including diffuse interface  

 

At this scale, the fluid velocity can be described either by the classical Darcy model or the 

Darcy-Brinkman version (Brinkman, 1947) 

( )
( ) ( ) ( )( )

1* 0
l Al

l l l l Al l l

l

P


  


−
 −  − −   =V g K V                                                                      (16)  

with ( )lK the permeability tensor. This model will tend to Stokes equation when ( )lK is 

very large and lead to Darcy’s model when ( )lK  is very small. Note that the inertial terms 

are supposed negligible. 

In the following section we illustrate the use of the methodology in the analyses of some 

dissolution examples. 
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2.3. Modelling of direct leaching process in salt mass  

This section discusses the application of the proposed approach described in the above 

section. The first application consists in the modeling of a direct leaching test performed in a 

salt mass. We compare the results of the modeling to the experimental measures. The goal is 

to illustrate the capacity of the approach to face problems with geometrical singularity and 

important density impacts resulting from the high salt solubility.  

 

Figure 7. Configuration of the experimental leaching test (a), Resulting dissolution after twelve 

days of freshwater injection (b) and inlet velocity history (c) (after Charmoille et al. 2012)  

The principles of the experimental in-situ test are as follows. Two concentric tubes are 

driven into the ground to a depth of 280 m (Fig. 7a). Through the central tube, water is 

injected continuously during several days. The injection by the central tube is known as the 

direct leaching method.  The injection history is given in terms of velocity in Fig. 7c and is of 

3 m3/h for 4 days and 1.5 m3/h for 8 days. A sonar test of the dissolution void was carried out 

and it was deduced the final form obtained which was quasi-cylindrical as illustrated in Fig. 

7b.  

In the numerical modelling of this direct leaching process we first suppose that the 

problem is axisymmetric. Proper initial and boundary conditions describing this problem are 

applied in the numerical model solved using finite element method. The liquid (brine) density 

l (kg/m3) has the following expression 
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( , ) 1000 738.5 ( , )l Alt t = +x x                                                                                     (17) 

with ( , )Al t x  the mass fraction of species A at time t and point x. The mass fraction at 

equilibrium eq  is equal to 0.27. The salt density s is equal to 2165 kg/m3. The liquid 

dynamic viscosity is supposed constant and equal to 10-3 Pa s and the diffusivity is equal to 

1.3×10-9 m2/s. The permeability of the salt rock is equal to 10-20 m2. The numerical results of 

this experimental test are shown hereafter. Fig. 9 shows at different times or value of the 

porosity inside the domain in the axisymmetric plane. We observe on this figure the 

development of a near-cylindrical cavity, a shape that is maintained over time. The gradient of 

color between the "fluid" part (red)  and the "solid part" (blue) indicates the existence of the 

diffuse interface of a finite width. 

 

 

Figure 8. Isovalue of the porosity after 2, 4, 8, and 12 days. Void for unity. 

 

The computed dissolved volumes are around 12 m3 after 4 days and 38 m3 after 12 days. 

The experimental evaluation of the cavity volume deduced from the outlet fluid composition 

analysis, are around 11 m3 and 40 m3, respectively. This demonstrates the accuracy of the 

numerical model.  

The flowlines (Fig. 9) shows at different times or cavity volume, the natural convection 

effect linked to concentration (mass fraction) gradients due to the strong solubility of salt. 
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Figure 9. Streamlines and fluid vectors field after 2, 4, 8, and 12 days. 

 

On figure 10 we have represented at six instants the position of the liquid/salt interface. 

In this point tracking we have considered the interface situated at mid-height (segment AA). It 

is noteworthy that the interface is not sharp but has a finite thickness. 

 

Figure 10. Example of diffuse interface shape and location along the line AA. 

 

With the same boundary conditions as above, we consider now instead of salt a gypsum 

domain and the associated parameters (Guo et al. 2016). In these computations the liquid 

density is kept constant (very small solubility) and equal to 1000 kg/m3. Fig. 11 shows the 

cavity at different times (1, 5, 10, 30 years). We observe the very slow dissolution rate (small 

cavity after a long time) for gypsum material and the different cavity shapes compared to 

those obtained with salt.  



13 

 

 

 

 

Figure 11. Shave of the cavity in gypsum  after 1, 5, 10, and 30 years (Void is red). 

In this case there is no convection induced by liquid density gradient. We can note that 

the value of solubility is not the only parameter controlling the interface recession rate. At a 

point of the interface, the rate of dissolution (recession rate) depends on the concentration 

gradient, the fluid velocity, among others. Fig. 12 below illustrates these remarks. Let us 

denote ( , )x t  as the value of the recession rate-rate of dissolution (unit: mass per unit surface 

per time) at the point ( x ) of the fluid-solid interface and at time t . Its expression is  

0

( , ) ( , ) d

L

s

d
x t x t x

dt
  

 
=  

 
                                                       (17) 
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Figure. 12. Time evolution of the recession rate along three lines located in salt layer (Bottom-

L1,Middle-L2, ,Top-L3). Case of direct leaching process in salt mass (Figure 7). 

 

 

 

Figure. 13. Time evolution of the recession rate along three lines located in gypsum layer (Bottom-

L1,Middle-L2, ,Top-L3). Case of direct leaching process in salt mass (Figure 7). 

We can observe that the recession rate is far from being constant in time either for salt or 

for gypsum. So, this does not make sense to use a unique and constant value for the 

dissolution rate, as often done in engineering practice, since it evolves according to the 

hydrodynamic conditions and the chemical composition of the fluid. We also observe the 

significant difference between  the dissolution rate of salt and those of gypsum. 

 

The proposed approach can be improved and extended to problems with more complex 

chemistry involving multiple components for instance, by also taking into account the 

presence of non-soluble particles within the porous matrix, etc. The accuracy of the method 

can be increased, however although these aspects are of undeniable scientific interest, we are 

often restricted, in-situ, by the lack of information and data. At this time, the approach is 

sufficiently accurate for the geoengineering problems that we are dealing with and has been 

successfully applied in other cases. 

 

 

3. Applications of dissolution modelling in geotechnical fields 

 

In the following 2D and 3D examples, we consider several coupled problems involving 

gypsum. The first case corresponds to dissolution under an elastoplastic soil. A gypsum rock 
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is located below and in the vicinity of a dyke (soil slope). In many countries there exists 

gypsum layer very close to the surface (Toulemont, 1981, 1987). 

The gypsum domain is contained in a porous layer and is located between two layers of 

marl for instance. The flow is induced by a natural hydraulic gradient. We will analyze the 

time evolution of the plasticity in the soil during the dissolution process. 

The second case is about the dissolution of the bottom part of cubic elastoplastic gypsum 

pillar with geometric singularities (corners) at all edges. We will analyze also the time 

evolution of the plasticity affecting  the pillar during the dissolution process. 

These two simple examples show the predictive nature of the proposed approach.  

 

3.1 Gypsum lens in the vicinity of a dyke 

 

The starting point for this numerical modelling is the in-situ observations made in the Val 

d’Orléans (France). Numerous levees exhibited sinkholes that were developed at different 

locations (Fig. 14). The process leading to the formation of sinkholes or the failure of the 

slope is linked to the existence of a void at the base, which was created by dissolution. To the 

existence of the void is added a phenomenon of soil internal erosion (suffusion). This process 

involves the removal of fine particles and modifies the mechanical features of the soil. After 

some time of internal erosion, the instability occurs (Yang et al. 2020). The goal of our 

simulation is to quantify the time needed to create a critical cavity length.  
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Figure 14. Real case induced by karst existence and the geotechnical failure of some dikes in Val d’Orléans  

(France).  The failure affects the toe (a), the head (b), the slope face (c) and  (d) behind the dike (after Gombert 

et al.,2015) 

 

The problem treated in this section is related to the stability of a dike in the presence of a 

soluble saturated gypsum domain which dissolves continuously in time. This dissolution is 

caused and sustained by constant flow of freshwater (Fig. 15). 

The gypsum layer (G) of 4 m thickness and 20 m length (Fig. 15) is located just below an 

overburden (L1, L2) of (sandy-silty) soil. The gypsum domain (G) is situated in a porous 

medium (L3) saturated with water. Pure water thus flows at the inlet with a continuous 

velocity V of 2.5×10-7 m/s. It is supposed that the inlet concentration is zero (freshwater). A 

null flow condition is imposed on the lower and upper sides of the porous layer (L3) that 

contains the soluble part. The mechanical parameters of the soil and of the layers below the 

soil layer as well as those related to the dissolution are given in Table 1. 

 

 

Table 1 : Mechanical and dissolution parameters of the model 

 E  (MPa)   (-)  (°) C (kPa) K (m2)  (Pa s) 
(kg/m3) 

 (-) 

Layer L1 95 0.35 30 17 - - 2000 - 

Layer L2 190 0.35 35 37 - -  - 

Layer L3 35000 0.35 - - 10-16 10-3 2300 5 10-6 

Layer G 35000 0.3 - - 10-14 10-3 2300 5 10-6 

 

The normal displacement is imposed at all boundaries of the domain. The initial stress 

state is computed with gravity as the only loading. A very fine elastic (membrane) and highly 

deformable layer is located at the base of layer L2. The mechanical properties are such that 

they make possible to dissolve a significant width without numerical instability. Indeed, when 

the cavity is created, the mechanisms linked to the effective collapse of the ground bell are not 

described in our approach. The resolution of mechanical and dissolution problems is solved 

using also finite element method. 
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Figure 15.  Model meshed of a dike (L1). The gypsum lens (G)  is located below and in the vicinity of 

a dyke. 
 

 

In this example we used a simple associated elastic perfectly plastic Mohr-Coulomb model 

and the computation are performed in 2D plane strain condition. In Fig. 16 we show the 

growth of the dissolution-induced cavity and its impacts in terms of soil layer plasticity 

(effective plastic strain ( )
2

3

ep p p

ij ijd d  =   ) at 3 times (40, 92 and 106 y), where we 

observe the extension and the distribution as a function of the intensity of the lens dissolution. 
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Figure 16 Growth of the dissolution-induced cavity and the impacts in terms of soil layer plasticity at 

3 instants 40, 92 and 106 years. (In yellow, the dissolved gypsum cavity) 
 

 

 

Figure 17 Growth of the dissolution-induced cavity and the impacts in terms of soil layer plasticity at 

after 132 years. (In yellow, the dissolved gypsum cavity) 
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As expected, when dissolution progress, plasticity develops in the soil recovery (Figs 16 

and 17). The method provides interesting information, especially on the reduction of the 

stability reserve as a function of time. The knowledge of this evolution can be used for 

mitigation procedures and to prevent possible damages. 

The maximum extension of the cavern is about 16 m at the floor and the roof of the 

gypsum layer after 132 years. As the dissolution rate is naturally dependent on the boundary 

conditions, a greater flow velocity will significantly reduce this time. A rainwater inflow, for 

instance, can naturally create additional preferential dissolution locations within the gypsum 

rocks. A thorough approach that integrates the history and periodicity of soil surface rainfall 

is feasible with no particular problems. 

We observe that dissolution of the gypsum layer occurs on the boundaries which are 

gradually reduced. The dissolution does not occur strictly inside the porous gypsum layer 

because solubility is so low that the equilibrium concentration is reached very fast.   

 

The stability of the soil structure in our analysis is carried out with respect to a criterion 

of plasticity or the loss of convergence of the Newton-Raphson algorithm. More relevant 

criteria such as the positivity of the second order work (Hill 1958, Prunier et al. 2009) could 

be used to analyze the stability.  

 

 

3.3 Elastoplastic gypsum pillar dissolved at its base 

 

In the Parisian region (France), the gypsum layers are very superficial. The thin overburden is 

not particularly resistant and is highly sensitive to the existence of caverns (Toulemont, 

1987). A further issue relates to the flooding (partial or total) of gypsum mines. In certain 

mines, stability is provided by pillars which are left in place (Fig. 18).  Their design is usually 

safe to consider many uncertainties. However, gypsum is a soluble substance and is therefore 

very sensitive to water. The influx of water in a continuous or periodical manner over the long 

period questions the effectiveness of the stability guarantee.  In the short or long period of 

time, according to the hydraulics conditions, the pillars will lose their strength due to the 

dissolution and the stability of the structure will be threatened.  
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Figure 18. Photo of pillar in the abandoned quarry with a thin layer of water at its base (by courtesy 

of Watelet JM, INERIS) 

 

 

 

 
Table 2 : Mechanical and dissolution parameters of the model 

 E  (MPa)   (-) 
(°) C (MPa) K (m2) 


(Pa s) 


(kg/m3) 

 (-) 

Layer L1 350 0.3 - - - - 2300 - 

Layer L2 35 0.3 - - - - 2300 - 

Pilar P 35 0.3 40 4 1 10-14 10-3 2300 1 10-5 

“Water” 1 0.3 - - 1 10-14 10-3 2300 1 10-5 

 

The problem of flooded mines is approached from the standpoint of the instability of a 

gypsum pillar that is affected by dissolution at its base by a thin layer of water. The gypsum 

pillar is cubic with sides of 5 m (Figs. 20 and 21).  A steady flow of fresh water of no 

concentration in gypsum is applied upstream. Its velocity is V is equal to 5×10-6 m/s. The 

width of the water domain is 0.30 m. The thin layer of water affects only the base of the pillar. 

Previous works were performed on cylindrically shaped pillar totally affected by water 

flooding. An example of state of failure is depicted in Fig. 19, the plasticity after 20 years of 

cylindrical pillar subjected to continuous water flow  (fluid velocity 10-6 m/s). The pillar is 

integrally submerged, and the dissolution affects all its height (Laouafa et al. 2021). 
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Figure 19. Final shape and plasticity in the pillar before failure and history of the vertical  

displacement vs time  of a point located on the top of the pillar (Laouafa et al. 2021). 

 

 

 

In the example below, the water dissolves the base of the cubic pillar, and computations 

are performed in order to analyze the plasticity or damage distribution evolving during 

dissolution. A dead load P equal to 450 kPa is applied on the top of the surface. The transport 

mechanical parameters are given in table 2. 

 

 

Figure 20. Domain of the model and mechanical  loading (P) and flow velocity (V). (S) is a symmetry 

plane. Only half domain is considered for the analysis 

 

The due to symmetries (geometry, physics)  the model used in our computation is shown 

in Fig 21.  
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Figure 21.  ½ Model (left) and mesh (right) considered in computations. 
 

Fig. 22 shows the development of the porosity or in other terms the progress of the 

dissolution at four instants (5, 20 50 and 100 years). This is a bottom view of the gypsum 

layer. We observe a progressive loss of material and therefore of the support of the pillar with 

time. The symmetry (with respect to the vertical) is preserved owing to the initial conditions. 

The dissolution is more severe upstream than downstream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Bottom view of the dissolved gypsum domain after 5, 20, 50 and 100 years. (1 is solid gyp-

sum, 0 is liquid).  

 

Fig. 23 show a 3D view of the gypsum shape lens after 100 years. 

 

V 
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Figure 23. 3D shape (bottom view) of the dissolved gypsum domain after 100 years until numerical 

convergence. 

 

In figure 24 we can visualize the variation in space and for various times of the 

concentration of the chemical species. This description is carried out at mid thickness of the 

water layer. Four instants are shown: 5, 20, 50 and 100 years. The normalized concentration 

field evolves both in intensity and in extension as dissolution progresses. 

 

 

 

Figure 24. Variation in space and for various times (5, 20, 50 and 100 y) of the concentration of the 

chemical species. Description carried out at mid thickness of the water layer.   
 

Figs. 25 shows the evolution of the effective plastic strain with the progression of 

dissolution. The elastoplastic pillar and the geometric configuration of the gypsum lens at 

different times are shown in this figure. 
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Figure 25.  Time evolution of 3D spatial distribution of effective plastic strain in ½ pillar at different 

times (0, 5, 20, 50, 70 and 100 years). 
 

 

It is noticed that dissolution of the base of the pillar leads to a concentration of stress at 

the boundaries of the area concerned by the dissolution. The more pronounced the dissolution 

is, the more the stress on the pillar increases in intensity and expands into the pillar. The 

distribution of plasticity and failure that can be expected is not classical.  

This is illustrated in Fig. 26 where we have only represented the plastic zones in the 

interior of the pillar. It is noteworthy that the effect of a thin layer of water, as compared to a 

total flooding, is not so common. 
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Figure 26. 3D view of part of pillar affected by plasticity for three times (three states of dissolution)  
 

This is also a simple example regarding the elastoplastic model which is used to describe 

the behavior of gypsum material. The dissolution approach has no particular limitation on the 

model complexity to use.  

In this case it is worth noting that the edges of the soluble domain constitute geometrical 

singularities and the DIM method can easily circumvent them thanks to its formulation.   

The character of the coupling is also notable.  For the same reasons mentioned above, the 

dissolution does not occur in the gypsum mass but on the periphery. 

 

4. Concluding remarks 

We have discussed in this paper the modeling of the dissolution of rock materials and its 

application in geoengineering problems. We have limited the analysis to a soluble medium 

that contains two phases, a porous solid phase and a liquid phase. The porous soluble medium 

is saturated with liquid. After the presentation of the method used to model the dissolution 

built on the basis of microscopic considerations and upscaling, we have applied this method 

in geotechnical/geomechanical applications. The issue is of noteworthy importance and the 

findings are very promising. The question of mid- and long-term mechanical behavior will 

still arise in the presence of water in the vicinity of the evaporite present in the subsurface. 

The dissolution leads to a perturbation of the surroundings by the formation of voids, the 

modification of the morphology of structural elements, etc.  

By coupling the method that describes dissolution to the geotechnical method, we 

explicitly introduce time ( although the mechanical behavior is independent of time).  It is 

therefore possible to foresee possible losses of stability, such as sinkholes, landslides, failure 

of structures, etc. 

The developed method can be also used in the framework of underground structures like 

tunnels, pipelines, structures under buildings, close to railroad tracks, etc. Its contributions 

will be significant in the occurrence of an event (pipe breakage, leakage, water intrusion, etc.). 

A problem with the phenomenon of dissolution is that it is relatively slow ( notably for 

gypsum or limestone) and the consequences are visible in the mid- or long term. Another 

problem is that in-situ dissolution can be only of natural origin. In such a case, we do not 



26 

 

control all the factors (hydraulics for example). The location of the evaporites at the site scale 

is an additional difficulty. 

In this uncertainty context, the proposed approach can have a meaningful contribution.  

The developed approach can be extended by introducing a third phase (gas) and 

heterogeneities at the microscopic scale. The weak coupling in the mathematical sense can be 

enhanced by incorporating for example the evolution of the porosity induced by the 

deformation of the medium and by including it in the formulation of the dissolution problem. 
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