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Abstract 26 

We report an interlaboratory evaluation of a recently developed androgen receptor (AR) 27 

transactivation assay using the UALH-hAR reporter cell line that stably expresses the luciferase 28 

gene under the transcriptional control of androgen receptor elements (AREs) with no 29 

glucocorticoid receptor (GR) crosstalk. Herein, a two-step prevalidation study involving three 30 

laboratories was conducted to assess performance criteria of the method such as transferability 31 

as well as robustness, sensitivity, and specificity. The first step consisted in the validation of 32 

the transfer of the cell line to participant laboratories through the testing of three reference 33 

chemicals: the AR agonist dihydrotestosterone, the AR antagonist hydroxyflutamide and the 34 

glucocorticoid dexamethasone. Secondly, a blinded study was conducted by screening a 35 

selection of ten chemicals, including four AR agonists, five AR antagonists, and one non-active 36 

chemical. All test compounds yielded the same activity profiles in all laboratories. The logEC50 37 

(agonist assay) or logIC50 (antagonist assay) were in the same range, with intra-laboratory 38 

coefficients of variation (CVs) of 0.1-3.4% and interlaboratory CVs of 1-4%, indicating very 39 

good within- and between-laboratory reproducibility. Our results were consistent with literature 40 

and regulatory data (OECD TG458). Overall, this interlaboratory study demonstrated that the 41 

UALH-hAR assay is transferable, produces reliable, accurate and specific (anti)androgenic 42 

activity of chemicals, and can be considered for further regulatory validation.  43 

  44 
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1. Introduction 45 

Androgens are steroid hormones that play pivotal roles in the development and reproduction of 46 

vertebrates, notably in the male reproductive system. Most of their biological effects are 47 

mediated by their action on nuclear androgen receptor (AR), a ligand-dependent transcriptional 48 

factor that regulates many downstream androgen-dependent signalling pathways. Disrupting 49 

androgen signalling alters normal reproductive functions and can also account for several 50 

pathophysiological functions, such as prostate cancer. The AR signalling pathway is for 51 

instance an important target of anti-cancer drugs, with an active search for new AR inhibitors 52 

in the context of prostate cancer therapies (Nigro et al., 2021). It is also now well documented 53 

that AR signalling can be disrupted by chemicals exerting either androgenic or antiandrogenic 54 

activities (Gray et al., 2001; Scott et al., 2009). Environmental chemicals such as 55 

pharmaceuticals (Runnalls et al., 2010), pesticides (Kojima et al., 2004; Lemaire et al., 2004; 56 

Raun Andersen et al., 2002), or flame retardants (Hamers et al., n.d.) that can be found in air, 57 

surface waters or food (Biedermann and Grob, 1998; Creusot et al., 2014; Haith and Rossi, 58 

2003; Rodriguez-Mozaz et al., 2004; Russo et al., 2019; Sumpter, 2005), might pose risks to 59 

wildlife and humans through the disruption of the AR-signalling pathway. Therefore, there is a 60 

need for reliable tools to assess the (anti)androgenic activities of chemicals and their mixtures. 61 

As such, several established stable reporter cell lines such as PALM (Molina-Molina et al., 62 

2013, 2006; Térouanne et al., 2000), HELN-AR (ER-DBD) (Delfosse et al., 2012; Grimaldi 63 

et al., 2019), or MDA-kb2 (Aït-Aïssa et al., 2010; Wilson et al., 2002) or AR-EcoScreen (Satoh 64 

et al., 2004) have been developed and successfully used to screen (anti)-androgenic activities 65 

of chemicals or environmental mixtures. However, these reporter gene assays present a limit 66 

regarding AR-specificity of their response because of the use of promoter constructs that 67 

possess response elements to other endogenously expressed nuclear receptors such the 68 

glucocorticoid (GR) and progesterone (PR) receptors. Indeed, GR is naturally expressed in 69 
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many cell lines and, once activated by its ligands, has been shown to activate (PALM, MDA-70 

kb2, AR-Ecoscreen) or repress (HELN-AR-(ER-DBD)) AR-responsive luciferase constructs 71 

in these AR-reporter cell lines. To overcome this limit, other in vitro cell lines have been 72 

developed for more specific assessment of androgenic activity of chemicals, either by knocking 73 

out endogenous GR expression, such as in the AR-EcoScreen GR KO (Zwart et al., 2017) or 74 

22Rv1/MMTV_GR-KO (Park et al., 2021; Sun et al., 2016) cell lines, or by using a cell model 75 

that naturally expresses very low levels of GR, such as in the U2OS AR-CALUX assay 76 

(Milcamps et al., 2021, 2020; Sonneveld et al., 2006, 2005; van der Burg et al., 2015, 2010). 77 

All three methods are included in the OECD Guideline TG 458 (OECD, 2020). 78 

To address the current needs of AR specific in vitro tools with as minimal GR-crosstalk as 79 

possible, a new U2OS-derived luciferase reporter cell line, UALH-hAR, has been recently 80 

developed (Dellal et al., 2020). This cell line expresses high levels of AR but not GR, as well 81 

as the luciferase gene under the control of an ARE selective promoter (contains 6 AREs), which 82 

makes the luciferase response very sensitive and selective to AR ligands in this cell model. 83 

Such model could represent a relevant tool for screening (anti)androgenic activity of test 84 

substances notably within a regulatory context. In the present study, we conducted a two-step 85 

interlaboratory exercise to assess the robustness of UALH-hAR cell line and test method as a 86 

potential transferable and reliable assay for the specific detection of androgenic and 87 

antiandrogenic activity of chemicals, using a selection of ten substances, including AR agonists 88 

(4) AR antagonists (5) and one inactive chemical. 89 

2. Material and Methods 90 

2.1. Design of the interlaboratory prevalidation study 91 

The prevalidation study involved three laboratories: laboratory A coordinated the 92 

prevalidation, prepared and sent around test chemicals, collected, analysed and reported the 93 
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data (INERIS, Unité Ecotoxicologie des Substances et Milieux, UMR-I 02 SEBIO, Parc 94 

ALATA, 60550 Verneuil-en-Halatte, France); laboratory B created the cell line, developed the 95 

method and distributed the cell line (IRCM, Inserm U1194, 34290 Montpellier, France); finally 96 

laboratory C served as a naive laboratory (Tame-Water, 85000 La Roche-sur-Yon, France). All 97 

three laboratories performed the experiments as described thereafter. 98 

The prevalidation was done in two phases. For phase I, each laboratory tested three reference 99 

compounds in both agonist (exposure to test chemical alone) and antagonist (co-exposure to 100 

test chemical with reference agonist dihydrotestosterone DHT 3.1610-10 M) modes in three 101 

independent runs, i.e., separate experiments using cells from a different pool, freshly diluted 102 

chemicals, and conducted on different days. Selected compounds for the phase I were the 103 

androgen receptor (AR) agonist dihydrotestosterone (DHT), the AR antagonist 104 

hydroxyflutamide (HF) and dexamethasone (DEX), a synthetic GR agonist known to exert no 105 

agonistic activity towards AR. These compounds were all sent as powders by the laboratory A 106 

to laboratories B and C and each laboratory then proceeded to the preparation of stock solutions 107 

in dimethyl sulfoxide (DMSO). Results of each independent run and of each laboratory were 108 

then compared qualitatively (i.e., active or non-active compound) and quantitatively (based on 109 

comparison of logEC50 and logIC50 obtained after modeling of concentration-response curves) 110 

to assess within laboratory reproducibility (WLR) and between laboratory reproducibility 111 

(BLR).  112 

For phase II, WLR and BLR were assessed in real testing conditions by screening a selection 113 

of ten chemical substances in a blind study in agonist and antagonist modes in three independent 114 

runs. Tested compounds included the three reference chemicals used in phase I, as well as three 115 

AR agonists ligands: testosterone (T), medroxyprogesterone acetate (MPA), and 116 

methyltrienolone (R1881); three AR antagonists: bisphenol A (BPA), bisphenol C (BPC), and 117 

vinclozolin M2 (M2V); and one compound with no expected AR effect: mono(2-118 
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ethylhexyl)phthalate (MEHP), a metabolite of di(2-ethylhexyl)phthalate (DEHP). All stock 119 

solutions in DMSO were prepared by laboratory A, then anonymized (coded) and sent to 120 

laboratories B and C. At laboratory A, the anonymization of stock solutions was performed by 121 

a person external to the study to ensure blind testing conditions in this lab. Sample codes were 122 

different for each laboratory. Results were analysed as in phase I to evaluate the WLR and BLR 123 

of the test method. 124 

2.2. Test chemicals  125 

Chemical structures and main properties of the ten selected substances are presented in Table 126 

1. Dihydrotestosterone (DHT), hydroxyflutamide (HF), dexamethasone (DEX), 127 

methyltrienolone (R1881), testosterone (T), medroxyprogesterone acetate (MPA), bisphenol A 128 

(BPA), bisphenol C (BPC) and mono(2-ethylhexyl)phthalate (MEHP) were obtained from 129 

Sigma-Aldrich Chemical Co. (Saint-Quentin Fallavier, France), and vinclozolin M2 (M2V) was 130 

obtained from Santa Cruz Biotechnology, Inc. (Heidelberg, Germany). Stock solutions of 131 

chemicals were prepared in dimethyl sulfoxide (DMSO) and stored at -20°C. Fresh dilutions of 132 

test chemicals in cell culture medium were prepared before each run and the final DMSO 133 

concentrations did not exceed 0.1% (v/v) or 0.2% (v/v) of the culture medium in agonist and 134 

antagonist modes, respectively. All three laboratories used the same batch of powders (Phase 135 

I) or stock solutions (Phase II), prepared and sent by the lead laboratory (Laboratory A). 136 

2.3. The UALH-hAR cell line 137 

The previously established UALH-hAR cell line (Dellal et al., 2020) was derived from human 138 

osteosarcoma cells U2OS using a two-step stable transfection with three plasmids (Fig. 1). To 139 

establish the UALH cell line, U2OS cells were first stably transfected with the 140 

6xARE(RAD9)Luc+/Hygromycin plasmid containing the firefly luciferase gene under the 141 

control of six androgen response elements (AREs) from the AR and PR selective RAD9 gene 142 
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promoter and placed upstream of the collagenase promoter and containing the resistance gene 143 

to hygromycin under the control of the SV40 promoter. Then, UALH cells were co-transfected 144 

with (i) the expression vector pSG5-AR-Puromycin containing the gene coding for hAR under 145 

the control of the simian virus promoter (SV40) and resistance gene to puromycin under the 146 

control of the phosphoglycerate kinase promoter (PGK) and (ii) the expression vector pSG5-147 

AR-Renilla-Neomycin containing the gene coding for hAR under the control of the SV40 148 

promoter, the Renilla luciferase reporter gene under the control of the constitutive human 149 

cytomegalovirus (CMV), the firefly luciferase gene under the control of six androgen response 150 

elements (ARE) from the RAD9 gene promoter and placed upstream of the collagenase 151 

promoter, and the resistance gene to neomycin under the control of the SV40 promoter. The 152 

third plasmid was included to overexpress both AR and luciferase expression. The AR sequence 153 

was chosen from the NCBI database under the ID NM_000044.3. Androgen responses elements 154 

of from the RAD9 gene promoter were chosen due to their high AR selectivity versus GR 155 

(Moehren et al., 2008). Cells were incubated in a 5% CO2 humidified atmosphere at 37°C. 156 

Selection of UALH-hAR cells was made with 0.5 µg/mL puromycin, 1 mg/L neomycin G418 157 

and 0.25 mg/mL hygromycin. Cells are passaged after reaching 75-90% confluence and the 158 

number of passages did not exceed 50. The cells were cultured using an established protocol, 159 

with slight differences between the three laboratories, as detailed in Supplementary Data S1.  160 

2.4. Standard operating protocol (SOP) for the in vitro transcriptional activation assay 161 

using the UALH-hAR cell line  162 

The following generic SOP was provided to participants laboratories as recommendations to 163 

run the assays. Due to specificities in participant laboratory facilities and uses, some slight 164 

differences between labs were noted regarding cell culture, cell exposure and luciferase readout 165 

protocols, which are detailed in Supplementary Data S1. Overall, cells were seeded in 96-wells 166 

white opaque culture plates at a density of 50,000 cells per well in culture medium. After 24 h, 167 
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cells were exposed in test medium with chemicals in a range of concentrations done in serial 168 

dilutions with a factor 3.16 in DMSO (laboratories A and C) or in DMSO-containing culture 169 

medium (laboratory B). In any case, the final DMSO content was always set at 0.1% v/v 170 

(agonist mode) and 0.2% v/v (antagonist mode). In the antagonist mode, tested compounds 171 

were exposed in presence of DHT at a concentration yielding 50-80% of the maximum 172 

luciferase activity, i.e., DHT 3.16 x 10-10 M. Each concentration was tested in technical 173 

quadruplicates. Each plate contained the following controls: culture medium only, solvent 174 

control DMSO 0.1% v/v for agonist assays and 0.2% v/v for antagonist assays as negative 175 

controls; positive control DHT 10-7 M leading to the maximal luciferase activity; in antagonist 176 

assays only, the reference compound DHT 3.16 x 10-10 M alone yielding 50-80% of the 177 

maximum luciferase activity. Plates were then incubated at 5% CO2 ± 37°C for 24 h. At the end 178 

of the incubation, test medium was replaced with 50 μL per well of medium containing 0.5 mM 179 

D-luciferin (laboratory A) or 0.3 mM D-luciferin (laboratories B and C). Luminescence signal 180 

is measured in living cells for 2s per well using a luminometer. Each compound was tested in 181 

at least three independent runs.  182 

2.5. Cytotoxicity assay 183 

The viability of the cells was checked with a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 184 

tetrazolium bromide, Sigma M2128) assay to ensure that there was no cytotoxic effect at the 185 

concentrations tested. After exposure, cells were incubated in 100 µL test medium containing 186 

0.5 mg/mL MTT for 3h at 5% CO2 and ± 37°C. Wells were then emptied, the cells lysed in 100 187 

µL DMSO/well and plates shaken for 10 minutes. The optical density (OD) was measured by 188 

spectroscopy at 570 nm and 640 nm and OD640 values subtracted from OD570. Values obtained 189 

for the solvent control were considered as 100% viability. Concentrations leading to less than 190 

80% viability were excluded from the analysis. 191 

2.6. Data analysis 192 
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To assess the risk of overlap between negative and positive controls, we calculated the Z-factor, 193 

considering the basal activity in DMSO-treated cells as a negative control and the maximal 194 

activity in DHT 10-7 M-treated cells as a positive control, as follows: 195 

𝑍 − 𝑓𝑎𝑐𝑡𝑜𝑟 =  
3(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐷𝐻𝑇 10−7𝑀 + 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐷𝑀𝑆𝑂 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

|𝑚𝑒𝑎𝑛𝐷𝐻𝑇 10−7𝑀 − 𝑚𝑒𝑎𝑛𝐷𝑀𝑆𝑂 𝑐𝑜𝑛𝑡𝑟𝑜𝑙|
 196 

To express luciferase activity as % of maximal effect exerted by the positive control, relative 197 

light units (RLUs) were normalized between 0% (baseline luciferase activity in DMSO control) 198 

and 100% (luciferase activity in DHT 10-7 M positive control) by using the following equation: 199 

%𝑒𝑓𝑓𝑒𝑐𝑡 =
𝑅𝐿𝑈𝑡𝑒𝑠𝑡 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 − 𝑅𝐿𝑈𝐷𝑀𝑆𝑂 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑅𝐿𝑈𝐷𝐻𝑇 10−7𝑀 − 𝑅𝐿𝑈𝐷𝑀𝑆𝑂 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 200 

A chemical is considered to have an agonistic effect when it increases luciferase activity above 201 

10% of the maximum effect induced by positive control for at least two consecutive 202 

concentrations. If not, the chemical is considered as non-agonist. A chemical is considered to 203 

have an antagonistic effect when it decreases luciferase activity by more than 30% in antagonist 204 

mode. If not, the chemical is considered as non-antagonist. For active chemicals, individual 205 

(ant-)agonist concentration-response curves are fitted with the Hill equation model, using the 206 

dose-response function of a graphics and statistics software program (GraphPad Prism 6, 207 

GraphPad Software Inc.). Effective concentrations (EC) and inhibitory concentrations (IC) as 208 

well the slope factor (Hill coefficient) were derived from the Hill equation. For a given 209 

chemical, EC50 is defined as the concentration inducing 50% of its maximal effect and IC50 210 

represents the concentration required for 50% inhibition of the effect induced by DHT 3.1610-211 

10 M. Statistical analysis are performed on logEC50 and logIC50 values using Kruskal-Wallis 212 

test and Dunn’s multiple comparison test (p < 0.05) for the analysis of data from phases I and 213 

II, and t-test (Mann-Whitney) (p < 0.05) for the comparison of phase I with phase II. 214 

To assess the WLR of the method, the CV between the three runs of a given laboratory was 215 

determined by using the formula: CV = (Standard Deviation/Mean logEC50 or logIC50)  100. 216 
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To assess the BLR of the method, we calculated the CV between the three laboratories using 217 

the formula: CV = (Standard Deviation/Mean logEC50 or logIC50)  100. 218 

3. Results and discussion 219 

3.1. Phase I: Transferability of the UALH-hAR method 220 

The phase I aimed at assessing the correct transfer of the cell line by comparing the 221 

quantification of the AR bioactivity of three reference chemicals, i.e., DHT, hydroxyflutamide 222 

and dexamethasone, chosen as reference AR agonist, AR antagonists and GR agonist, 223 

respectively. 224 

For all three laboratories, the data produced were considered as valid. Z-factors were calculated 225 

in each laboratory and ranged from 0.7 to 0.9, meaning that the risk of overlap between negative 226 

and positive controls was negligible, as a good Z-factor should be comprised between 0.5 and 227 

1. For all runs, the induction factor of the positive control was always more than 5 times the 228 

solvent control (from 5.6- to 31-times over all data), and the mortality never exceeded 20% 229 

(data not shown). Based on this observation, we defined a maximal basal luciferase activity of 230 

20% and a minimal cell viability of 80% as validity criteria for the phase 2. 231 

For all three laboratories, DHT increased luciferase activity in a concentration-dependent 232 

manner in the three independent runs as expected, with a mean logEC50 of -9.8 (EC50 of 1.6 x 233 

10-10 M) (Fig. 2). Intra-laboratory CVs of logEC50 ranged from 0.4 to 0.5% (Table 2), indicating 234 

good WLR. Regarding interlaboratory comparison, logEC50 for DHT were in the same order of 235 

magnitude with a CV of 1.7%, suggesting good BLR, although there was a significant 236 

difference between laboratory A and laboratory C logEC50 (Fig. 3). 237 

In the three independent runs in all participating laboratories, HF did not induce any luciferase 238 

activity in agonist runs (data not shown) but decreased it in antagonist runs in a concentration-239 

dependent manner, as expected (Fig. 2). The mean logIC50 for HF was -7.2 (IC50 of 6.3 x 10-8 240 
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M). CVs in each laboratory ranged from 0.3% to 2.4%, suggesting good WLR (Table 2). 241 

Interlaboratory CV was 2.0%, suggesting good BLR. 242 

DEX did not display any AR-agonistic activity in any laboratory (data not shown). This lack of 243 

agonistic effect of DEX in UALH-hAR cells confirmed the non-detectable expression of 244 

functional GR and/or the inability of GR to induce luciferase expression from the 245 

6xARE(RAD9)Luc plasmids, unlike other established models (Delfosse et al., 2012; Térouanne 246 

et al., 2000; Wilson et al., 2002). However, in antagonist mode, DEX inhibited luciferase 247 

activity in a concentration-dependent manner in the three laboratories (Fig. 2). The mean 248 

logIC50 was -5.6 (IC50 of 2.5 x 10-6 M) and CVs ranged from 1.0% to 3.4%, suggesting 249 

acceptable WLR (Table 2). The mean logIC50s for each laboratory were very close, with a 1.4% 250 

CV, suggesting good BLR. The DEX antagonist activity observed in our study was already 251 

reported in literature in AR-CALUX, AR-EcoScreen and the mutant AR-EcoScreen GR-KO 252 

cell lines (Araki et al., 2005; Sonneveld et al., 2005; Zwart et al., 2017). The fact that the UALH-253 

hAR line expresses GR at very low level suggests that this effect is not due to transcriptional 254 

interference with GR but rather to a direct antagonistic action of DEX on AR. Moreover, the 255 

IC50 of DEX on UALH-hAR was relatively high – in the µM range – while its ability to bind 256 

to and activate human GR is reported in the nanomolar range (Molina-Molina et al., 2006). In 257 

addition, binding experiments on isolated receptors have shown that DEX can bind AR at high 258 

concentrations (IC50 of 1.9 x 10-4 M) (Féau et al., 2009). Further binding experiments could be 259 

conducted on UALH-hAR cells using radiolabelled R1881 to assess the binding of DEX to AR 260 

in these cells. 261 

For all three substances, the CVs of the other Hill parameters also reflect good WLR and BLR 262 

(Supplementary Data S2). 263 

Altogether, the three laboratories obtained perfectly concordant results from a qualitative point 264 

of view for the three substances tested. From a quantitative point of view, the logEC50 and 265 
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logIC50 values in the independent runs are close within and between each laboratory which 266 

indicates good WLR and BLR (Fig. 3). It is worth noting that the slight differences in the 267 

protocols between the three laboratories did not affect the comparability of the data. Main 268 

differences were related to the culture medium used (DMEM vs DMEM-F-12) and the 269 

preparation of serial dilution of chemicals (DMSO or culture medium) (Supplementary Data 270 

S1). These results show the good transferability of the method as well as its robustness when 271 

testing the three reference chemicals. 272 

3.2. Phase II: Assessing (anti)androgenic activity of ten substances in a blind study 273 

The robustness of the method was then assessed in a blind study using ten chemicals presenting 274 

different activity profiles. From a qualitative point of view, the activity profiles were perfectly 275 

consistent between the three laboratories and were all as expected for the ten substances tested 276 

(Fig. 4). 277 

For DHT, HF and DEX, comparing logEC50s and logIC50s from phase I and phase II showed no 278 

statistical difference, which highlights a good robustness of the assay in quantifying the activity 279 

of these chemicals in a blinded manner within each participating laboratory. 280 

Overall, logEC50 and logIC50 for active chemical substances were in the same range in the three 281 

laboratories, despite some minor but statistically significant differences between laboratories in 282 

the logEC50 or logIC50 of some chemicals (Fig. 5). Nevertheless, our results indicated good 283 

WLR with CVs ranging from 0.1% to 3.4%, and good BLR with CVs ranging from 1.0% to 284 

4.0% (Table 2). The CVs of the other Hill parameters also reflect good WLR and BLR 285 

(Supplementary Data S3). 286 

In both agonist and antagonist runs, the phase II of the study revealed good WLR and BLR, 287 

thus indicating a good robustness of the assay. 288 
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3.3. Performance of the assay 289 

The activity profiles for the ten chemicals on UALH-hAR cell line were overall very 290 

comparable with the ones described in the OECD Guideline 458 that uses AR-EcoScreen, AR-291 

CALUX and 22Rv1/MMTV_GR-KO (OECD, 2020), as well as with other similar cell models 292 

(Table 3). This highlights the very good sensitivity of our method (i.e., the proportion of active 293 

substances that are correctly classified by the test), as activity profiles obtained for DHT, 294 

R1881, testosterone, MPA, HF, BPA, M2V and BPC in UALH-hAR cells proved similar to 295 

those described in the literature. For DEX, the lack of GR interference in our assay revealed a 296 

direct antagonistic activity, as also reported in AR-CALUX and AR-EcoSreen-GR-KO assays. 297 

Regarding MEHP, the lack of AR activity was previously described in similar in vitro models 298 

(Stroheker et al., 2005; Takeuchi et al., 2005), although this compound alone is insufficient to 299 

conclude about specificity (the proportion of all inactive substances that are correctly classified 300 

by the test). The antagonist effect of vinclozolin M2 is consistent with previous report in PALM 301 

cells (Molina-Molina et al., 2006) and MDA-kb2 cells (Wilson et al., 2002). In both studies, a 302 

weak agonist activity of this chemical was reported. Such a weak agonistic activity was also 303 

observed in our study, with a slight increase of luciferase activity by 5% at 10-5 M (data not 304 

shown). However, we considered this chemical to be a full antagonist as this result does not 305 

meet the criteria for agonism, i.e., increase of luciferase activity above 10% for at least two 306 

consecutive concentrations. 307 

Beyond the qualitative aspect of our results, the EC50 and IC50 values derived from the modelled 308 

concentration-responses curves were within the ranges of acceptable values for OECD 309 

Guideline 458 for reference compounds and similar to the values found in literature (Table 3).  310 

Regarding the WLR and BLR, the CVs of logEC50 and logIC50 in our study were comparable 311 

to other published interlaboratory studies (Milcamps et al., 2021; Park et al., 2021). 312 
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Overall, our study suggests that the method we developed for the evaluation of AR 313 

(ant)agonistic activity of chemicals is well suited to the OECD criteria. It would be interesting 314 

to extend the screening to a higher number of chemical substances, notably regarding non active 315 

ones, to better assess the accuracy and specificity of the UALH-hAR cell line in a regulatory 316 

context.  317 

Furthermore, a main advantage of the current assay relies on the possibility to assess 318 

nonspecific effect on luciferase by using the parental UALH cell line (i.e. which expresses 319 

luciferase but no functional AR) as a control for nonspecific effect on luciferase activity (Dellal 320 

et al. 2020). Such a control assay is most often missing in in vitro screens based on luminescent 321 

cell lines. Notably, it is of high relevance in the antagonist assay to distinguish between true 322 

AR antagonists and chemicals that negatively interfere with luciferase activity in an AR-323 

independent manner, e.g. through direct interference with luciferase enzyme or due to early 324 

cytotoxic events. The occurrence of such nonspecific modulation of luciferase activity can also 325 

be critical when assessing environmental complex mixtures such as environmental waters, 326 

which anti-androgenicity is frequently detected but often at relatively high sample 327 

concentrations, close to cytotoxic ones. The use of such cell control without receptor has proven 328 

useful as quality control in environmental bioanalysis, as previously demonstrated by using the 329 

UALH/UALH-hAR (Neale et al. 2020) or HG5LN/HG5LN-hPXR (Creusot et al. 2010) cell 330 

lines. 331 

4. Conclusion 332 

This interlaboratory study demonstrated the validity of the UALH-hAR-based method for the 333 

specific detection of chemicals exerting either androgenic or antiandrogenic activity. The first 334 

phase of the study demonstrated the transferability of the cell line and of the standard operating 335 

protocol to different laboratories, which appear robust as some adaptations to specific lab 336 

conditions (e.g., culture medium, preparation of test chemicals) did not influence the outcome 337 
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of the assay, both qualitatively and quantitatively. In addition, the tests carried out under blind 338 

test conditions during the second phase produced reliable and accurate results both qualitatively 339 

and quantitatively with satisfying within- and between-laboratory reproducibility of the data, 340 

showing the robustness of the assay as a screening method. Comparison of the results with the 341 

OECD Guideline 458 and literature data showed the performance of the assay and its relevance 342 

and reliability as compared to validated AR-cell lines. Altogether, the UALH-hAR-based assay 343 

represents a promising test method for the hazard assessment of chemicals potentially acting on 344 

AR-signalling pathway and can be further considered for regulatory validation and international 345 

acceptance. 346 
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Figures and tables 496 

 497 

 498 

 499 

Figure 1. The three plasmid constructs transfected into U2OS to create the UALH-hAR cell 500 

line. SV40: simian virus 40; prom: promoter; hAR: human androgen receptor; PGK: 501 

phosphoglycerate kinase; luc: luciferase; ARE: androgen response elements from the RAD9 502 

gene promoter; puro(R): puromycin resistance gene; hygro(R): hygromycin resistance gene; 503 

neo(R): neomycin resistance gene; CMV: human cytomegalovirus.  504 
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 505 

Figure 2. Phase I transactivation of human nuclear androgen receptor (hAR) by reference 506 

ligands in UALH-hAR cells in the three laboratories. Data are means of n = 3 independent 507 

experiments per laboratory; error bars represent standard deviation. Results are expressed as 508 

the percentage of the maximum luciferase activity induced by 10-7 M DHT. Antagonist assays 509 

are done in coexposure with 3.16 x 10-10 M DHT. Between experiment intra-laboratory 510 

variability is illustrated in supplementary section (Figure S1).  511 
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 512 

 513 

Figure 3. Phase I comparison of logEC50 and logIC50 between laboratories for the testing 514 

in triplicates of dihydrotestosterone (DHT), hydroxyflutamide (HF) and dexamethasone (DEX). 515 

Bars represent means of 3 independent determinations. Lab: laboratory; *: p < 0.05 using 516 

Kruskal-Wallis test and Dunn’s multiple comparison test.  517 
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 518 

Figure 4. Phase II transactivation of human nuclear androgen receptor (hAR) by agonistic 519 

and antagonistic ligands in UALH-hAR cells in the three laboratories. Data are means of n = 520 

3 independent experiments per laboratory; error bars represent standard deviation. Results are 521 

expressed as the percentage of the maximum luciferase activity induced by 10-7 M DHT. 522 

Between experiment intra-laboratory variability is illustrated in supplementary section (Figures 523 

S2 and S3).  524 
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 525 

 526 

 527 

Figure 5. Phase II comparison of logEC50 and logIC50 between laboratories for the blind 528 

testing of dihydrotestosterone (DHT), hydroxyflutamide (HF), dexamethasone (DEX), 529 

methyltrienolone (R1881), testosterone (T), medroxyprogesterone acetate (MPA), vinclozolin 530 

M2 (M2V), bisphenol A (BPA), bisphenol C (BPC). Bars represent means of three independent 531 

determinations. Lab: laboratory; *: p < 0.05 using Kruskal-Wallis test and Dunn’s multiple 532 

comparison test.  533 
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Table 1. Test chemicals evaluated in the interlaboratory study. 534 

Test chemical Abbreviation CAS Chemical structure 

Molecular 

weight 

(g/mol) 

Purity 

Dihydrotestosterone DHT 521-18-6 

 

290.44 ≥97.5% 

Hydroxyflutamide HF 52806-53-8 

 

292.21 ≥98% 

Dexamethasone DEX 50-02-2 

 

392.46 ≥98% 

Methyltrienolone R1881 965-93-5 

 

284.39 ≥98% 

Testosterone T 58-22-0 

 

288.42 ≥98% 

Medroxyprogesterone 

acetate 
MPA 71-58-9 

 

386.52 ≥97% 

Bisphenol A BPA 80-05-7 

 

228.29 ≥99% 

Bisphenol C BPC 14868-03-2 

 

281.13 ≥98% 

Vinclozolin M2 M2V 83792-61-4 

 

260.12 ≥98% 

Mono(2-

ethylhexyl)phthalate 
MEHP 4376-20-9 

 

277.34 ≥97% 

  535 
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Table 2. Activity profiles of the 10 tested chemical substances in the three laboratories in 536 

Phase I and Phase II, represented as mean logEC50 (agonist assays) and mean logIC50 537 

(antagonist assays). 538 

     Agonist assays (logEC50) Antagonist assays (logIC50) 

 
    Lab. A Lab. B Lab C. Interlab. Lab. A Lab. B Lab C. Interlab. 

PH
A

SE
 I 

Dihydrotestosterone 

mean -9.6 -9.8 -10.0 -9.8 

ne ne ne 

  

sd 0.04 0.05 0.05 0.17   

CV 0.4% 0.5% 0.5% 1.7%   

Hydroxyflutamide 

mean 

ne ne ne 

  -7.2 -7.3 -7.1 -7.2 

sd   0.02 0.18 0.15 0.15 

CV   0.3% 2.4% 2.2% 2.0% 

Dexamethasone 

mean 

ne ne ne 

  -5.6 -5.7 -5.6 -5.6 

sd   0.19 0.06 0.06 0.08 

CV   3.4% 1.0% 1.1% 1.4% 

PH
A

SE
 II

 

Dihydrotestosterone 

mean -9.8 -9.4 -9.9 -9.7 

ne ne ne 

  

sd 0.11 0.14 0.05 0.25   

CV 1.2% 1.5% 0.5% 2.6%   

Hydroxyflutamide 

mean 

ne ne ne 

  -7.3 -7.2 -7.1 -7.2 

sd   0.12 0.06 0.14 0.10 

CV   1.6% 0.9% 2.0% 1.4% 

Dexamethasone 

mean 

ne ne ne 

  -5.7 -5.8 -5.4 -5.6 

sd   0.19 0.19 0.03 0.19 

CV   3.4% 3.3% 0.5% 3.4% 

Methyltrienolone 

mean -9.8 -9.7 -10.0 -9.8 

ne ne ne 

  

sd 0.07 0.05 0.13 0.13   

CV 0.8% 0.5% 1.3% 1.4%   

Testosterone 

mean -9.2 -9.0 -9.4 -9.2 

ne ne ne 

  

sd 0.09 0.05 0.03 0.18   

CV 1.0% 0.6% 0.3% 1.9%   

Medroxyprogesterone 
acetate 

mean -8.6 -8.2 -8.8 -8.5 

ne ne ne 

  

sd 0.08 0.02 0.09 0.34   

CV 0.9% 0.2% 1.0% 4.0%   

MEHP 

mean 

ne ne ne 

  

ne ne ne 

  

sd     

CV     

Vinclozolin M2 

mean 

ne ne ne 

  -7.0 -6.9 -6.7 -6.9 

sd   0.13 0.07 0.08 0.17 

CV   1.8% 1.0% 1.2% 2.5% 

Bisphenol A 

mean 

ne ne ne 

  -5.6 -5.6 -5.5 -5.6 

sd   0.08 0.11 0.07 0.06 

CV   1.3% 2.1% 1.3% 1.0% 

Bisphenol C 

mean 

ne ne ne 

  -6.9 -6.8 -6.5 -6.7 

sd   0.03 0.16 0.00 0.18 

CV   0.4% 2.3% 0.1% 2.7% 

Lab.: laboratory; Interlab.: interlaboratory comparison; ne: no effect; sd: standard deviation; 539 

CV: coefficient of variation.540 
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Table 3. Comparison of log effective concentrations logEC50 and log inhibitory concentrations logIC50 (log[M]) in UALH-hAR cells with 541 
values reported in other in vitro reporter cell models. Bibliographic references are indicated as superscripts. *AR-EcoScreen GR-KO; 542 
**22Rv1/MMTV 543 

    

UALH-
hAR 

(present 
study) 

AR-EcoScreen AR-CALUX 22Rv1/MMTV_GR-KO PALM MDA-kb2 
HELN-

AR(ERα-DBD) 

MDA-
MB453-

pMMTVneo-
Luc 

CHO-K1 
pZeoSV2AR-
pIND-ARE-

pCMV-Gal  
 

A
go

n
is

ts
 

 

Dihydrotestosterone -9.7 -11.03 ~ -9.00 (OECD, 2020) -9.98 ~ -9.42 (OECD, 2020) -9.73 ~ -8.95 (OECD, 2020) -9.5 (Térouanne et al., 2000) 
Agonist (Wilson et al., 2002) 

   
-9.8 (Aït-Aïssa et al., 2010) 

Methyltrienolone -9.8 -9.6 (Araki et al., 2005) -9.9 (Sonneveld et al., 2005) -9.97 (Sun et al., 2016)** 
-10.3 (Térouanne et al., 2000) 

    
-10.0 (Molina-Molina et al., 2006) 

Testosterone -9.2 -9.46 ~ -8.96 (OECD, 2020) -9.25 ~ -8.8 (OECD, 2020) -9.67 ~ -8.66 (OECD, 2020) -7.7 (Térouanne et al., 2000) -9.4 (Aït-Aïssa et al., 2010)    

Medroxyprogesterone 
acetate 

-8.5 -8.77 ~ -8.37 (OECD, 2020) -9.23 ~ -7.75 (OECD, 2020) -7.64 ~ -6.01 (OECD, 2020)  Agonist (Wilson et al., 2002)    

No 
effect 

MEHP 
no 

effect 
      

No anti-AR 
effect (Stroheker 

et al., 2005) 

No (anti-)AR 
effect (Takeuchi 

et al., 2005) 

A
n

ta
go

n
is

ts
 

Hydroxyflutamide -7.2 -7.80 ~ -6.17 (OECD, 2020) -7.80 ~ -7.54 (OECD, 2020) -7.79 ~ -7.11 (OECD, 2020) 
Antagonist (Térouanne et al., 

2000) 
Antagonist (Wilson et al., 

2002) 
   

Dexamethasone -5.6 

Agonist -8.8 (Zwart et al., 2017) 

Agonist -8.6 (Araki et al., 2005) 

Antagonist -5.6 (Zwart et al., 2017)* 

Antagonist -4.4 (Araki et al., 2005) 

Antagonist (Sonneveld et al., 2005)  Agonist (Térouanne et al., 2000) 
Agonist (Wilson et al., 2002) 

Agonist -8.4 (Aït-Aïssa et al., 

2010) 

   

Vinclozolin M2 -6.9    

Agonist -4.1 (Molina-Molina et 

al., 2006) 

Antagonist -6.8 (Molina-

Molina et al., 2006) 

Agonist/antagonist 
(Wilson et al., 2002) 

   

Bisphenol A -5.6 -7.05 ~ -4.29 (OECD, 2020) -5.93 ~ -5.81 (OECD, 2020) -5.68 ~ -5.29 (OECD, 2020) 

Agonist -4.3 (Molina-Molina et 

al., 2013) 

Antagonist -6.0 (Molina-

Molina et al., 2013) 

 -5.6 (Delfosse et 

al., 2012) 
  

Bisphenol C -6.7      -6.7 (Delfosse et 

al., 2012) 
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Supplementary Table S1. Protocol specificities in the three laboratories. 570 

    Laboratory A Laboratory B Laboratory C 
 

Culture medium 

- DMEM with phenol red (Gibco 21885-025) - DMEM/F-12 with phenol red (Gibco 31331-028) - DMEM/F-12 with phenol red (Gibco 31331-028)  
- 5% FBS  (Sigma F7524) - 5% FBS  (Eurobio CVFSVF00) - 5% FBS  (Eurobio CVFSVF00)  
- 1% v/v penicillin/streptomycin (Gibco 15070-63 5000 
U/mL) 

- 1% v/v penicillin/streptomycin (Gibco 15070-63 5000 
U/mL) 

- 1% v/v penicillin/streptomycin (Gibco 15070-63 5000 
U/mL)  

- 1% v/v nonessential amino acids (Gibco 11140050)      
- Puromycin 0.25-0.5 μg/mL (Sigma P8833) - Puromycin 0.25-0.5 μg/mL (Sigma P8833) - Puromycin 0.25-0.5 μg/mL (Sigma P8833)  
-  G418 0.5-1 mg/mL (Invivogen ant-gn 100 mg/mL) -  G418 0.5-1 mg/mL (Invivogen ant-gn 100 mg/mL) -  G418 0.5-1 mg/mL (Invivogen ant-gn 100 mg/mL)  
- Hygromycin 0.125-0.25 mg/mL - Hygromycin 0.125-0.25 mg/mL - Hygromycin 0.125-0.25 mg/mL  

Test medium 

- DMEM without phenol red (Gibco 11880) - DMEM/F-12 without phenol red (Gibco 21041-025) - DMEM/F-12 without phenol red (Dutscher P04-41650)  
- 2% DCC-treated FBS - 2% DCC-treated FBS - 2% DCC-treated FBS  
- 1% v/v penicillin/streptomycin (Gibco 15070-63 5000 
U/mL) 

- 1% v/v penicillin/streptomycin (Gibco 15070-63 5000 
U/mL) 

- 1% v/v penicillin/streptomycin (Gibco 15070-63 5000 
U/mL)  

- 1% v/v L-Glutamine - 1% v/v L-Glutamine - 1% v/v L-Glutamine  
- 1% v/v nonessential amino acids (Gibco 11140050)      

Luminescence 
medium 

- Test medium with 0.5 mM D-luciferin Firefly in Tris 
buffer pH 8.0 (Caliper) 

- Test medium with 0.3 mM D-luciferin Firefly in Tris buffer 
pH 8.0 (Perkin Elmer 122799) 

- Test medium with 0.3 mM D-luciferin Firefly in Tris 
buffer pH 8.0 (Roth)  

Plates reference Greiner bio-one 655098 Greiner bio-one 655083-905 Greiner bio-one 655098  
Luminometer Synergy H4 Wallax MicroBeta TriLux Victor3 Perkin Elmer  

Tr
an

sa
ct

iv
at

io
n

 a
ss

ay
 

Cell seeding 
Cells are seeded in 96-wells white opaque culture plates 
at a density of 50,000 cells per well in 100 µL test 
medium. 

Cells are seeded in 96-wells white opaque culture plates at a 
density of 50,000 cells per well in 150 µL test medium. 

Cells are seeded in 96-wells white opaque culture plates 
at a density of 50,000 cells per well in 100 µL test 
medium.  

Chemicals 
preparation 

Serial dilutions of stock solutions are prepared at 1000X 
concentrations in DMSO and then diluted in test 
medium at 3X concentration. 

1000X stock solution in DMSO is diluted at 4X in test 
medium; then, a range of 4X concentrations is done by serial 
dilutions in DMSO-containing test medium 

Serial dilutions of stock solutions are prepared at 1000X 
concentrations in DMSO and then diluted in test 
medium at 3X concentration.  

Exposure 

50 µL of the 3X diluted compounds are distributed to the 
wells containing 100 µL test medium for a final 
concentration of 1X, and for a final DMSO content set at 
0.1% v/v for agonist assays and 0.2% v/v for antagonist 
assays. 

Culture medium in the plates is replaced by 150 µL test 
medium then 50 µL of the 4X concentrated compounds are 
added, for a final concentration of 1X, and for a final DMSO 
content set at 0.1% v/v for agonist assays and 0.2% v/v for 
antagonist assays. 

50 µL of the 3X diluted compounds are distributed to the 
wells containing 100 µL test medium for a final 
concentration of 1X, and for a final DMSO content set at 
0.1% v/v for agonist assays and 0.2% v/v for antagonist 
assays.  

Automation 

Preparation of chemical dilutions in DMSO and their 
transfer into the microplates containing the cells are 
performed using a liquid handling workstation (Evo75, 
TECAN) 

Cell-seeding was automated (Multidrop, ThermoFisher), and 
preparation of chemical dilutions and their transfer into the 
microplates containing the cells are performed using a liquid 
handling workstation (Biomek 3000, Beckman). 

All the steps are performed manually. 
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Supplementary Table S2. Phase I intra- and interlaboratory comparisons of the effects of dihydrotestosterone, hydroxyflutamide and 572 

dexamethasone based on the Hill model parameters: Hill slope, logEC10, logEC50 and maximum or logIC30 and logIC50. 573 
 

 Dihydrotestosterone  Hydroxyflutamide Dexamethasone 

Hill slope logEC10 logEC50 Max (%) Hill slope logIC30 logIC50 Hill slope logIC30 logIC50 

Laboratory A 

Run 1 1.7 -10.2 -9.6 99.1 -0.9 -7.6 -7.2 -0.9 -6.2 -5.8 

Run 2 2.0 -10.1 -9.6 97.2 -1.1 -7.6 -7.2 -1.0 -5.7 -5.4 

Run 3 2.5 -10.0 -9.7 97.7 -1.3 -7.5 -7.2 -0.9 -6.0 -5.6 

mean 2.1 -10.1 -9.6 98.0 -1.1 -7.6 -7.2 -0.9 -6.0 -5.6 

sd 0.37 0.08 0.04 1.03 0.17 0.08 0.02 0.05 0.21 0.19 

CV 17.9% 0.8% 0.4% 1.1% 15.7% 1.0% 0.3% 5.7% 3.6% 3.4% 

Laboratory B 

Run 1 1.7 -10.4 -9.8 101.4 -1.1 -7.5 -7.2 -0.8 -6.1 -5.7 

Run 2 1.4 -10.5 -9.8 99.6 -0.8 -8.0 -7.5 -0.9 -6.1 -5.7 

Run 3 1.4 -10.4 -9.7 98.9 -1.0 -7.7 -7.3 -0.8 -6.2 -5.8 

mean 1.5 -10.4 -9.8 99.9 -1.0 -7.7 -7.3 -0.8 -6.1 -5.7 

sd 0.19 0.06 0.05 1.31 0.14 0.23 0.18 0.04 0.08 0.06 

CV 12.8% 0.6% 0.5% 1.3% 14.1% 3.0% 2.4% 4.9% 1.2% 1.0% 

Laboratory C 

Run 1 1.7 -10.4 -10.0 98.8 -0.9 -7.3 -6.9 -0.8 -6.0 -5.5 

Run 2 1.9 -10.5 -9.9 103.4 -1.1 -7.4 -7.1 -0.8 -6.0 -5.6 

Run 3 2.4 -10.4 -10.0 99.5 -0.8 -7.7 -7.2 -0.8 -6.0 -5.6 

mean 2.0 -10.4 -10.0 100.6 -0.9 -7.5 -7.1 -0.8 -6.0 -5.6 

sd 0.35 0.06 0.05 2.47 0.15 0.18 0.15 0.04 0.04 0.06 

CV 17.6% 0.6% 0.5% 2.5% 16.3% 2.5% 2.2% 4.8% 0.6% 1.1% 

Interlaboratory 

mean 

mean 1.9 -10.3 -9.8 99.5 -1.0 -7.6 -7.2 -0.9 -6.0 -5.6 

sd 0.30 0.19 0.17 1.36 0.11 0.13 0.15 0.08 0.09 0.08 

CV 16.2% 1.8% 1.7% 1.4% 11.1% 1.7% 2.0% 9.0% 1.5% 1.4% 

Sd: standard deviation; CV: coefficient of variation; Max: maximum luminescence reached by the tested compound (% of max induced by DHT 574 

10-7 M).  575 
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Supplementary Table S3. Phase II intra- and interlaboratory comparisons of the effects of dihydrotestosterone, hydroxyflutamide and 576 

dexamethasone based on the Hill model parameters: Hill slope, logEC10, logEC50 and maximum or logIC30 and logIC50. 577 
 

 Dihydrotestosterone  Hydroxyflutamide Dexamethasone 

Hill slope logEC10 logEC50 Max (%) Hill slope logIC30 logIC50 Hill slope logIC30 logIC50 

Laboratory A 

Run 1 1.6 -10.3 -9.7 111.5 -1.3 -7.5 -7.2 -1.6 -5.8 -5.6 

Run 2 2.1 -10.4 -9.9 107.4 -1.3 -7.7 -7.4 -1.3 -6.0 -5.7 

Run 3 1.4 -10.4 -9.7 104.6 -1.1 -7.6 -7.3 -0.9 -6.4 -5.9 

mean 1.7 -10.4 -9.8 107.8 -1.3 -7.6 -7.3 -1.2 -6.0 -5.7 

sd 0.39 0.07 0.11 3.47 0.14 0.11 0.12 0.35 0.29 0.19 

CV 22.7% 0.6% 1.2% 3.2% 10.8% 1.5% 1.6% 28.5% 4.8% 3.4% 

Laboratory B 

Run 1 1.2 -10.3 -9.5 99.1 -1.1 -7.4 -7.1 -0.7 -6.4 -5.9 

Run 2 1.1 -10.1 -9.3 101.1 -1.0 -7.5 -7.2 -0.7 -6.4 -5.9 

Run 3 1.1 -10.4 -9.5 101.8 -1.0 -7.6 -7.2 -1.3 -5.9 -5.6 

mean 1.2 -10.2 -9.4 100.7 -1.1 -7.5 -7.2 -0.9 -6.2 -5.8 

sd 0.06 0.14 0.14 1.38 0.05 0.08 0.06 0.34 0.34 0.19 

CV 5.0% 1.4% 1.5% 1.4% 4.7% 1.0% 0.9% 38.9% 5.4% 3.3% 

Laboratory C 

Run 1 2.3 -10.4 -10.0 99.2 -0.9 -7.4 -6.9 -1.0 -5.8 -5.5 

Run 2 1.7 -10.4 -9.9 103.1 -1.0 -7.5 -7.1 -1.0 -5.8 -5.4 

Run 3 1.7 -10.4 -9.9 118.6 -1.0 -7.6 -7.2 -0.9 -5.8 -5.4 

mean 1.9 -10.4 -9.9 107.0 -0.9 -7.5 -7.1 -1.0 -5.8 -5.4 

sd 0.36 0.04 0.05 10.25 0.05 0.12 0.14 0.04 0.03 0.03 

CV 18.7% 0.3% 0.5% 9.6% 5.3% 1.7% 2.0% 3.7% 0.6% 0.5% 

Interlaboratory 

mean 

mean 1.6 -10.3 -9.7 105.2 -1.1 -7.5 -7.2 -1.0 -6.0 -5.6 

sd 0.38 0.08 0.25 3.91 0.16 0.05 0.10 0.19 0.21 0.19 

CV 24.3% 0.8% 2.6% 3.7% 14.8% 0.7% 1.4% 18.8% 3.5% 3.4% 

Sd: standard deviation; CV: coefficient of variation; Max: maximum luminescence reached by the tested compound (% of max induced by DHT 578 

10-7 M).  579 
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Supplementary Table S4. Phase II intra- and interlaboratory comparisons of the effects of methyltrienolone, testosterone and 580 

medroxyprogesterone acetate based on the Hill model parameters: Hill slope, logEC10, logEC50 and maximum. 581 
 

 Methyltrienolone Testosterone Medroxyprogesterone acetate 

Hill slope logEC10 logEC50 Max (%) Hill slope logEC10 logEC50 Max (%) Hill slope logEC10 logEC50 Max (%) 

Laboratory A 

Run 1 1.5 -10.4 -9.8 98.6 1.5 -9.8 -9.2 87.3 1.9 -9.1 -8.6 46.6 

Run 2 1.5 -10.3 -9.7 94.4 1.4 -10.0 -9.3 84.1 1.9 -9.1 -8.6 42.2 

Run 3 1.3 -10.5 -9.8 91.4 1.6 -9.7 -9.1 91.2 1.4 -9.2 -8.5 51.8 

mean 1.5 -10.4 -9.8 94.8 1.5 -9.9 -9.2 87.5 1.7 -9.2 -8.6 46.9 

sd 0.14 0.13 0.07 3.61 0.10 0.13 0.09 3.55 0.33 0.04 0.08 4.80 

CV 9.5% 1.2% 0.8% 3.8% 6.7% 1.4% 1.0% 4.1% 18.8% 0.5% 0.9% 10.2% 

Laboratory B 

Run 1 1.0 -10.7 -9.8 101.3 1.2 -9.9 -9.1 95.5 1.9 -8.7 -8.2 58.9 

Run 2 1.2 -10.4 -9.7 98.1 1.1 -9.9 -9.0 96.6 1.3 -8.9 -8.1 62.2 

Run 3 1.4 -10.4 -9.7 102.3 1.0 -10.0 -9.0 97.8 1.3 -8.9 -8.2 62.1 

mean 1.2 -10.5 -9.7 100.6 1.1 -9.9 -9.0 96.6 1.5 -8.8 -8.2 61.1 

sd 0.18 0.14 0.05 2.21 0.09 0.03 0.05 1.13 0.34 0.14 0.02 1.91 

CV 14.8% 1.4% 0.5% 2.2% 8.1% 0.3% 0.6% 1.2% 22.6% 1.6% 0.2% 3.1% 

Laboratory C 

Run 1 2.0 -10.4 -9.9 93.9 1.4 -10.0 -9.4 104.9 1.3 -9.5 -8.7 58.9 

Run 2 1.6 -10.7 -10.1 103.0 1.2 -10.2 -9.4 96.4 1.1 -9.8 -8.9 52.2 

Run 3 1.6 -10.5 -9.9 108.1 1.1 -10.3 -9.4 103.3 1.5 -9.5 -8.8 54.7 

mean 1.8 -10.5 -10.0 101.7 1.3 -10.2 -9.4 101.5 1.3 -9.6 -8.8 55.3 

sd 0.22 0.16 0.13 7.17 0.16 0.11 0.03 4.54 0.20 0.17 0.09 3.39 

CV 12.6% 1.5% 1.3% 7.1% 12.3% 1.0% 0.3% 4.5% 14.9% 1.8% 1.0% 6.1% 

Interlaboratory 

mean 

mean 1.5 -10.5 -9.8 99.0 1.3 -10.0 -9.2 95.2 1.5 -9.2 -8.5 54.4 

sd 0.27 0.06 0.13 3.68 0.21 0.15 0.18 7.10 0.20 0.37 0.34 7.14 

CV 18.0% 0.6% 1.4% 3.7% 16.2% 1.5% 1.9% 7.5% 13.4% 4.1% 4.0% 13.1% 

Sd: standard deviation; CV: coefficient of variation; Max: maximum luminescence reached by the tested compound (% of max induced by DHT 582 

10-7 M).  583 
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Supplementary Table S5. Phase II intra- and interlaboratory comparisons of the effects of vinclozolin M2, bisphenol A and bisphenol C 584 

based on the Hill model parameters: Hill slope, logIC30 and logIC50. 585 
 

 Vinclozolin M2 Bisphenol A Bisphenol C 

Hill slope logIC30 logIC50 Hill slope logIC30 logIC50 Hill slope logIC30 logIC50 

Laboratory A 

Run 1 -1.0 -7.4 -7.0 -1.0 -5.9 -5.6 -1.8 -7.0 -6.8 

Run 2 -1.2 -7.3 -7.0 -1.4 -6.0 -5.7 -1.3 -7.1 -6.9 

Run 3 -1.0 -7.6 -7.2 -0.8 -6.1 -5.6 -1.4 -7.1 -6.9 

mean -1.1 -7.4 -7.0 -1.1 -6.0 -5.6 -1.5 -7.1 -6.9 

sd 0.15 0.16 0.13 0.32 0.07 0.08 0.27 0.07 0.03 

CV 13.9% 2.2% 1.8% 29.6% 1.2% 1.3% 17.5% 1.0% 0.4% 

Laboratory B 

Run 1 -1.0 -7.3 -7.0 -1.0 -6.0 -5.6 -0.9 -7.3 -6.9 

Run 2 -1.1 -7.1 -6.8 -0.9 -6.1 -5.6 -0.8 -7.3 -6.8 

Run 3 -1.3 -7.1 -6.9 -1.0 -5.8 -5.4 -0.9 -7.0 -6.6 

mean -1.1 -7.2 -6.9 -0.9 -5.9 -5.6 -0.9 -7.2 -6.8 

sd 0.20 0.12 0.07 0.07 0.13 0.11 0.04 0.16 0.16 

CV 17.4% 1.6% 1.0% 7.1% 2.3% 2.1% 4.4% 2.3% 2.3% 

Laboratory C 

Run 1 -1.0 -7.1 -6.7 -0.8 -6.1 -5.6 -1.0 -6.9 -6.5 

Run 2 -0.9 -7.2 -6.8 -0.8 -5.9 -5.5 -1.0 -6.9 -6.5 

Run 3 -1.1 -7.0 -6.6 -0.9 -5.9 -5.5 -1.5 -6.8 -6.5 

mean -1.0 -7.1 -6.7 -0.8 -6.0 -5.5 -1.2 -6.8 -6.5 

sd 0.06 0.10 0.08 0.07 0.10 0.07 0.28 0.06 0.005 

CV 6.4% 1.4% 1.2% 8.5% 1.6% 1.3% 23.8% 0.9% 0.1% 

Interlaboratory 

mean 

mean -1.1 -7.2 -6.9 -0.9 -6.0 -5.6 -1.2 -7.0 -6.7 

sd 0.07 0.16 0.17 0.13 0.02 0.06 0.34 0.18 0.18 

CV 6.4% 2.2% 2.5% 13.4% 0.4% 1.0% 28.5% 2.6% 2.7% 

Sd: standard deviation; CV: coefficient of variation. 586 

 587 
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 588 

Figure S1. Phase I transactivation of human nuclear androgen receptor (hAR) by 589 

reference ligands in UALH-hAR cells : intra-laboratory variability. n = 3 independent 590 

experiments. Results are expressed as the percentage of the maximum luciferase activity 591 

induced by 10-7 M DHT. Antagonist assays are done in coexposure with 3.16 x 10-10 M DHT. 592 
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 594 

Figure S2. Phase II transactivation of human nuclear androgen receptor (hAR) by 595 

agonistic ligands in UALH-hAR cells: intra-laboratory variability in the three laboratories. 596 

n = 3 independent experiments per laboratory. Results are expressed as the percentage of the 597 

maximum luciferase activity induced by 10-7 M DHT.  598 
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 599 

Figure S3. Phase II transactivation of human nuclear androgen receptor (hAR) by 600 

antagonistic ligands in UALH-hAR cells: intra-laboratory variability in the three 601 

laboratories. n = 3 independent experiments. Results are expressed as the percentage of the 602 

maximum luciferase activity induced by 10-7 M DHT. Antagonist assays are done in co-603 

exposure with 3.16 x 10-10 M DHT. 604 
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