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Improvements in estimating bioaccumulation metrics in the light of

toxicokinetic models and Bayesian inference

Aude Ratier1,2 · Christelle Lopes1 · Sandrine Charles1,∗

Abstract

The surveillance of chemical substances in the scope of Environmental Risk Assessment (ERA) is classi-

cally performed through bio-assays from which data are collected and then analysed and/or modelled.

Some analysis are based on the fitting of toxicokinetic (TK) models to assess the bioaccumulation

capacity of chemical substances via the estimation of bioaccumulation metrics as required by regula-

tory documents. Given that bio-assays are particularly expensive and time consuming, it is of crucial

importance to deeply benefit from all information contained in the data. By revisiting the calculation

of bioaccumulation metrics under a Bayesian framework, this paper suggests changes in the way of

characterising the bioaccumulation capacity of chemical substances. For this purpose, a meta-analysis

of a data-rich TK database was performed, considering uncertainties around bioaccumulation metrics.

Our results were statistically robust enough to suggest an additional criterion to the single median es-

timate of bioaccumulation metrics to assign a chemical substance to a given bioaccumulation capacity.

Our proposal is to use the 75th percentile of the uncertainty interval of the bioaccumulation metrics,

which revealed an appropriate complement for the classification of chemical substances (e.g., PBT

(persistent, bioaccumulative and toxic) and vPvB (very persistent and very bioaccumulative) under

the EU chemicals legislation). The 75% quantile proved its efficiency, similarly classifying 90% of the

chemical substances as the conventional method.
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lation, TK models.
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Introduction

Chemical substances, present in the environment as a result of human activities, are of extreme con-

cern due to their persistence, their capacity in being accumulated within living organisms and their

potential toxicity on the different levels of biological organization all along trophic chains (Popek 2018;

Cousins et al. 2019). It is particularly crucial to bring reliable and precise information on the bioac-

cumulation capacity of the different chemical substances. Indeed, the internalized concentrations by

exposed organisms almost exclusively depend on external and internal factors and/or the physico-

chemical properties of the substance. This step then conditions the way in which relevant links can be

established between the exposure concentrations and the likely damages on life-history traits (Arnot

and Gobas 2006; Chojnacka and Mikulewicz 2014; Armitage et al. 2021).

To account for such issues, regulations all around the world established threshold metrics to asso-

ciate a chemical substance present into an organism with a potential level of bioaccumulation capacity.

This allows to identify and manage the risks linked to the chemical substances. In Europe, chemi-

cal substances are governed by the REACH regulation, adopted by the European Union to improve

the protection of human health and the environment from the risks that can be raised by chemical

substances (European Commission 2006). Under REACH regulation, in order to evaluate the bioac-

cumulation capacity of chemical substances, the calculation of bioaccumulation metrics is required.

According to Ratier et al. (2022b), we use the generic expression “bioaccumulation metrics” to denote

either bio-concentration factors (BCF) used when exposure is through water, biota-sediment accumu-

lation factors (BSAF) when exposure is through sediment or biomagnification factors (BMF) when

exposure is via food. For chemical substances produced or imported between 10 and 100 tonnes per

year, bioaccumulation metrics are not mandatory but still required to classify chemical substances as

persistent, bioaccumulative and toxic (abbreviated PBT) or as very persistent and very bioaccumula-

tive (abbreviated vPvB). Most of European countries classify chemical substances as bioaccumulative

(abbreviated “B”) if the estimated BCF is in [2000; 5000[, or very bioaccumulative (abbreviated “vB”)

if it is > 5000 (European Commission 2006). Other regulations around the world (Saito et al. 2011;

Government Of Canada 1999; United States Environmental Protection Agency 1979) will rather clas-

sify as “B” a chemical substance with a bioaccumulation metric ranging in [1000; 5000[. Chemical

substances with a bioaccumulation metric in [1000; 2000[ are always classified as low bioaccumulative

(abbreviated as “`B”), while a bioaccumulation metric < 1000 will always correspond to the non bioac-

cumulative class. These classifications are summarized in Wassenaar et al. (2020) and Hartmann et al.

(2014).
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Bioaccumulation metrics are calculated from toxicokinetic (TK) parameter estimates by fitting a

TK model (usually a one-compartment model) to experimental data collected from bioaccumulation

tests (e.g., OECD (2008, 2012)). Data may be analysed with different tools. Bioaccumulation tests

traditionally provide internal concentration measurements from two-phase experiments: a first phase

(the “accumulation” phase) during which organisms are exposed via one or several uptake route(s)

(water, pore water, sediment and/or food) to a given chemical substance, kept constant over time; a

second phase (the “depuration” phase) during which organisms are transferred into a clean medium

where elimination processes take place. The TK model is expected to account for all uptake routes

and elimination processes (including excretion, dilution by growth and/or metabolization) to properly

describe the overall kinetics in terms of internal concentrations. In addition to the experimental proce-

dure of bioaccumulation tests, the OECD guidelines also detail how to obtain bioaccumulation metrics

depending on the exposure routes that have been considered within the experiments.

Although several scientific and commercial software environments exist for the calculation of bioac-

cumulation metrics (e.g., R, Matlab, Python, GraphPad Prism, OpenModel, etc.), few are easy to

handle, free and open access with ready-to-use TK modelling tools; namely, with mathematical equa-

tions automatically computed from the data entered by the user, and all relevant outcomes provided

with a support for their interpretation. To name but a few, there are the Excel macro by Gobas et al.

(2020), the “bcmfR” package (OECD 2012) and the MOSAICbioacc web service (http://umr5558-

shiny.univ-lyon1.fr/mosaic-bioacc/) that has been recently updated (Ratier et al. 2022b; Charles

et al. 2022). Furthermore, if a simple one-compartment TK model (e.g., considering only bioaccumu-

lation from one exposure source and excretion as elimination process) is often sufficient to obtain

the bioaccumulation metrics for ERA, the goodness-of-fit can be poor, indicating that such a simple

TK model is not fully suitable thus requiring the use of a more complex model. For example, one

of the most common complexities to account for is growth of organisms during the bioaccumulation

test (OECD 2012). Surprisingly, in such a case, guidelines only recommend to seek advice from bio-

statistician and/or pharmaco-kineticist experts. In addition to the fact that there are few user-friendly

tools to easily perform TK analyses for non experts, it may be difficult to perform more complex

TK modelling (e.g., accounting for multiple exposure routes, growth dilution and/or biotransforma-

tion). To our knowledge, only MOSAICbioacc is today generic enough to analyse any species-compound

combination of interest, allowing to account for different exposure routes and several elimination pro-

cesses simultaneously, automatically adapting the fitted TK model according to the input experimental

data. MOSAICbioacc provides all possible bioaccumulation metrics accordingly, namely BCF, BSAF

http://umr5558-shiny.univ-lyon1.fr/mosaic-bioacc/
http://umr5558-shiny.univ-lyon1.fr/mosaic-bioacc/


4 Aude Ratier1,2 et al.

and/or BMF (in kinetic or steady-states versions). Furthermore, benefiting from a Bayesian inference

framework, MOSAICbioacc is a convenient tool in support of a facilitated in-depth quantification of

the uncertainties delivered as probability distributions. Instead of the classical standard deviation,

MOSAICbioacc provides a summary of several useful quantiles. While available on-line since May 2020,

the number of users of MOSAICbioacc is continuously growing all over the world, whether they are

from academia, regulatory bodies or industry (380 recordings these last 6 months). A publicly available

database accompanies the MOSAICbioacc services (http://umr5558-shiny.univ-lyon1.fr/mosaic-

bioacc/data/database/index_readme.html), with more than 200 accumulation-depuration data sets

collected within published scientific papers (Ratier and Charles 2022). All these data sets were automat-

ically analyzed with MOSAICbioacc, full analysis reports being made available via the database directly.

Additionally to transparency and reproducibility, all this data can be retrieved for further analyses;

this is in line with the FAIR principles, which have become almost mandatory today (Wilkinson et al.,

2016).

In ERA, a current major knowledge gap to overcome is the consideration of uncertainty in the mod-

elling approaches used in regulation. Recently, the European Food Safety Authority (EFSA) strongly

advocated the need to associate uncertainties with model parameter estimates (EFSA Scientific Com-

mittee 2018) in general, emphasizing this need for toxicity indicators in particular (Ockleford et al.

2018). Moreover, recent recommendations have been established to account for uncertainty when using

toxicokinetic-toxicodynamic (TKTD) models (Baudrot and Charles 2019). Charles et al. (2021) also

highlighted how critical it is to take uncertainty into account when assessing the toxicity of a chemical

substance to a range of non-target terrestrial plants by revisiting the species sensitivity distribution

(SSD) approach.

Consequently, systematically accounting for the uncertainty around bioaccumulation metrics should

be the next step in the improvement of the regulation on classification of chemical substances. Indeed,

for the market authorisation dossiers of active chemical substances, the current regulatory guideline

asks for single mean or median values as bioaccumulation metrics (European Commission 2013). De-

spite this approach has its own merits (e.g., easily deliver a bioaccumulation classification decision

value), the question raises what to do if the bioaccumulation metric has a numerical value really close

to one of the threshold values from which the classification is decided? Does the precaution princi-

ple always apply? A way to overcome this question is to consider uncertainty around the usual point

value. However, we identified a lack of efficient and easy tools to handle computer resources, specifically

designed to automatically provide uncertainties around any model output, specifically in the field of

http://umr5558-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/index_readme.html
http://umr5558-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/index_readme.html
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ecotoxicology. To fill in this gap, as well as to sustain the consideration of uncertainty, it seen urgent

to develop ready-to-use tools to provide suitable intervals of possible values in addition to the current

practice of bioaccumulation metrics. Subsequent questions then follow about the choice of appropriate

summary statistics on the uncertainty the regulation should consider, and how one or the other could

change the current classification of chemical substances?

On the basis of the above findings and the identified shortcomings, our paper aims to suggest

improvements in the estimation of bioaccumulation metrics. In regards to the quantification of their

uncertainty, we worked in the perspective to reinforce the statistical foundations leading to the classifi-

cation of chemical substances as low-, medium-, very, or non-bioaccumulative. In order to put light for

decision makers on a way to handle uncertainty in regulation, we discuss the added value of considering

it by exploring different quantiles to classify chemical substances. Serving as a proof-of-concept, our

approach could be further extended to include more data sets covering a broader range of species and

compound combinations to validate a new suitable decision threshold for ERA.

In the following sections, we first briefly present the last updates recently brought to MOSAICbioacc,

especially the innovative prediction tool that can be specifically used in designing new experiments in

full respect of the 3R principles (Replacement, Reduction and Refinement) ensuring animal welfare

and quality of science (Prescott and Lidster 2017; Russell and Burch 1959). Then, the added value

of accounting for uncertainty of bioaccumulation metrics is underlined through a meta-analysis of

the TK database associated with MOSAICbioacc. Finally, we demonstrate how influential may be the

consideration of uncertainty when classifying chemical substances according to the current regulatory

intervals into which the bioaccumulation metric estimates fall.
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Calculations and predictions of bioaccumulation capacity

This section gives a brief overview of the different features of MOSAICbioacc. A focus is first made on

the calculation of bioaccumulation metrics. Then the new prediction tool is introduced, to finish this

first section with illustrative case studies.

Calculations of bioaccumulation metrics

Recent updates have been brought to the MOSAICbioacc web application to increase the speed of cal-

culations and improve its user-friendliness. Above all, a new R-package is today available on the official

CRAN web site (https://CRAN.R-project.org/package=rbioacc) that allows to similarly perform

all MOSAICbioacc calculations and graphs directly in the R software with ready-to-use dedicated func-

tions (Ratier et al. 2022a). The new version of MOSAICbioacc has entirely been rewritten to reduce the

length of the source code and take advantage of this new package. So, MOSAICbioacc is now based on

a tabbed presentation that clarifies and facilitates browsing from one step to the next. A special tab

gives all bioaccumulation metrics, appropriately calculated according to the input observed data that

the user has uploaded. By default, the kinetics BCF, BSAF or BMF values are delivered, displayed

via their entire posterior probability distribution then summarized with their median (that is the 50%

quantile) and their 95% uncertainty interval (bounded by the 2.5 and 97.5% quantiles). In addition,

users can ask for the corresponding steady-state bioaccumulation metrics if they consider it relevant

enough according to the duration of the accumulation phase, accompanied with internal concentrations

measurements assumed to have reached the expected plateau.

Prediction of bioaccumulation metrics to optimize experiments

A new tab has been added to MOSAICbioacc , namely a“prediction” tool, that allows interactive

simulations of a TK model under a constant or a time-variable exposure profile. The main aim of

this prediction tool is to assist experimenters in optimizing the design of new experiments, based on

previous TK analyses. Indeed, when studying a new chemical substance and/or a new species, some

information need to be known in advance in full respect of scientific ethic in terms of experiment on

living organisms and chemical use and recycling. For example, the exposure concentration, the dura-

tion of the accumulation and depuration phases as well as the number of time points at which internal

concentrations should be primarily measured need to be defined in advance. Then, based on previous

https://CRAN.R-project.org/package=rbioacc
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TK analyses for given close species-compound combinations, TK parameter estimates can serve to

simulate what could be expected when planning additional time points and/or extending the accumu-

lation phase for example. Moreover, benefiting from the Bayesian framework, the uncertainty around

parameter estimates can be propagated towards predictions as well as any function of the parameters

(Baudrot and Charles 2019).

This is in agreement with the actual policy about reducing animal testing. Indeed, designing new

experiments being informed from models in advance may reveal particular helpful, especially when

numerous environmentally realistic exposure scenarios have to be investigated on biota. Model pre-

dictions and extrapolations to similar chemical or species could replace or at least reduce the animal

testing once one experiment is made to estimate parameters under similar conditions. Besides, bioaccu-

mulation metrics can also be predicted in order to characterise potential exposure, without necessarily

requiring experiment to obtain them (e.g., if the substance has similar physico-chemical properties).

In the future of ERA, such a framework could potentially also be helpful to investigate mixture effects,

that would combine several chemicals with similar physico-chemical properties.

Illustrations with case studies

We provide a collection of three case studies as supplementary information (SI, see the .pdf file) to

illustrate various situations where the prediction tool can be helpful:

Case study 1 Plan an experiment for an already studied species exposed to a different but chemi-

cally similar compound (i.e., with close physico-chemical properties), without accounting for the

parameter uncertainty;

Case study 2 Compare several species exposed to a same chemical substance accounting for the

uncertainty around parameter estimates coming from a previous TK analysis conducted on a species

phylogenetically (or taxonomically) close to the new set of interest. In such a case, the user will need

to enter the required input information but also a tabular file with the joint posterior distribution

of the parameters, either coming from a previous MOSAICbioacc TK analysis or from its own TK

software.

Case study 3 A prediction for a same species-compound combination but for different exposure sce-

narios for which the user may have observed data to which simulations can be compared as a

validation step of the to be further exploited.



8 Aude Ratier1,2 et al.

Matter of uncertainty in estimating bioaccumulation metrics

From accumulation-depuration data, one output of great interest is the bioaccumulation capacity of

a chemical substance which is assessed through the appropriate bioaccumulation metrics according to

the exposure route(s) (either the BCF, the BSAF and/or the BMF). So, benefiting from the proba-

bility distributions of these metrics (coming from the propagation of the parameter uncertainty itself)

is crucial to catch their precision. This latter may indeed influence the classification of the substance

as bioaccumulative or not, and if bioaccumulative, influence the choice between “`B”, “B” or “vB”

categories, leading to a potential bias in the next steps of ERA if misclassification. In order to illus-

trate this critical issue for ERA, we present below a meta-analysis of the TK database associated to

MOSAICbioacc (Ratier and Charles 2022).

The accumulation-depuration TK database

The TK database currently contains 211 accumulation-depuration data sets collected from a literature

review and corresponding to a total of 56 studies. The 211 data sets encompass 52 genus, 124 chemical

substances, three different exposure routes (water being the main one, sediment and food), 34 data

sets with also biotransformation data (that is metabolization data). Figure 1 shows several tree maps

performed with the treemap R-package (Tennekes 2017) allowing to visualise the proportion of each

chemical category (Figure 1-a) and each genus (Figure 1-b) among the 211 data sets. Pesticides and

hydrocarbons are the most represented chemical substances within the TK database, what can be

explained by the predominance of data sets on freshwater invertebrates and fish. Gammarus and

Daphnia are the most represented genus, probably due to less ethic exigence with them, while fish

studies are rarer. Gammarus and Daphnia are also the genus for which the most biotransformation

data are available.

The 211 data sets of the TK database were fully analysed with MOSAICbioacc. In brief, MOSAICbioacc

fits a one-compartment TK model to accumulation-depuration data collected under exposure condi-

tions of interest (Ratier and Charles 2022). MOSAICbioacc automatically builds the appropriate TK

model, based on information directly retrieved from the uploaded user data under a predefined format.

Accordingly, column headings are assigned to the corresponding model variables, from the subsequent

detection of the exposure routes and elimination processes considered in the experimental design.

MOSAICbioacc then simultaneously estimates all the model parameters under a Bayesian inference

framework. In the end, the posterior probability distributions of bioaccumulation metrics are calcu-
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lated from the kinetic rate estimates. Based on our experience, for a proper use of MOSAICbioacc, we

recommend at least six internal concentration measurements during the accumulation phase to ensure

the underlying algorithm to converge, whatever the chosen time points, the total duration of the ex-

periment having no matter. Full analysis reports are available from the TK database itself for each

data set, as well as references from which data have been extracted. From all these results, we con-

ducted a meta-analysis of the bioaccumulation metrics to specifically illustrate how much accounting

for uncertainty matters when characterizing the bioaccumulation capacity of chemical substances.

Meta-analysis of the TK database

Even if not required within regulatory documents, associate the uncertainty to a bioaccumulation

metric is of crucial importance (Wassenaar et al. 2020). Among the 211 data sets, a total of 137

corresponds to an exposure through water , meaning that MOSAICbioacc analyses 137 BCF probability

distributions. Based on the median and the 95% uncertainty interval of these BCF estimates (Figure

2), it appears that aquatic invertebrates have the highest values, when predominantly exposed to

pesticides or metals, with Gammarus the most represented genus among BCF estimates greater than

5000 classifying the corresponding chemical substances as “vB”. The SI (see the .html file) provides

an additional figure with all the 211 estimated bioaccumulation metrics, without distinguishing BCF

from BSAF and BMF estimates. Note that from Figure 2, we would have concluded to similar trends

as the current practice regarding the bioaccumulation capacity. On the other hand, based on the

median of the BCF estimates as required by the regulation, only 22.7% of the BCF values classify

chemical substances as “B”, that is with BCF medians higher than 1000. However, this is a fact, such

a classification does not rely on the precision of the BCF estimates. Then, we investigated additional

decision criteria, namely 75% and 97.5% quantiles, directly extracted from the quantification of the

uncertainty around the bioaccumulation metric estimates. We especially evaluated how these new

criteria could guide in deciding whether a chemical substance is bioaccumulative or not, and , if yes,

with which bioaccumulation capacity.

Towards improvements in ERA

ERA can be defined as the evaluation of the incidence and adverse effects likely to occur in the envi-

ronment given exposure to a chemical substance. ERA is therefore strongly linked to the concept of

probability, including both variability and uncertainty of predictions. Accounting for data dispersion



10 Aude Ratier1,2 et al.

Fig. 1 Tree maps of chemical categories (upper panel) and genus categories (lower panel) available in the TK database
available at http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/TK_database.html. *Drugs: both hu-
man or veterinary pharmaceuticals

http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/TK_database.html
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Fig. 2 Bioaccumulation metrics according to genus (upper panel) and chemical class (lower panel). Dots represent
medians of the bioaccumulation metrics, while vertical segments represent the associated 95% uncertainty intervals.
Horizontal lines delineate regulatory threshold values used in the regulation (1000, 2000 and 5000, respectively) to classify
chemical substances according to their bioaccumulation capacity. Bioaccumulation metrics are colored accordingly: in
green when the metric is < 1000; in yellow if the metric is in [1000; 2000[; in orange if the metric is in [2000; 5000[; in
red if the metric is > 5000.
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allows the quantification of uncertainty, what is today recommended by EFSA (EFSA Scientific Com-

mittee (2018)). Although providing central tendency of bioaccumulation metrics remains the core basis

in ERA (i.e., mean or median value), additional information about the uncertainty around this value

provides a better picture of the true expectation. Additionally to the biological variability inherent to

the data itself, this uncertainty can be due to a lack of data, to an inappropriate or an insufficient

experimental design, or to convergence difficulties for example. Among the variety of summary statis-

tics for the uncertainty, standard deviations and minimum/maximum values are probably the most

commonly employed, especially when using a frequentist inference process. Under a Bayesian inference

framework, handling uncertainty is very different, the concept of probability being associated to a “de-

gree of belief” rather than to the frequency an even may occur. Starting from a certain confidence in

prior knowledge on model parameters, capturing additional knowledge within the data, provides in the

end a posterior probability distribution for all parameter estimates. Relevant quantiles extracted from

these distributions then allow to summarize the main characteristics of the bioaccumulation metrics.

The 50% quantile is the classical median, while the 2.5 and 97.5% quantiles delimit the 95% credible

interval, a range that can immediately be interpreted as all possible numbers among which the true

bioaccumulation value has a 95% chance of being found.

From here, given that the precision of the bioaccumulation estimates rely on quantiles extracted from

their probability distributions, that can be brought into play to investigate new decision criteria for the

classification of chemical substances. Instead of the median only, we first considered the upper bound

of the uncertainty interval around the bioaccumulation metric estimates, that is the 97.5% quantiles

of the posterior probability distribution (referred as Q97.5 in Table 1). This raised the question of

an overestimation of the bioaccumulation capacity of the chemical substances. Indeed, the number of

BCF values doubled (from 22 to 45) in the “vB” category (Table 1). So, such a criterion would classify

36.5% of the chemical substances as bioaccumulative (n = 77), against only 22.7% (n = 48) with

the usual median (referred as Q50 in Table 1). In terms of margin of safety, this remains within the

regulatory context of ERA. However, reasoning on a single value of the bioaccumulation metric (the

median or even the mean) may induce a potential misclassification of the substance and, consequently,

an underestimation of the potential risk for biota.
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Table 1 Number of chemical substances in each bioaccumulation capacity class according to the three decision criteria

built on the 50%, the 75% or the 97.5% quantiles of the posterior probability distributions of the bioaccumulation metric

estimates: Q50, Q75 and Q97.5, respectively. Abbreviation `B stands for low bioaccumulative, B for bioaccumulative

and vB for very bioaccumulative, respectively.

Criterion `B (BCF ∈ [1000; 2000[) B (BCF ∈ [2000; 5000[) vB (BCF > 5000)

Q50 10 16 22

Q75 11 20 30

Q97.5 10 22 45

With the perspective of benefiting from the uncertainty on bioaccumulation metric estimates to

suggest a new classification criterion of chemical substances, we compared the use of the 75% quantile

(referred as Q75 in Table 1) to both the usual Q50 or the above-mentioned Q97.5, as a possible compro-

mise. As illustrated in Figure 3 (performed with the vioplot R-package by Adler and Kelly 2020, from

data on the species Daphnia magna exposed to phenanthrene (Wang et al. 2021), the Q50 classifies

the chemical substance as “nB” (BCF < 1000), while both the Q75 and the Q97.5 criteria classify

it as “B” (BCF > 1000). This example illustrates that considering the uncertainty would allow to

avoid “false negatives”, that is chemical substances classified as non bioaccumulative while they have

a 75% chance of being so. In fact, from Figure 3, it can even be stated that this substance has 59.6%

to be non bioaccumulative, and correspondingly 40.4% to be, because the quantile associated with the

ERA threshold at 1000 is equal to 59.6%. Over the 211 data sets available in the TK database, the

Q75 criterion classified 28.9% of the chemical substances as “B” (n = 61) against 17.5% for the Q50

criterion (n = 37).

Figure 4 shows another example with genus Enchytraeus exposed to silver nanoparticles (Topuz

and van Gestel 2015), illustrating the possible misclassification of the bioaccumulation capacity of the

chemical substance according to the Q97.5 criterion. Indeed, silver nanoparticles are considered as non

bioaccumulative (BCF < 1000) by both the Q50 (the ERA criterion) and the alternative Q75 criteria,

whereas the Q97.5 criterion classified them as “B” (BCF ∈ [2000; 5000[). In this case, the difference in

the classification comes from a lack of precision of the BCF estimate which is associated with a large

uncertainty range. This can be assessed with the coefficient of variation (abbreviated as CV ) which is

far over 0.5 in this case. The CV is defined in this paper as follows:
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Fig. 3 Violin plot of the posterior probability distribution of the bioaccumulation metrics for Daphnia magna exposed
to phenanthrene (Wang et al. 2021). The left-side scale gives bioaccumulation metric values, while the right-side scale
gives the corresponding quantiles of these values. The orange line symbolizes the threshold value at 1000 according to
regulatory ERA, while green lines stand for the 50th (Q50 criterion in Table 1), 75th (Q75 criterion) and the 97.5th

(Q97.5 criterion) quantiles of the distribution, respectively (Table 1).

CV ' BCFmedian

97.5%quantile− 2.5%quantile

A large uncertainty (i.e., CV > 0.5 of the BCF is reflected in Figure 4 by a very dispersed prob-

ability distribution towards a highest values (right side of the distribution with a very long tail). On

a general point of view, if the estimates of the bioaccumulation metric has a CV > 0.5, it will be

considered as imprecise. This may be due to a lack of data to first get precise kinetic parameters (e.g.,

uptake and elimination rates) or to data that are collected according to an inappropriate experimental

design over time. Figure 4 illustrates that imprecise bioaccumulation metrics must be very cautiously

interpreted; in this example, the bioaccumulation capacity could have been misinterpreted to decide

that the corresponding chemical has a 91.3% chance of being non-bioaccumulative, while the decision
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Fig. 4 Violin plot of the posterior probability distribution of the bioaccumulation metrics for Enchytraeus exposed
to silver nanoparticles (Topuz and van Gestel 2015). The left-side scale gives bioaccumulation metric values, while the
right-side scale gives the corresponding quantiles of these values. The orange lines symbolize the threshold values at 1000
and 2000 according to regulatory ERA, while the green lines stand for the 50th (Q50 criterion), 75th (Q75 criterion) and
the 97.5th (Q97.5 criterion) quantiles of the distribution, respectively (Table 1).

threshold is located far in the tail of the distribution, that is within a range of very few probable values.

Considering all the 211 data sets available in the TK database, we performed the classification for

all the chemical substances based on each of the three Q50, Q75 and Q97.5 criteria. We then compared

the results in order to formulate sufficiently well-founded recommendations and suggest to evolve im-

prove ERA in the future. As illustrated in Figure 5 concerning genus Anax exposed to chlorpyriphos

(Rubach et al. 2010), the classification was the same whatever the criteria. In total, we assigned more

than 90% (n = 190) of the chemical substances in to the same class as obtained with the classical Q50

criterion (Table 1). From these results, we finally suggest the use of the 75% quantile of the posterior

probability distribution of the bioaccumulation metric estimates as a good compromise to be used

complementary to the Q50 and instead of the Q97.5 we also tried. As a consequence, the Q75 could

be added to the regulatory ERA requirements to further support decision makers in assessing the
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bioaccumulation capacity of chemical substances. For this purpose, the MOSAICbioacc web tool could

easily be updated with an additional tab automatically delivering both Q50 and Q75 criteria together

with the corresponding classification. See SI (.html file) for an example of what this might look like.

In the same way, the TK database could be amended to also provide this classification in an all-in-one

facility for ERA.

Over the whole database, using the suggested Q75 criterion, we finally classified 5.2% (n = 11),

9.5% (n = 20) and 14.2% (n = 30) of the chemical substances as “`B”, “B” and “vB”, respectively.

This confirms 71% of the chemical substances classified as non bioaccumulative. Focusing on the pre-

cision of all bioaccumulation metrics, we got a high variability among species and chemical substances

(see SI, .html file). Only considering the Q75 criterion, 37.4% (n = 79) of the chemical substances

were associated with a CV < 0.5, with the high est CV among the “nB”-classified chemical substances

(38.9%, n = 82/150). This underlines that for a chemical substances as bioaccumulative, whatever the

class, the corresponding bioaccumulation metric was precisely estimated in most of the cases.

Collecting additional TK data sets is the core foundation of our TK database (Ratier and Charles,

2022). Indeed, it has been thought and designed to be dynamically incremented so that researchers are

increasingly willing to share their data, either publicly via dedicated repositories, or privately directly

to us to be made them available in TK database by referring to the corresponding scientific publication.

In turn, they would benefit from automatic reports with MOSAICbioacc, for example to revisit previous

works or to perform experiments and analyses differently in the future.

Conclusion

Based on the meta-analysis of the TK database , encompassing today 211 data sets, this paper estab-

lishes how crucial it can be to consider the uncertainty in the calculation of bioaccumulation metrics

when classifying chemical substances into specific bioaccumulative categories. We fitted TK models un-

der a Bayesian framework, that we specifically chose for its ease of use in delivering of bioaccumulation

metrics as posterior probability distributions. This paper thus gathers together statistically-founded

results towards the recommendation for a new criterion to sustain this classification. It could indeed

be suggested to use the 75% (our preferred indicator) or the 97.5% quantiles of the bioaccumulation

metric distributions in order to most appropriately guide the classification of chemical substances into

the four regulatory ERA categories: non-, low-, medium-, or very- bioaccumulative. The current reg-
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Fig. 5 Violin plot of the posterior probability distribution of the bioaccumulation metrics for Anax exposed to chlorpy-
riphos (Rubach et al. 2010). The left-side scale gives bioaccumulation metric values, while the right-side scale gives the
corresponding quantiles of these values. The green lines stand for the 50th (Q50 criterion in table 1), 75th (Q75 criterion)
and the 97.5th (Q97.5 criterion) quantiles of the distribution, respectively (Table 1).

ulation could accordingly be updated by requesting both the median (50%) and the 75% quantiles to

inform decisions on the bioaccumulation capacity. Once MOSAICbioacc improved with the appropriate

new features, regulators would be better assisted to classify several chemical substances saving time

and gaining confidence in advanced modelling tools.
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