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Abstract 

Self-reactive substances are unstable chemical substances which can easily decompose and may lead 

to explosion in transport, storage, or process situations. For this reason, their thermal stability 

properties are required to assess possible process safety issues and for classification purpose. In this 

study, the first quantitative structure–property relationships (QSPR) dedicated to this class of 

compounds were developed to predict the heat of decomposition of possible self-reactive substances 

from their molecular structures. The database used to develop and validate the models was issued 

from a dedicated experimental campaign on 50 samples using differential scanning calorimetry in 

homogeneous experimental conditions. QSPR models were derived using the GA-MLR methods (using 

a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon 

software based on two types of inputs: 3D molecular structures determined using the density 

functional theory (DFT), allowing access to three-dimensional descriptors, and from SMILES codes, 

favoring the access to simpler models, requiring no preliminary quantum chemical calculations. All 

models respected the OECD validation guidelines for regulatory acceptability of QSPR models. They 

were tested by internal and external validation tests and their applicability domains were defined and 

analyzed. 

Keywords: Quantitative Structure-Property Relationships, self-reactive substances, thermal stability, 

genetic algorithm. 
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1. Introduction 

Self-reactive substances are thermally unstable substances and mixtures liable to undergo self-

accelerating decomposition without contribution of oxygen (from air) and even, in some cases, to be 

explosive under the effect of various types of stimuli (e.g. impact or friction). So, they can cause 

thermal runaways in chemical process. They can also react dangerously with other substances. Finally, 

their highly exothermic decomposition can cause fire or explosion during processing, storage, and 

transport [1, 2].  

To favor their safe handling, the self-reactive substances are classified specifically in chemical safety 

regulations like the UN Recommendations for the Transport of Dangerous Good, Model Regulation [3] 

(in class 4.1), or the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS) 

[4] and the European Regulation related to the Classification, Labelling and Packaging of substances 

(CLP) [5] (as “Self-reactive substances and mixtures”). The classification is based on a series of 

experimental tests to evaluate their detonation, deflagration and thermal explosion properties, their 

response to heating under confinement and their explosive power. In addition, their self-accelerating 

decomposition (SADT)  is assessed to determine the lowest temperature at which a self-accelerating 

decomposition could occur in the wanted packaging (package size can vary from 50 kg to intermediate 

bulk containers (IBC) or up to non-isolated or isolated tanks with higher volumes) during storage or 

transport to decide if a control temperature is necessary (and to define it, if appropriate) [6, 7]. In 

compliance with the Manual of Tests and Criteria [7] a screening procedure for substances which may 

be self-reactive substances has to be applied. Criteria are the presence of specified chemical groups, 

the estimated SADT for a 50 kg package and the decomposition energy, estimated by a suitable 

calorimetric technique like DSC. If the SADT is higher than 75°C and the decomposition energy is lower 

than 300 J/g, the classification procedures need not be applied.  

It should be noted, that also organic peroxides are thermally unstable substances which can undergo 

a self-accelerating decomposition, but they are summarized in specific hazard class in chemical safety 

regulations (identified by the presence of a bivalent -O-O- structure) and are not subject to the present 

investigation. Self-reactive substances are also characterized by specific chemical groups, whereby its 

nature has a higher variety compared to organic peroxides. 

Here, we focus on the heat of decomposition which represents the heat released by the substance 

during decomposition and represents a relevant information to identify possible process safety issues 

due to thermal hazards. It does not only play a role in the screening procedures for potential self-

reactive substances, but also for substances, which may have explosive properties and for which, 

according to the Manual of Tests and Criteria [7], the so-called acceptance procedure for explosives 

need or not need to be applied. The acceptance procedure is used to determine whether a substance 

or article as offered for classification is a candidate for the class of explosives (called Class 1 in transport 

regulation) or not. If the decomposition energy is equal or higher than 500 J/g and the onset 

temperature of the decomposition is lower than 500 °C, then the acceptance procedure for an organic 

substance or a homogenous mixture of organic substances need to be applied. 

Information on the physical hazards of self-reactive or other hazardous substances are up to now 

mainly obtained from experimental tests. But these tests are complex, costly and require large quantity 

of substances and dedicated facilities (notably to access SADT data on real-size packages). In this 

context, predictive methods or alternative small-scale tests represent a real improvement as an 
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alternative to huge experimental characterizations. For instance, Fisher and Goetz [8] developed a 

method to determine the SADT of self-reactive substances based on Accelerating Rate Calorimeter 

(ARC) data. Malow and Wehrstedt [9] also proposed to calculate the SADT of pure liquid organic 

peroxides from dynamic DSC runs using a transfer equation based on the standard theory of explosion 

by Semenov as previously done from DTA runs by Steinbach and Klais [10].  

To access physical hazard information for process engineering and process safety analyzes, without 

any experimental data, Quantitative Structure-Property Relationships (QSPR) offer the possibility to 

estimate properties based only on the knowledge of their molecular structures. Such models were 

explicitly mentioned in the REACH regulation [11] among the alternative methods recommended to 

reduce the cost and time for the registration, evaluation and authorization of chemicals in Europe. To 

support regulatory applications of QSPR models, validation principles were proposed by the 

Organization for Economic Co-operation and Development (OECD) [12]. They concern the importance 

of transparency not only in the definition of the algorithm but also in the definition of endpoints 

(including experimental protocols) and of the domains of applicability. They also promote the use of 

appropriate estimations of the performances of models (including an external validation to estimate 

predictivity). Finally, the mechanistic interpretation of the model is encouraged. Beyond regulatory 

context, QSPR models allow property estimations for screening purposes in early R&D phases of new 

substances and the design of new industrial process, even when chemicals are not yet synthesized or 

when experiments are too expensive or dangerous (e.g. in the case of toxic substances). 

QSPR models have been successfully developed for different kinds of properties, from toxicology [13] 

to physical chemistry [14]. Recent reviews [15-18] well illustrated the success of application of this 

approach for physical hazards and process safety issues. For instance, models were developed for the 

thermal decomposition properties of nitro compounds [19-21] or organic peroxides [22-27]. 

Unfortunately, no QSPR model dedicated to self-reactive substances has been developed to date, 

probably due to the lack of experimental data.  

Indeed, different families of compounds can exhibit self-reactive behaviors, such as azo or diazo 

compounds, nitro or nitroso compounds, nitrate esters or hydrazine derivatives [2]. But, despite this 

diversity of compounds, fully documented experimental studies are mainly focused on a limited 

number of compounds in the literature [6, 28]. For instance, among azo compounds, existing studies 

on thermal hazards focused on 2,2-azobis(2-methylbutyronitrile) (AMBN) [29], 2,2'-azobis(2,4-

dimethylvaleronitrile) (ABVN) [30, 31] and 2,2′-azobis(isobutyronitrile) (AIBN) [1, 32-36]. 

Considering other types of (non-experimental) estimation approaches, the CHETAH software [37] 

(developed by ASTM) could be cited but it proposes an estimation of a so-called “Maximum Heat of 

Decomposition”, only suitable for preliminary identification of possible thermal reactivity issues and 

not as alternative to experimental heats of decomposition. The estimation of this Maximum Heat of 

Decomposition is based on an extension of the Benson thermochemical group contribution approach 

and relies on the assumption that CHON compounds decompose in CO2, H2O, N2, CH4, C, H2 and O2, as 

expected in a complete reaction [38]. So, the calculated Maximum Heat of Decomposition should give 

a conservative (i.e. higher) value compared to the heats of decomposition obtained in calorimetry 

measurements. 

Consequently, the aim of this paper was to develop the first QSPR models dedicated to the prediction 

of the heat of decomposition of potential self-reactive substances. Considering the absence of data 
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available in literature for a sufficiently large diversity of compounds, a new experimental database was 

consolidated from a dedicated experimental campaign to ensure that all data were obtained in robust 

and homogenous experimental conditions. This new database allowed the development of first QSPR 

models following a full validation process including both internal and external validation techniques. 

2. Experimental details  

The heats of decomposition were measured for 50 solid samples of technical pure substances, supplied 

and selected by Bayer AG as representing industrial interest. Measurements were performed with a 

power compensated DSC by Perkin Elmer in stainless-steel high-pressure capsules (up to 150 bar). 

Capsules consist of a sample container as lower part and a lid with a hole as pressure relief. Both are 

screwed together and sealed by a gold-plated copper seal. Samples were filled in the sample container 

under normal atmospheric conditions. Sample mass varied between 3 mg and 7 mg. A heating rate of 

5 K/min was applied. As decomposition range of substances varies, the temperature range for the 

individual measurement was modified to record the decomposition properly. The lowest start 

temperature was 50 °C, and the highest final temperature was 460 °C. The baseline was determined 

by a second heating step of the capsule, with the already decomposed sample in it. Measurements 

were performed twice for each sample, and the final heats of decomposition (-ΔHdec) were defined as 

the average value. The average deviation between the two runs is 6% with 82% of the observed 

deviations lower than 10%. One sample (n°8) revealed too large deviation between the two runs (28%) 

and was excluded. The complete experimental database is available in the Supporting Information 

(Table S1). 

These substances contain chemical groups associated with possible explosive or self-reactive 

properties like nitro, nitroso, cyano, azo groups or strained rings (Table 1). Three samples (n° 5, 42 and 

49) corresponded to salts or hydrated structures and were excluded of the database for sake of 

structural homogeneity. Two samples (n°31 and 47) concerned were related to the same molecule, 

methyl-5-chloro-4-nitrothiophene-2-carboxylate. For this reason, only sample n°31 was kept and the 

retained value of heat of decomposition was the average of the four runs (carried out on both samples 

n°31 and n°47).  

 

Table 1 – Examples of chemical groups associated to explosive and self-reactive properties 

It may be noted that despite this data curation and its small size, the database remains relatively 

diverse from a chemical point of view with very diverse heterocycles, aliphatic and aromatic nitro 
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groups, S-based fragments, halogenated structures. If some fragments like NO2 or =O are found in 

respectively 34 and 26 compounds of the database, others like C≡N or S=N are less frequent in the 

database. Moreover, the compounds included in the dataset are often polyfunctional, i.e. presenting 

different types of functional groups. As a comparison, the databases used for previous QSPR models 

for the heats of decomposition of more restricted families of compounds, namely organic peroxides 

[22] and nitroaromatic compounds [39], were constituted of 38 and 77 molecules, respectively. 

Finally, the database used in this study consisted of 45 potential self-reactive compounds with a range 

of decomposition heat values between 61 kJ/mol and 831 kJ/mol. Their structures and -ΔHdec values 

(in kJ/mol) are presented in Table 2. The database was then divided into two parts: a training set, 

containing 34 molecules, and a validation set consisting of the 11 remaining molecules. This partition 

was performed by a property-ranked approach. The samples were classified by increasing order of 

heat of decomposition and the ones of the validation set were regularly selected (e.g. 2nd, 6th, 10th, 

etc.) to represent 1/4 of the dataset. This partitioning method enabled both sets to have similar 

property distributions in both the training and the validation set (as shown in Figure 1). The similarity 

of the chemical diversity in both sets was also checked to ensure that the validation set covered at best 

the chemical diversity of the domain of applicability of the model, i.e. of the molecules in the training 

set. 
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Table 2 - Heats of decomposition (kJ/mol) of potential self-reactive substances measured by DSC vs. predicted by the new QSPR models 

ID compounds 
- ΔHdec (kJ/mol) 

exp. Eq. 3 Eq. 4 

Training set 

mol02 N-(dimethyl-lambda4-sulfanylidene)benzenesulfonamide 486.2 460.1 461.8 

mol03 1,3-Bis(3,4-dichlorophenyl)-2lambda4-diazathia-1,2-diene 337.4 346.3 344.7 

mol04 1-Methyl-5-nitropyridin-2(1H)-one 303.3 356.7 356.7 

mol06 4-[(1E)-2-Nitroprop-1-en-1-yl]phenol 243.0 252.7 250.1 

mol07 4-Chloro-3-(dimethylnitroryl)benzoic acid 274.0 224.5 227.2 

mol09 4-[(Dimethylnitroryl)methyl]-2,6-dimethylphenol 61.0 62.7 66.9 

mol10 1-Chloro-4-[(Z)-(4-chlorophenyl)-NNO-azoxy]benzene 371.9 290.2 293.4 

mol12 N,N-Diethyl-4-[(E)-(4-nitrophenyl)diazenyl]aniline 458.1 375.6 375.8 

mol15 2-[(E)-(4-Chlorophenyl)diazenyl]-1H-imidazole 216.5 275.3 273.0 

mol16 2-[(E)-(2,3-Dimethylphenyl)diazenyl]-4,5-dihydro-1,3-thiazole 151.9 194.2 193.3 

mol17 (3E)-2-Benzoyl-3-(benzoylimino)-4,5-dimethyl-2,3-dihydro-1,2,3-triazol-3-ium-1ide 157.1 140.4 141.8 

mol18 2-[(E)-(3-Chlorophenyl)diazenyl]-1H-imidazole 223.0 269.5 267.2 

mol20 2,3-Dimethyl-2,3-dinitrobutane 487.2 507.2 508.1 

mol22 2-Nitro-1-(4-nitrophenyl)propane-1,3-diole 422.6 524.7 524.9 

mol24 3-Nitro-2H-pyrido[1,2-a]pyrimidin-2,4(3H)-dione 326.9 341.5 341.4 

mol25 (5-Nitro-2-phenyl-1,3-dioxan-5-yl)methanol 423.3 380.6 380.9 

mol26 1,2,6-Trimethyl-3-nitropyridin-4(1H)-one 359.3 359.4 359.5 

mol27 1,2-Dichloro-3,4-dinitrocyclohexane 831.0 815.7 817.3 

mol28 Methyl-5-amino-2-nitrocyclohexanecarboxylate 362.7 335.4 333.7 

mol29 5-Nitro-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid 239.1 317.7 317.3 

mol30 2,6-Dimethyl-3-nitro-1-(2,4,6-trichloro-3-nitrophenyl)pyridin-4(1H)-one 788.2 695.6 696.0 

mol31 Methyl-5-chloro-4-nitrothiophene-2-carboxylate 575.8 568.3 568.2 

mol32 1-Nitro-4-[(E)-2-nitrobut-1-en-1-yl]benzene 655.3 595.0 596.6 

mol34 (3-Methoxy-4-nitro-1H-pyrazol-1-yl)acetic acid 442.6 339.4 339.3 

mol35 5-[(3,5-Dimethyl-4-nitro-1H-pyrazol-1-yl)methyl]-2-furancarboxylic acid 314.9 357.0 357.0 
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mol36 2,2,2-Trichloro-1-(1-methyl-4-nitro-1H-pyrrol-2-yl)ethanone 431.6 503.3 502.6 

mol38 Methyl-4-nitro-1H-pyrazol-5-carboxylate 363.1 325.2 324.9 

mol39 3-Isobutyl-1-methyl-4-nitro-1H-pyrazol-5-amine 292.4 380.6 380.8 

mol40 4-Hydroxy-1-methyl-3-nitroquinolin-2(1H)-one 296.7 286.6 285.2 

mol41 1-(1,1-Dioxidotetrahydrothiophen-3-yl)-3,5-dimethyl-4-nitroso-1H-pyrazole 203.8 281.9 281.9 

mol43 6-Imino-1-methyl-5-nitroso-1,6-dihydopyrimidin-2,4-diol 222.6 114.0 112.4 

mol45 5-Chloro-6-nitro-12H-quinolino[2,1-b]Quinazolin-12-one 398.8 459.4 458.2 

mol46 5-Nitro-3,4'-bipyridin-6(1H)-one 300.5 289.9 288.5 

mol50 6-Hydroxy-5-nitropyrimidin-4(3H)-one 331.6 326.8 326.6 

Validation set 

mol01 1-Nitro-4-(sulfinylamino)benzene 392.6 384.4 384.7 

mol11 2-Chloro-4[(E)-phenyldiazenyl]phenol 232.8 210.2 206.6 

mol13 (E)-N,N-Dimethyl-2-phenyldiazenecarbothioamide 129.3 170.0 168.9 

mol14 4-Amino-6-tert-butyl-3-isopropyl-3,4-dihydro-1,2,4-triazine-5-ol 212.1 158.3 157.1 

mol19 7-Nitro-1,2,4-benzotriazin-3(4H)-one-1-oxide 302.4 270.7 273.0 

mol21 1-Methyl-4-nitro-1H-pyrazole-5-carboxylic acid 360.4 327.9 327.7 

mol23 6-Amino-5-[1-(1,3-benzodioxol-5-yl)-2-nitropropyl]-1,3-dimethylpyrimidin-2,4(1H,3H)-dione 331.2 297.3 296.0 

mol33 3-Isobutyl-1-methyl-4-nitro-1H-pyrazole-5-carboxylic acid 280.2 362.3 362.4 

mol37 2,2,2-Trichloro-1-[1-(cyclopropylmethyl)-4-nitro-1H-pyrrol-2-yl]ethanone 621.9 506.9 506.2 

mol44 2,6-Dimethyl-3-nitro-1-(2,4,5-trichlorophenyl)pyridin-4(1H)-one 484.4 499.8 499.0 

mol48 [(5-Methyl-4-nitro-2-thienyl)methylene]malononitrile 423.7 452.6 453.5 
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Figure 1 – Distribution of heats of decomposition in the datasets 

3. Computational details 

3.1. Descriptor calculations 

The molecular structures of the 45 potential self-reactive substances of the database were calculated 

using the density functional theory (DFT) as implemented in the Gaussian16 package [40]. Geometry 

optimizations were conducted at a B3LYP/6-31+G(d,p) level. Vibrational analyzes were performed with 

the same functional and basis set. All structures were checked to confirm that no imaginary frequency 

was calculated. Geometric structures were then encoded into mol files using Openbabel toolbox [41] 

to be uploaded into the Dragon software (version 7.0.10) [42] that calculated 5255 molecular 

descriptors. This large diversity of descriptors includes constitutional ones (related to the 

presence/number of atoms or molecular features in the molecule), topological indices (encoding the 

two-dimensional molecular structure and providing information about molecular shape and 

connectivity) and three-dimensional descriptors (including geometric and electronic descriptors, like 

solvent accessible surface areas and partial charges). 

For use in simpler models (without quantum-chemical calculations), the structure of each compound 

was also encoded into SMILES notation using ChemDraw Ultra 12.0 [43]. Based on these SMILES, 

Dragon software calculated 3850 two-dimensional molecular descriptors.  

3.2. Development of the models 

QSARINS software (version 2.2.4) [44, 45] was used for the development of QSPR models. A preliminary 

filtration step consisted in excluding constant or near-constant descriptors (>80%) and highly inter-

correlated ones (> 95%).  

Then, multi-linear regression (MLR) models were derived based on the training set of 34 compounds 

using Ordinary Least Squares (OLS) regression. Descriptor selection was performed using a genetic 

algorithm (GA). The GA-MLR algorithm was used to search for models containing up to 6 descriptors, 

assuming that higher-dimension models would be over-parameterized considering the number of 
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molecules in the training set. A population of 200 models evolved for 2000 generations at each size 

(i.e. number of descriptors in the model) with a mutation rate of 20%. The leave-one-out (LOO) cross-

validation correlation coefficient (Q²LOO), which will be presented in the next section, was used as the 

fitness function, since it provides an indicator of the model robustness. The QUIK rule (for Q Under 

Influence of K) [46] was used to avoid any collinearity between descriptors in models with a threshold 

of 0.05. Finally, the 20 best models are provided at each size. 

3.3. Validation of the models 

All models were validated by both internal and external validation methods. Based on the predictions 

in the training set, the goodness-of-fit of the model was evaluated based on the determination 

coefficient (R²), the mean absolute error (MAE) and the root mean square error (RMSE) between 

predicted and experimental values. Robustness was assessed by Leave-one-out (LOO) and leave-many-

out (LMO) cross-validations. LMO cross-validation was based on 2000 iterations with a 30% partition 

level. The obtained correlation coefficients Q²LOO and Q²LMO may be close to R² and close to each other 

in the case of robust models. To avoid possible chance correlations, a Y-scrambling test [47] was also 

performed with 2000 iterations of random permutations of the property values within the training set. 

The average correlation issued from Y-scrambling (R²YS) was expected to be low.  

At last, the predictive power of the model was evaluated by an external validation. The model was 

applied to the 11 molecules of the validation set, not used for its development. The coefficient of 

determination R²EXT, the mean absolute error MAEEXT and the root mean square error RMSEEXT were 

calculated. A series of external validation metrics were also used: Q²F1 [48], Q²F2 [49], Q²F3 [50], CCC[51], 

mr²  and Δr²m [52]. They were compared to the thresholds proposed by Chirico et al. [51]: R²EXT > 0.70, 

Q²Fn > 0.70, CCC > 0.85, 
mr² > 0.65, Δr²m < 0.20. 

3.4. Applicability domain 

QSPR are correlation models. Their scope and limitations must be considered. The applicability domain 

(AD) of the model was analyzed using the leverage approach [53]. The leverage (h) measures the 

distance of a compound from the rest of the training set in the chemical space (represented by the 

descriptors).  

 hi = xi
T (XTX)-1 xi          (1) 

where hi is the leverage value for compound I, xi corresponds to its descriptor values and X to the 

descriptor matrix of the complete training set. 

Prediction should not be considered to be reliable if its leverage value exceeds a critical value h* 

defined according to Eq. 2.  

  h* = 3(p+1)/n          (2) 

where p is the number of descriptors in the model and n is the number of compounds in the training 

set. 

A graphical representation of the AD allowing good identification of outliers is the Williams plot that 

plots the leverage value vs. standardized residues. In the training set, compounds with h > h* strongly 
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influence the statistical parameters of the model. For the test set (or any future prediction), 

compounds with h > h* may be considered out of the AD of the model and their predicted values may 

be not reliable. Compounds presenting standard residuals higher than ± 3 standardized residuals were 

also considered as statistical response outliers.  

4. Results 

4.1. Model based on 3D molecular structures 

A first model was developed using all the descriptors available in Dragon, i.e. including three-

dimensional descriptors. The 5255 molecular descriptors calculated from the 3D molecular structures 

optimized at B3LYP/6-31+G(d,p) level were loaded into QSARINS. The preliminary filtering of 

descriptors performed by QSARINS excluded 4008 (constant, nearly constant or intercorrelated) 

descriptors. The GA-MLR method was then applied on the 34 compounds of the training set using the 

1247 remaining descriptors.  

Among the models proposed by the GA-MLR algorithm, the one offering the best compromise between 

correlation, level of parameterization and relevance in terms of chemical interpretation is presented 

in Eq. 3 and more detailed in Supporting Information (Table S2). 

-ΔHdec(kJ/mol) = 5185.7 X5Av + 106.3 O-061 – 65.0 CATS2D_02_DL + 113.3 B01[C-Cl] + 38.9 (3) 

where X5Av is the average valence connectivity index of order 5, O-061 is the presence of O atoms 

presenting a delocalized bond, CATS2D_02_DL is the CATS2D Donor-Lipophilic descriptor at lag 02 and 

B01[C-Cl] is the presence/absence of C and Cl at topological distance 1, i.e. C-Cl bonds. 

Despite the small size and the chemical diversity of the dataset, a significant correlation was obtained 

for the 34 compounds of the training set with R² = 0.88 and a MAE of 46 kJ/mol (or 14%), as shown in 

Figure 2. Its robustness was checked by leave-one-out and leave-many-out cross validations (Q²LOO = 

0.84; Q²LMO = 0.83) and the Y-scrambling test demonstrated it was not issued from a chance correlation 

with R²YS = 0.12 (Table 3). 

 

Figure 2 - Experimental vs. calculated heats of decomposition (kJ/mol) for Eq. 3 
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Table 3 – Performances of the QSPR models developed for the prediction of heats of decomposition 

of potential self-reactive substances based on 3D molecular structures (Eq. 3) and SMILES codes 

(Eq. 4) 

  Eq. 3 Eq. 4 

R² 0.882 0.883 

MAE (kJ/mol) 46 45 

MAE (%) 14 14 

Q²LOO 0.840 0.843 

Q²LMO 0.825 0.831 

R²YS 0.122 0.122 

R²EXT 0.852 0.851 

MAEEXT (kJ/mol) 42 43 

MAEEXT (%) 14 14 

Q²F1 0.847 0.845 

Q²F2 0.844 0.842 

Q²F3 0.901 0.899 

CCCEXT 0.914 0.913 

<rm²>EXT 0.789 0.787 

Δrm²EXT 0.106 0.097 

 

The external validation performed on the validation set of 11 molecules revealed similar statistics than 

in the training set with R²EXT = 0.85 and MAEEXT = 42 kJ/mol = 14%. Moreover, all Chirico criteria were 

satisfied with Q²F1 = 0.85, Q²F2 = 0.84 and Q²F3 = 0.90 (i.e. > 0.70), CCC = 0.91 (i.e. > 0.85), 
mr² = 0.79 

(i.e. > 0.65) and Δr²m = 0.11 (i.e. < 0.20). 

The analysis of the Williams plot (in Figure 3) evidenced one molecule of the training set, N-(dimethyl-

λ4-sulfanylidene)-benzene sulfonamide (mol02), presenting a h value higher than the threshold one 

(0.639 > h* = 0.441). Nevertheless, the standard residual is reasonable for this molecule. The chemical 

specificity of this compound could be the presence of the two sulfur-based chemical groups: -S(=O)2- 

and -S=N<. To evaluate the influence of this molecule on the fitting of the model, it has been excluded 

from the database and the model Eq. 3 has been fitted again. Similar performances were found both 

in the training set (with R² = 0.89 and MAE = 43 kJ/mol) and in the validation set (R²EXT = 0.85 and 

MAEEXT = 41 kJ/mol). So, mol02 didn’t degraded Eq. 3 that remained relevant. 
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Figure 3 – Williams plot illustrating the applicability domain of Eq. 3 

Considering the chemical interpretation of the descriptors in the model, X5Av is the average valence 

connectivity index of order 5. Average valence connectivity indices are connectivity indices accounting 

for the presence of heteroatoms, double and triple bonds in the molecule [54, 55]. So, X5Av may relate 

to the presence of five membered fragments with heteroatoms or double/triple bonds in the molecule. 

Not surprisingly the highest X5Av value in the dataset was found for mol02 that presents a -S(=O)2-

N=S(CH2)2 fragment that may greatly contribute in this descriptor. According to the positive coefficient 

in the equation, such fragments seem to increase the exothermic heat of decomposition of the 

compound. This agrees with the identification of S=O groups among the chemical groups indicating 

possible self-reactive properties in the UN Manual of Tests and Criteria [7].  

O-061 is the most interpretable descriptor in the model. Indeed, this atom-centred fragment 

represents the occurrence of O atoms presenting a delocalized bond in the molecule [56]. These atoms 

are included in nitro groups. So, this descriptor is particularly relevant for self-reactive substances since 

nitro groups are among the chemical groups associated to possible explosive or self-reactive properties 

[7, 38]. Besides, the associated regression coefficient in the model is positive, indicating that the 

presence of nitro groups favors higher heats of decomposition. 

The interpretation of the presence of the last two descriptors, CATS2D_02_DL and B01[C-Cl], in the 

model is less straightforward. But they contribute less to the performance of the model than X5Av and 

O-061 (based on their associated t-test values, see Supporting Information tables S2 and S4). 

CATS2D Donor-Lipophilic at lag 02 relates to the presence of donor and lipophilic groups at a 

topological distance of 2 in the molecular structure. The detailed analysis of its values in the dataset 

evidenced that it relates to fragments involving OH, NH2 groups or aromatic cycles involving an 

unsaturated N atom (see examples in Figure 4). But none of these fragments were identified as 

unstable. Besides, the associated regression coefficient in the model is negative which would rather 

indicate that these groups are more associated to a decrease in exothermic heat of decomposition.  
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Figure 4 – Examples of fragments associated to CATS2D_02_DL. 

B01[C-Cl] is related to the presence of C-Cl bonds in the molecule. As the regression coefficient is 

positive, their presence seems to increase the heat of decomposition, even if C-Cl bonds are not listed 

in the UN Manual of Tests and Criteria [7] as a chemical group, which indicates explosive or self-

reactive properties in organic compounds. 

4.2. Model based on SMILES 

It may be noticed that none of these 4 descriptors included in this model requires prior 3D structures. 

So, in the perspective of a simpler application of this model, predictions with Eq. 3 have been done 

using descriptors calculated from SMILES codes. Finally, only 5 molecules presented deviations in the 

predictions when the descriptors are extracted by Dragon from quantum-chemical based molecular 

structures or from SMILES codes (see Table S3). For the global dataset (45 molecules), the mean 

absolute errors are similar when the calculations were calculated from quantum-chemical structures 

(MAE = 42.3 kJ/mol) or from SMILES ones (MAE = 42.0 kJ/mol). As highlighted in Supporting 

Information (Table S3), these deviations can be attributed to the consideration of some nitrogen-

nitrogen and nitrogen-oxygen bonds in the molecules, notably for N-O bonds in nitroryl or azoxy 

groups. As a consequence, different bond orders are found by Dragon from the SMILES codes and from 

the 3D structures issued from quantum chemical calculations leading to small differences in the 

calculation of X5Av.  

Considering these differences, the model has also been refitted for calculation from SMILES-encoded 

molecular structure. The refitted model is presented in Eq. 4 and more detailed in Supporting 

Information (Table S4). 

-ΔHdec(kJ/mol) = 5234.5 X5Av + 107.0 O-061 – 66.4 CATS2D_02_DL + 112.3 B01[C-Cl] + 36.6 (4) 

No significant difference is observed in the regression coefficients, and the performance of this SMILES-

based model are almost the same as the model regressed for the descriptors calculated from quantum-

chemical based molecular structures (Eq. 3), as shown in Table 3.  

Accordingly, a similar correlation was observed for the 34 compounds of the training set with R² = 0.88 

and a MAE of 45 kJ/mol (or 14%). The robustness of the refitted model remains good by leave-one-out 

and leave-many-out cross validations (Q²LOO = 0.84; Q²LMO = 0.83) and the Y-scrambling test 

demonstrated no chance correlation issues with R²YS = 0.12 (Table 3). The external validation also 



14 
 

performed similar on the validation set of 11 molecules (close to the one observed in the training set) 

with R²EXT = 0.85 and MAEEXT = 43 kJ/mol = 14%. Moreover, all Chirico criteria were satisfied with Q²F1 

= 0.85, Q²F2 = 0.84 and Q²F3 = 0.90 (i.e. > 0.70), CCC = 0.91 (i.e. > 0.85), 
mr² = 0.79 (i.e. > 0.65) and Δr²m 

= 0.10 (i.e. < 0.20). 

The GA-MLR method was then used to search for possibly better model based on descriptors 

calculated from SMILES molecular codes. 3850 two-dimensional molecular descriptors were calculated 

by Dragon software from the SMILES codes of the 45 potential self-reactive substances investigated in 

this study. During the preliminary filtering of descriptors performed by QSARINS, 3156 (almost) 

constant and/or intercorrelated descriptors were excluded. The GA-MLR method was applied on the 

34 compounds of the training set using the 694 remaining descriptors. Not surprisingly, the model in 

Eq. 4 is found as the model representing the best compromises between correlation and level of 

parameterization.  

5. Discussion  

Observed errors (about 14 % on the validation set) are slightly higher than observed deviation between 

two runs (6%). The performances of the models are mainly limited by the small size of the data set 

compared to its chemical diversity. Nevertheless, these models satisfy all Chirico criteria and already 

provide promising results for first estimations of heats of decomposition for screening purpose. So, 

their use for screening purpose should be favored. 

A detailed analysis of individual prediction errors was conducted. The distributions of the deviations 

observed between predicted and experimental values for the different equations are presented in 

Supporting information (Table S2 and Table S4 for Eq.3 and Eq. 4, respectively). As shown in Figure 5 

(for Eq. 3), observed deviations are relatively well distributed (as shown in the Supporting Information).  

 

Figure 5 – Distribution of absolute deviations observed between predicted and measured heats of 

decomposition in the training and in the validation set with model Eq.3 
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The detailed analysis did not demonstrate any correlation with the differences measured between the 

two DSC runs conducted during the experimental campaigns. Moreover, associated predictions were 

all found in the applicability domain of the models as defined by the Williams plots.  

As previously mentioned, the dataset used is relatively small compared to the chemical diversity of 

compounds it contains. In this condition, the quality of prediction can be inhomogeneous inside its 

applicability domain and molecules presenting some specific molecular features may be poorly 

predicted. Interestingly, a common molecular feature was evidenced for the compounds presenting 

the largest deviations (presented in Figure 6). Indeed, both mol41 and mol43 present a terminal N=O 

fragment, which is not present in any other molecule of the dataset.  

 

Figure 6 – Compounds presenting the largest deviations (in %) between predictions and 

experiments. 

Due to the relative diversity of molecular structures in the dataset and their polyfunctionality, the 

further identification of all structural features that could be associated with large deviation is difficult. 

Nevertheless, the identification of possible structural analogues (presenting the same or similar 

structural features) can be performed to complement the prediction of a target compound. Indeed, 

the presence of very similar structural analogues in the training set can improve the confidence of the 

predictions. Further, the quality of the predictions obtained for structural analogues of high similarity 

(even out of the training set) can also provide good information on the reliability that can be expected 

for the predictions on the target compound. Such investigation of structural analogues is anyway 

recommended when estimating the reliability of QSAR/QSPR prediction for regulatory use and 

particularly in the framework of REACH [57, 58].   

On the 4 descriptors included in these models, two are (electro)-topological indices whereas the other 

two are constitutional ones. So, they don’t account for direct information associated to the 3D or 

electronic structures of the molecules. Besides, the analysis of their chemical interpretation evidenced 

their link with the presence of specific groups in the molecule. Moreover, observed performances are 

similar. So, the SMILES model (Eq. 4) can be considered as the most relevant one. 

Finally, these first models represent useful tools to access preliminary estimations of heats of 

decomposition for screening purpose at early R&D stages, even before synthesis of new substances 

presenting possible self-reactive behaviors. They can, for instance, be used as screening tools to 

exclude compounds that could present very high heats of decomposition. The analysis of structural 

analysis could then be used to improve the confidence of the predictions for the most promising 

candidates before identifying those that could be selected for synthesis and experimental 

characterization. 
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To increase prediction capabilities, improved models should be developed on larger experimental 

datasets covering a more homogeneous chemical domain (with a better representation of all the 

structural features involved in the molecules of the dataset). In this study, the samples were selected 

based upon industrial interest. New experimental campaigns could be conducted including the 

synthesis of molecules selected more specifically with the aim of a better coverage of the chemical 

features. 

6. Conclusions  

In this study, the heats of decomposition of 50 samples of potential self-reactive substances of 

industrial interest were determined by DSC measurements in homogeneous experimental conditions. 

After preliminary data curation, the first QSPR models dedicated to potentially self-reactive substances 

were developed.  

Molecular descriptors were calculated by Dragon software either from 3D molecular structures 

defined from quantum-chemical calculations and from simple SMILES molecular codes. In both cases, 

good models were obtained and successfully validated in agreement with the OECD principles, 

including an external validation satisfying the Chirico thresholds on external validation indices. 

The model obtained from the descriptors calculated from 3D molecular structures gave promising 

performances both on the training set (R² = 0.88) and in the validation set (R²ext = 0.85) considering the 

small size of the database and its chemical diversity. This four-parameter model includes descriptors 

that can notably be linked to the presence of chemical groups associated to self-reactive or explosive 

properties.  

A simpler model was obtained by focusing on the descriptors calculated from SMILES molecular codes 

for easier application. Finally, a refitted version of this model was also found offering the same 

correlation (R² = 0.88) and predictive capabilities (R²ext = 0.85), with only few deviations for molecules 

presenting molecular features encoded differently into the 3D structures and the SMILES notations (in 

particular for some nitrogen-nitrogen and nitrogen-oxygen bonds). 

If improved models could be developed from a larger database in the future, but these first models 

already represent a screening tool capable of assessing reactivity hazard information during the 

development of new chemicals that could exhibit self-reactive behaviors and to anticipate potential 

process safety issues due to the use of substances presenting potential self-reactive behaviors. To 

develop better models, larger databases with a better ratio between size and chemical diversity are 

required. Specific synthesis campaigns specifically designed for this purpose could be of great interest 

from this perspective. 
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