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Abstract 

Understanding the excavation induced fractured zone (EFZ) around drifts is paramount in the context of the deep 

geological disposal for nuclear waste since fractures can introduce pathways for the migration of radionuclides. 

Drifts in the Meuse/Haute-Marne Underground Research Laboratory (URL) have been essentially excavated 

following the two main directions of major and minor horizontal stresses. Field observations on the two drifts GCS 

(parallel to major horizontal stress direction) and GED (parallel to minor horizontal stress direction) in the URL 

show anisotropic shapes of EFZ around drifts through both orientations and anisotropic convergences. These 

anisotropic responses resulted from the inherent and/or induced anisotropies of the host rock; as well as the 

anisotropic stress field.  

This study focuses on 3D numerical modelling of excavation induced anisotropic responses including shape and 

extent of EFZ, and short term convergences of drifts. The main assumption is that the failure of claystone material 

is due to fracturing along weakness planes (ubiquitous joints) and the failure of the rock matrix. The ubiquitous 

joint failure is represented by perfectly plastic models for both tensile and shear yield functions. Their orientation 

is determined from the stress state based on the fracture mechanics, which includes tensile, longitudinal splitting 

and shear (conjugate planes) cracks. The rock matrix is assumed to be elastoplastic with hardening, softening and 

residual behaviours. Confining pressure dependency for the post-peak behaviour with a brittle-ductile transition is 

taken into account for the rock matrix. The proposed model is implemented into a commercial numerical software 

FLAC3D. The main features of the implemented model are shown by the simulation of laboratory triaxial 

compression tests, as well as field observation within the URL. In particular, comparisons between 3D simulations 

of GCS and GED drifts with in situ observations shows promising results, which demonstrates advances of present 

model advances with respect to existing models. 

Keywords: Callovo-Oxfordian claystone; Weakness planes; 3D simulation; excavation-induced damage zone; 

induced anisotropy; short-term behaviour. 

1. Introduction 

The Callovo-Oxfordian claystone (COx) is considered as a potential geological host formation for high-level and 

intermediate-level long-lived radioactive waste in France since this geological formation exhibits in their natural 

state very favourable conditions for long term confining of nuclear waste. In 2000, the French National Radioactive 

Waste Management Agency (Andra) started building an Underground Research Laboratory (URL) in 
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Meuse/Haute-Marne in order to demonstrate the feasibility of constructing and operating a reversible deep 

geological disposal in COx formation (see Fig. 1). The excavation of galleries at the main level (490 m depth) of 

the URL has been essentially performed through the direction of the major and minor horizontal principal stresses. 

The major horizontal stress H  16 MPa, while the minor horizontal stress h is close to the vertical stress v 

being equal to the overburden weight (v h12 MPa) (Wileveau et al. 2007). From the analysis of field 

observation, Armand et al. (2014) showed that excavation induces fracture network around the drifts including 

shear and extensional fractures. Indeed, the authors have reported the existence of two adjacent zones around drifts: 

a “connected” fractured zone (ZFC) including both shear and tensile fractures, and a more extended “discrete” 

fractured zone (ZFD) including only the shear fractures. The ZFC close to the drift wall would correspond, in term 

of permeability, to the well-known EDZ (Excavation Damaged Zone) in which the permeability increases 

significantly (Tsang et al. 2005). Whereas, the ZFD located between the EDZ and the intact rock mass would 

represent the EdZ (Excavation Disturbed Zone) with a moderate permeability change. The in situ observations 

show an anisotropic extent of the induced fractured zone even for the drifts parallel to major horizontal stress for 

which, the initial total stress is almost isotropic in the drift section. Anisotropies in convergence and pore pressure 

distribution have been also evidenced by field measurements (Armand et al. 2013, 2015, 2017b, c; Vu et al. 2020a, 

b). Different factors contribute probably to this anisotropic response of the COx due to the excavation such as: 

anisotropy of far field stresses; inherent anisotropy of rock matrix or/and induced anisotropic responses. Indeed, 

the laboratory tests performed on the COx samples show a slight inherent anisotropy of the stiffness and strength 

(Zhang et al. 2012; Armand et al. 2017a, b; Zhang et al. 2019). It is observed that the maximum strength is reached 

in parallel and normal to the bedding, while the lowest strength occurs at the load orientation in the range of 30°-

60° with respect to the bedding. Regarding the stiffness, Young’s modulus in the direction parallel to the bedding 

planes is higher than that in the perpendicular direction. The ratio between them varies from 1.2 to 2. Moreover, 

the induced fractures provoke an “induced anisotropy” in the rock mass. For instance, anisotropic distribution in 

pore pressure is attributed to both elastic anisotropy and induced fracture zone (Armand et al. 2017b, c; Vu et al. 

2020b).  

The induced fracture zones around drifts in URL have been of interest for several numerical studies. Particularly, 

a benchmark exercise has been proposed in order to provide an overall view of the developed and used models 

regarding the field observations (Seyedi et al. 2017). Modelling based on both discrete elements (Yao et al. 2017) 

and continuum mechanics (Manica et al. 2017; Pardoen et al. 2015; Pardoen and Collin 2017; Souley et al. 2017; 

Trivellato et al. 2019) approaches has been considered. However, inherent anisotropy is usually necessary to model 

the anisotropic shapes of EFZ, as well as the anisotropy in convergences for the gallery GCS (//H). Moreover, 

they usually need the hydro-mechanical coupling and advanced numerical models to improve the results, such as 

non-local model (Manica et al. 2018; Manica et al. 2021a, b), second gradient regularization (Pardoen and Collin 

2017), phase field model (Yu et al. 2021a, b). However, the modelling of anisotropic responses around drifts within 

URL is still challenging. Indeed, previous studies have considered the tunnel excavation by assuming plane strain 

conditions (2D assumption) with the convergence-confining method. This assumption is not suitable for the 3D 

configuration within the URL or the future radioactive waste disposal (Cigéo), for instance, the intersection 

between drifts. Moreover, the reproduction of major observations for drifts excavated following both orientations 
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of major and minor horizontal principal stresses (i.e. GCS and GED) with a unique set of parameters is still a 

challenge.      

This study aims at proposing a phenomenological macroscopic model for modelling in 3D the induced anisotropies 

of short-term behaviour of the COx claystone due to the excavation. Both drifts GCS and GED are considered, 

and the comparison with the in situ observations in terms of EFZ and convergences is made. The rock fracturing 

is modelled by a coupling between weakness planes and elastoplastic rock matrix. The phenomenological model 

proposed by Souley et al. (2011) is improved to describe the behaviour of the rock matrix. It is an elasto-plastic 

model, in which the elasticity is linear and transversely isotropic, and the plasticity is formulated from a 

generalization Hoek and Brown criterion for shear behaviour and Rankine criterion in tension. Non-associated 

flow rule is used for shear plasticity, while associated flow rule is assumed in tension. This constitutive model 

describes the behaviour of COx observed by tests on the sample, including strain hardening, strain softening and 

residual phases, as well as the transition between the brittle failure at low confining pressure and the ductile 

behaviour under high confining stresses. Weakness planes concept (commonly called “Discontinuous weakness 

plane” or “Ubquituous Joints”) is introduced to model the failure of bedding planes and the induced anisotropy 

within large-scale continuum approaches. Nevertheless, no weakness plane is predefined. Joints occur according 

to the stress state and their orientation is determined based on the fracture mechanic theory. There are three fracture 

types (Paterson 1978; Diederichs 2003, 2007; Jaeger et al. 2007): tensile crack perpendicular to the tensile stress 

direction; longitudinal splitting crack when the confining stress is equal or close to zero and crack occurring 

following two conjugate planes similar to those observed in the triaxial compression tests under moderate 

confining pressure. An elastic perfectly plastic behaviour based on the Mohr-Coulomb and Rankine criteria is used 

to describe the shear and tensile failures along the weakness planes. The main feature of the proposed model will 

be firstly illustrated by the simulation of a triaxial test. Secondly, the model is applied for 3D modelling of 

excavation of two drifts in the URL (GCS//H and GED//h). 3D simulation allows to overcome the convergence-

deconfining assumption and gives 3D characteristics of the results (convergence and EFZ change from one section 

to another). The EFZ is carefully analysed and compared to the field observation, particularly their extent. 

Comparisons are also made for short term convergences between the numerical solution and the analysis of in-situ 

measurements conducted by Armand et al. (2013) and an empirical model proposed by Guayacan Carrillo et al. 

(2016b). 

This paper is organised as follows. Section 2 gives an overview on major experimental observations and 

constitutive models of anisotropic behaviour of geomaterials. Section 3 shows the constitutive equations of the 

present model and its main features through the simulation of triaxial compression tests. Section 4 presents the 3D 

modelling of two drifts in the URL and the comparison between the numerical results to the field measurements. 

Conclusions and perspectives will be finally drawn in section 5.    
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2. Review of the anisotropic behaviour of geomaterials 

2.1. Experimental observations 

In regards with their microstructure such as particle arrangement, micro cracks, bedding (weakness) planes, among 

others, rocks exhibit often anisotropic behaviour (deformation and strength). Considerable efforts have been 

devoted to the study the rock anisotropy. Much research had been carried out, including experimental 

characterization (Nova 1980; Niandou et al. 1997; Duveau et al. 1998; Tien et al. 2006; Nasseri et al 2003; Shengli 

et al. 2012, Abdi et al. 2014; Zhang et al. 2019; etc.), theoretical studies and numerical modelling (Duveau and 

Shao 1998; Pietruszczak et al. 2002; etc). All the results obtained have shown that the rock strength varies with 

the loading orientation. The variation of the compressive strength versus the angle between the loading orientation 

to a reference direction (e.g. bedding plane) is the most common representation of the nature of strength anisotropy. 

Indeed, the strength of bedded rock usually depends on the stress state and the loading orientation to the 

stratification. The maximum strength is often found in the directions normal and parallel to the bedding and the 

minimum strength is usually reached when the angle of inclination between the major stress and the weak planes 

is ranged from 30 to 60°. The ratio of resistance in the two main directions related to the anisotropy or the ratio 

between the minor and major strengths are used to quantify the degree of anisotropy. Failure may occur in very 

complex ways, combining sliding and separation along the planes of weakness, and a shear band in the matrix. 

This constitutes one of the main ingredients of the macroscopic phenomenological model proposed subsequently. 

Measurement of the propagation velocities of ultrasonic waves on Callovo Oxfordian claystone showed a structural 

anisotropy (David et al. 2005). The anisotropy of the wave propagation speed and the dynamic modules has been 

also observed on the laboratory tests with acoustic emissions monitoring (Sarout and Guéguen 2008). These tests 

show a ratio of dynamic elastic modulus in the parallel direction and that in the perpendicular direction to the 

bedding from 1.05 to 1.4. The measurement from triaxial compression tests show that this elastic anisotropy ratio 

could be larger but remains lower than 2 (Zhang et al. 2012; Zhang et al. 2019). Besides, test results showed that 

the strengths in the directions parallel and perpendicular to the stratification are close. The lowest strength is 

measured at about 30°- 45° with respect to the bedding plane. The ratio between minimum and maximum strength 

values is close to 0.7 for most of the performed tests (Zhang et al. 2019).  

Compared to Opalinus clay and Tournemire shale, the shear strength is slightly greater in the direction parallel to 

the bedding compared to that in the perpendicular direction. In addition, the minimum strength is reached for 

samples at 45 ° for Opalinus clay, while for Tournemire shale, this minimum is reached between 30 and 60°. 

Concerning the mechanical anisotropy characterized by the ratio of the elastic deformability normal and parallel 

to bedding, in comparison with the Opalinus clay and the Tournemire shale, the anisotropy of the COx claystone 

is less pronounced. In addition, the elastic stiffness of the COx claystone is higher than that of the Opalinus clay 

but lower than the Tournemire shale (Zhang et al. 2019). 
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2.2. Modelling approaches 

Based on the experimental results, various failure criteria for anisotropic materials exhibiting a visible inherent 

anisotropy have been proposed in the literature. Subsequently, these criteria led to the development of anisotropic 

rheological models in the framework of damage mechanics and/or plasticity. 

(a) Theoretical criteria 

The rock is viewed as a solid body with properties that continuously vary with the load direction. The main features 

of these mathematical criteria are that anisotropy orientation issues are explicitly considered, and their 

formulations mostly use linear and quadratic terms of the stress components. Pariseau (1979) developed a failure 

theory for anisotropic rocks by modifying the orthotropic criterion of Hill (1950) for metals built in the framework 

of plasticity. Pariseau’s theory takes into account the failure of geomaterials under hydrostatic stress, the difference 

between compressive and tensile loadings, the dependence of the strength on the mean stress (or confining stress), 

but also predicts a continuous variation of strength as a function of the orientation to the bedding. The approach 

of Boehler and Sawczuk (1977) is more general and rigorous for transverse isotropic and orthotropic materials and 

based on the generalisation of Mohr-Coulomb and von Mises isotropic criteria within the framework of non-linear 

mechanics of anisotropic solids and tensor functions theory. Even if for the criteria of this group, the 

thermodynamic framework is well-stated, it is often difficult to identify the involved parameters from conventional 

laboratory tests. This, in addition to their mathematical complexity and lack of their experimental validation, limits 

their applications to engineering practices (Mróz and Maciejewski 2003, Lee and Pietruszczak 2008). 

(b) Empirical criteria 

The empirical criteria are mainly extensions of isotropic criteria (Coulomb, Hoek and Brown or von Mises widely 

used in engineering) and based on the theory of variational strength parameters (i.e. cohesion c and friction  for 

Mohr-Coulomb or von Mises criteria; or parameters m, s and c for Hoek and Brown criterion) as a function of 

the angle between the load direction and the bedding. These empirical criteria are based on the concept of the 

critical plane which corresponds to the plane in stresses space in which the rock damage or failure reaches its 

maximum value. Initiated by Coulomb, the failure function is defined in terms of tensile components acting on the 

physical plane of failure; that is to say, a potential failure plane corresponding to a maximum of failure condition  

(Walsh and Brace 1964; Jaeger and Cook 1979; Hoek and Brown 1980; Hoek 1983; Duveau and Shao 1998; 

Pouragha et al. 2018; etc). Even if they suffer from physical and mathematical fundamentals, empirical criteria are 

of interest in engineering because they simply extend isotropic criteria widely used in numerous applications and 

the identification of the involved directional parameters can be achieved easily by fitting experimental data 

(McLamore and Gray 1967; Nasseri  et al. 2003; Lee and Pietruszczak 2008; Saroglou and Tsiambaos 2008; Abdi 

et al. 2014; Wang and Yu 2014). 

(c) Criteria based on the fabric tensor 

In addition to the phenomenological approach to model the failure of anisotropic geomaterials through the strength 

characteristics presented above for the empirical criteria, other researchers have introduced a fabric tensor concept 
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to describe the bedding structure of geomaterials (Pietruszczak and Mróz 2000, 2001; Lee and Pietruszczak 2008). 

Then, an anisotropic strength theory relating the microstructure was then developed by these authors. In this 

approach, the critical plane incorporating the spatial distribution of microcracks was applied for a quantitative 

description of compressive strength variation with the loading orientation relative to the anisotropy axes (Mróz 

and Maciejewski 2002, 2003). Since then, several anisotropic criteria based on this approach have been proposed 

by extending the Coulomb, Lade or Hoek and Brown criteria for the maximum strength acting on the microcrack 

or critical planes (Lade 2007, Lee and Pietruszczak 2008). One of the advantages of the fabric tensor approach is 

that the anisotropic failure and mechanical behaviour could comprehensively reflect the structural and mechanical 

effects of the bedding structure from microstructural observations, and the theoretical framework is 

thermodynamically well established. In addition, its numerical implementation is relatively easy (Pardoen et al. 

2015, Nguyen and Le 2015), which facilitates their use in engineering and research applications. 

(d) Criteria based on the concept of “Ubiquitous Joints” or “Discontinuous Weakness planes” 

These criteria, part of a discontinuous approach, are based on the weakness or critical planes (Sainsbury et al. 

2008, Tran-Manh et al. 2015; Ismael and Konietzky 2019) and well suited for rocks and geomaterials with visible 

inherent anisotropy. In these criteria, the failure mechanisms that occur along the weakness planes and the intact 

rock are distinguished. The basic assumption is that the rock fails either through shear and tensile fractures or 

sliding along weak planes and these different failure modes are used together to determine the actual failure 

criterion. Assuming that the weakness planes are oriented along the cracks and based on the extension of Griffith’s 

theory, several criteria within this category were proposed in the literature (Walsh and Brace 1964; Hoek and 

Brown 1980, Hoek 1983; Duveau and Shao 1998). Generally speaking, the rock matrix is modelled by nonlinear 

criteria involving the three invariants of stresses, while sliding along the planes of weakness follows the Mohr-

Coulomb criterion, Hoek and Brown criterion or the JRC-JCS model (Bandis et al. 1985) developed for rock 

fractures (Wang and Huang 2009; Prassetyo et al. 2017). 

As for the empirical criteria, most of the criteria within this category are straightforwardly used in rock engineering, 

because they are stated on well-familiar strength criteria. Finally, beyond its interest to model the failure of 

anisotropic rocks, the discontinuous approach can also be interesting for modelling the induced damage by 

combining the isotropy or inherent anisotropy of the rock with its cracking by relating the orientation of the induced 

fracture planes to that of the loading, as discussed later in the proposed constitutive model. 

(e) Constitutive models 

Based on the previous 4 groups of anisotropic criteria, several anisotropic mechanical models have been developed 

within the framework of continuum damage mechanics and/or plasticity, according to two main approaches: 

micromechanical and phenomenological. 

The micromechanical approach allows to accurately account for the certain physical mechanisms involved in the 

nucleation and the propagation of microcracks on a suitable micro-structural scale. The evolution of the damage 

variable is based on an analysis of the effective mechanical properties of the microcracks: the criterion of 
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nucleation and microcracks growth being evaluated at the microscopic scale. The bases of the micromechanical 

models are the kinetics of microcracks, the growth criterion, as well as the evaluation of elastic properties due to 

displacements through discontinuities at the microcrack scale. Thus, these models are formulated in a rigorous 

micro-macro framework following a general homogenization procedure of heterogeneous media, as well as clear 

thermodynamic considerations of irreversible mechanisms of dissipation (Zhu and Shao 2017) and applied to 

structural calculations (Levasseur et al. 2015). Other micromechanical models use the fabric tensor concept for 

induced anisotropy of initially anisotropic material and consider the directional variation in the evaluation of 

microcracks strength (Shen and Shao 2015, Levasseur et al. 2015). The numerical implementation of 

micromechanical models is rather laborious, even though progress has been made in recent years in terms of 

computing resources, resolution algorithms and homogenization techniques. It is therefore not surprising 

nowadays to find engineering applications of these models in the literature: this is the case for Tournermire 

claystone (Pietruszczak et al. 2002, Nguyen and Le 2015) and COx claystone (Pardoen et al. 2015) and Opalinus 

clay (Nguyen and Le 2015). 

Phenomenological models are based on the reproduction of observed phenomena (damage and/or plasticity) from 

mechanical tests performed in the laboratory or in situ. They are stated on the theory of damage and plasticity of 

the homogeneous continuous medium using internal variables (scalar, vector, tensor type) to describe the involved 

mechanisms. The evolution of damage and plastic internal variables is then formulated according to the stress or 

strain tensors as part of the thermodynamics of irreversible processes and/or the linear fracture mechanics for 

damage. The elastoplastic models formulated on the concept of ubiquitous joints are fully part of this category. 

The phenomenological models provide a powerful tool that can be easily implemented in numerical codes. 

However, they have the disadvantage of employing some concepts or assumptions driven by mathematical 

conveniences rather than physical interpretations of microcracking processes such as the concept of effective 

stresses, the unilateral effect of microcrack reclosure or the coupling between damage and plasticity. 

Several phenomenological models are reported in the literature and numerous have been used to describe the 

mechanical and hydromechanical behaviour of COx claystone, without however reproducing entirely the 

observations (convergences, pore pressure, expansion, shape and extension of the fractured zones) carried out 

around the URL drifts oriented in the two directions of the horizontal principal stresses. This is one of the reasons 

why we propose a phenomenological model for the behaviour of COx claystone. More specifically, unlike all 

models based on the concept of ubiquitous joints published in the literature (Wang and Huang 2009, 2014; Tran-

Manh et al. 2015; Prassetyo et al. 2017; Ismael and Konietzky 2017, 2019; Chang and Konietzky 2018) where the 

weakness or critical planes have a fixed orientation independently to the loading, herein the weakness plane is not 

necessarily imposed (which is well-suited for non-visible anisotropies) and the strength anisotropy is induced by 

these planes of weakness: this can be viewed as induced damage without changes in elastic stiffness. 



8 

 

3. Constitutive model equations 

3.1. Main assumptions  

As shown by Armand et al. (2017b), the main features of the short-term mechanical behaviour observed on 

claystone samples under triaxial tests can be summarized as follows: (a) the behaviour is linear elastic under low 

deviatoric stress; (b) strain hardening starts approximately at 50% of the peak strength; (c) strain softening for a 

confining pressure lower than 20 MPa; (d) the residual behaviour is completely frictional and governed by the 

behaviour of the induced well-localized shear bands or macro-cracks (Bésuelle and Lanata 2014; Desbois et al. 

2017; Zhang 2016, Zhang et al. 2019). There is a strong dependence of the mechanical behaviour on the confining 

pressure, marked by a transition from a brittle failure toward a ductile behaviour when the confinement increases. 

The basic assumption is that the failure of an anisotropic material is due to either fracturing of bedding planes 

(and/or induced weakness planes) and the failure of the rock matrix. Unlike models based on the concept of 

“ubiquitous joints” widely published in the literature (Wang and Huang 2009, 2014; Tran-Manh et al. 2015; 

Prassetyo et al. 2017; Ismael and Konietzky 2017, 2019; Chang and Konietzky 2018; among others) in which the 

orientation of weakness planes is imposed consistent for geomaterials with visible inherent anisotropy, herein no 

predefined weakness plane is assumed in advance. The critical plane is specified by maximizing the yield function 

with respect to the plane orientation (Walsh and Brace 1964; Jaeger and Cook 1979; Hoek and Brown 1980; Hoek 

1983; Duveau and Shao 1998). 

Experiments on brittle failure reveal two fundamental types of induced fractures: tensile/extension (mode I) and 

shear (modes II and III) which individually induces different displacement field with respect to the fracture 

surfaces and orientation of the fracture plane depending on the applied stress state. In Mode I, fractures are 

associated with either tensile fractures occurring when the maximum principal stress 3 (with the convention that 

compressive stresses are assumed to be negative and 1 ≤ 2 ≤ 3) reaches the tensile strength, for instance, under 

uniaxial tension or axial extension conditions in. This type of fracture also occurs when the major principal stress 

3 (or confining pressure) is equal or close to zero and the minimum compressive stress 1 is axial stress, as in 

uniaxial compression configuration. This fracture is also called the longitudinal splitting one that its occurrence is 

evidenced by experimental observation from laboratory samples and in the vicinity of underground structures 

(Paterson 1978; Diederichs 2003; Jaeger et al. 2007), as well as by theoretical analysis (Diederichs 2007). The 

main characteristic of this type of fracture is a separation of two formerly contiguous surfaces with a displacement 

field parallel to the maximum principal stress 3 and normal to the fracture plane. 

Under moderate confining pressure, shear failure occurs along two conjugates shear planes located symmetrically 

with respect to the direction of the axial stress 1 (Paterson 1978). The orientation of these fracture planes can then 

be determined based on the weakness plane model firstly introduced by Jaeger (1960) or on its generalization 

through the critical plane approach. The latter is based on the stresses acting on the plane where the crack 

nucleation is expected to occur (Jaeger and Cook 1979; Pietruszczak and Mróz 2001; Lee and Pietruszczak 2008; 

Pouragha et al. 2018). Finally, the main concept of the critical plane approach is to search for the orientation of a 
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critical plane on which the failure criterion reaches its maximum value. Then the critical plane framework requires 

finding the first stress state during loading history that satisfies the yield condition on a potential plane (Pouragha 

et al. 2018), for example the maximum of failure criterion (Walsh and Brace 1964; Jaeger and Cook 1979; Hoek 

and Brown 1980; Hoek 1983; Duveau and Shao 1998). 

The straight-line approximation to the shear fracture envelope is known as the Coulomb fracture criterion for shear 

strength, whose slope represents the competing effects between normal and shear stresses (n, ) acting on these 

fractures. Since this shear strength line has a positive slope, the angle f is then less than 45°. Considering the 

potential fracture planes for a given (n, ), the Coulomb-Navier criterion allows to determine the orientation of 

the conjugate shear planes with respect to 1–direction to be expressed as follows: 𝜃𝑓 = ±(
π

4
−

𝜑𝑤𝑝

2
) where 𝜑𝑤𝑝 

is the internal friction angle of the weak planes. 

In addition, under triaxial compression test with sufficiently high confining pressure, the rock becomes fully 

ductile with the appearance of a network of shear micro-cracks accompanied by an amount of plastic deformation 

(Jaeger et al. 2007). These different fracture modes observed both on samples during laboratory tests and in situ 

in the vicinity of an opening are recalled in Fig. 2a (Diederichs 2003). Finally, under high confinements, an absence 

of scale effect on the rock strength with strength at laboratory-scale almost identical to that in situ. 

Based on these experimental evidences of failure in the field of rock mechanics, the induced anisotropy is herein 

described by weak planes whose orientation depends on the induced stress distribution. More precisely we assume 

that: (a) extension fracture occurs in tension and the fracture is normal to the tensile stress direction; (b) splitting 

fracture when the principal stress 3 is equal or close to zero and fracture plane is perpendicular to 3 (i.e. parallel 

to 1-direction); (c) under triaxial compression configuration we consider that the rock fails along conjugate 

fractures with an angle f about ±(
π

4
−

𝜑𝑤𝑝

2
) with respect to the direction of 1. In the latter case, an evolution of 

f from 0 (values of 3 near zero) to (
π

4
−

𝜑𝑤𝑝

2
) with the increase in confining pressure could be expected. However, 

in absence of experimental data on the value of confining stress from which the orientation of the induced fracture 

plane reaches  (
π

4
−

𝜑𝑤𝑝

2
), a value of 0.1 MPa is assumed in this paper. Then, the induced macrocrack orientation 

(depending on the current stress state) adopted in this study, is schematically illustrated in Fig. 2b. This choice of 

the weakness plane orientation remains in accordance with the experimental results of failure plane orientation 

reported by Zhang (2016) and Bésuelle and Lanata (2014) as well as with theoretical analysis by Jaeger et al. 

(2007) and Diederichs (2003). 

Thus, the main assumptions are summarized below. The matrix is assumed to be linear elastic, transversely 

isotropic (below the elastic limit) and plastic with strain hardening and softening followed by a residual stage. The 

tensile and shear plasticity are described by isotropic nonlinear yield functions derived from the laboratory 

characterization. A non-associated flow rule is used with the absence of volumetric strain beyond large plastic 

distortion in order to reproduce better the volumetric behaviour (mainly sliding) inside the induced shear bands or 

fracture planes. Induced fractures are modelled as the planes of weakness represented by joints whose orientations 

have been discussed above. A perfectly plastic behaviour is assumed along these weakness planes according to the 
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Mohr-Coulomb criterion for shear plasticity and Rankine criterion for tensile plasticity. The elasticity of the 

weakness plane is also considered to be linear and transversely isotropic. 

There are no experimental data available on the anisotropic plastic behaviour of COx claystone regarding the 

elastic limit and the residual strength as a function of the bedding angle  (i.e angle between the axial load direction 

and the bedding, which coincides with the sampling orientation). As a first approximation, we do not consider the 

evolution of yield surfaces with respect to the bedding angle for the strain hardening/softening and residual phases. 

In other words, the matrix remains plastically isotropic. It is this same isotropic plasticity assumption that has been 

assumed for identifying the Hoek-Brown parameters for elastic limit, peak and residual strengths of COx claystone 

from laboratory data (Souley et al. 2011, Zhang and Rothfuchs 2004, Souley et al. 2017, Zhang 2016). 

Regarding the COx claystone, triaxial tests with loading-unloading cycles performed before the peak strength do 

not indicate changes in elastic moduli (Zhang and Rothfuchs 2004, Zhang et al. 2019). This justifies our choice to 

limit the pre-peak phase to an elastoplastic mechanism with strain hardening. Conversely, the post-peak behaviour 

of COx claystone characterized through biaxial and triaxial tests by numerous authors is accompanied by the 

formation of well-localized shear bands or macroscopic cracks (Bésuelle and Lanata 2014; Desbois et al. 2017; 

Zhang 2016; Zhang et al. 2019). However, no quantification of strength, cohesion and modules decrease has been 

done in these shear bands or fractured samples during the post-peak regime. The damage of the COx claystone, 

which is then only observed in the post-peak phase, was approached in the proposed model by the theory of 

plasticity by assimilating these fractures or shear bands to critical planes of failure and which results in a loss of 

strength without a modification of the effective stiffness. 

 

3.2. Case of the intact rock matrix  

The rheological model proposed is based on results obtained from different laboratory characterizations on the 

mechanical behaviour of COx claystone (Armand et al. 2017b). 

It has been shown that a failure criterion based on the Hoek and Brown (1980) criterion (eq. 1) is suitable for 

describing the shear strength of the COx claystone (Su 2003; Souley et al. 2011; Souley et al. 2017). However, 

since the COx claystone in its natural state have no tectonic fractures, classical signification of the Hoek and Brown 

parameters cannot be used for determining the rock mass strength from the results of tests on samples and taking 

into account the fracturing of the rock. 

𝜎1 = 𝜎3 −√−𝑚𝜎𝑐𝜎3 + 𝑠𝜎𝑐
2                                (1) 

where 1 and 3 are minor and major principal stresses (compressive stresses are negative, σ1 ≤ σ2 ≤ σ3), m and 

s are material constants, c is the value of stress reached at the elastic limit and peak under unconfined compressive 

condition. 

The generalization of equation (1) in the space of three stress invariants (p, q, ) leads to the following criterion 

for plasticity initiation and peak strength: 
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𝐹𝑠
𝑚 =

4

3

𝑐𝑜𝑠2 𝜃

𝐴
𝑞2 + (

𝑐𝑜𝑠 𝜃

√3
−
𝑠𝑖𝑛𝜃

3
) 𝑞 + 𝑝 −

𝐵

𝐴
                             (2) 

where p represents the mean stress, q the generalized deviatoric stress and  the Lode’s angle, A and B two 

independent parameters (A = m c and B = s c
2, evaluated at the elastic limit and peak). In this relationship, the 

geometry of the stresses is considered through the Lode’s angle. As a result, the failure criteria can be differentiated 

according to the compression ( = /6) and extension ( = -/6) stress paths, as evidenced by laboratory tests 

carried out on claystone samples (Armand et al. 2017b). In particular, for a mean stress of -12 MPa, the ratio 

between extension and compression peak strengths is 0.67, which is consistent with the results of laboratory tests. 

For residual strength, the same shapes of yield function as the peak are suitable when the confining pressure does 

not exceed the transition stress between the ductile and softening behaviours, 3
bd. Beyond this confining pressure, 

residual strength coincides with the peak criterion. The needed parameters of residual strength (when 3 < 3
bd) 

are sr and mr. By default, sr is taken equal to 0 and mr is back-calculated so that the residual strength intercepts the 

peak shear strength envelope for 3
bd of confining pressure. 

The strain hardening in pre-peak and strain softening in post peak are modelled as a non-linear change (cubic 

spline) of A with respect to the internal plastic variable  (from the elastic limit Ai to the peak Ap and from Ap to 

Ar). We also considered a parabolic evolution of parameter B as a function of  for the hardening in pre-peak and 

softening in post-peak, with horizontal tangents at peak and the beginning of the residual phase. Details of the 

yield function evolution from initial plasticity to peak (pre-peak regime) and then to residual behaviour (post-peak 

regime) are referred to Souley et al. (2011, 2017). The yield function corresponding to different loading (elastic 

limit; peak and residual) are shown in Fig. 4b and Fig. 5b. 

Under tensile stresses, we propose a «cut-off» of mean stress to the value of tensile strength t (in triaxial condition, 

which is by default: B/A), this leads to the following yield surface in tension: 

𝐹𝑡
𝑚 = 𝑝 − 𝜎𝑡                                 (3) 

As a reminder, a quasi-isotropic plastic behaviour can be considered as a first approximation to describe the 

nonlinear response of the rock matrix. The induced anisotropy due to the change of stresses will be approximated 

by an assumption of the existence of a weakness plane with a certain orientation. As a result, the independent 

parameters A and B do not change with the loading direction. 

It is known that for most geomaterials, a non-associated flow rule is generally required to reproduce the transition 

between the contraction and dilation in the plastic volumetric strain. Laboratory tests on COx samples show that 

the hypothesis of the associated flow rule over-estimates the material dilatancy. Indeed, experimental data exhibit 

a contractant behaviour (Chiarelli et al. 2003; Zhang and Rothfuchs 2004; Hoxha et al. 2004). At best, a dilatancy 

develops near the residual strength of the tests carried out under low confining pressures. Contractant or dilatant 

irreversible deformations are explained by two independent phenomena that occur during the post-pic phase as 

reported by Conil-Aublivé et al. (2004): the mineral grains deform elastically, and the grains or part of grains move 

slightly under the applied stress and slide freely relative to each other. From a physical point of view, it is 
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conceivable that the dilatancy disappears for large deformation, because of a slip along a fracture plane where the 

roughness has been sheared. 

The following plastic potential based on Drucker-Prager form is adopted. 

𝐺𝑠
𝑚 = 𝑞 + 𝛽(𝛾) 𝑝                              (4) 

where   (the internal flow variable) is the plastic distortion,  is the dilatancy rate and varies between an initial 

value 0 (elastic limit) and an asymptotic value m. The evolution of () is given by: 

𝛽(𝛾) = {
𝛽𝑚 − (𝛽𝑚 − 𝛽0)𝑒

−𝑏𝛽𝛾             𝛾 ≤ 𝛾𝑢𝑙𝑡  

𝛽𝑢𝑙𝑡𝑒
(1 − 

𝛾
𝛾𝑟𝑒𝑠⁄ )

                          𝛾 > 𝛾𝑢𝑙𝑡
                              (5) 

where b is the plastic flow velocity, 𝛽𝑢𝑙𝑡 = 𝛽𝑚 − (𝛽𝑚 − 𝛽0)𝑒
−𝑏𝛽 𝛾

𝑢𝑙𝑡
 and 𝛾𝑢𝑙𝑡 defined below. 

For high levels of deformation, it can be physically expected that the dilation will disappear and a purely frictional 

behaviour resulting from the complete shearing of the roughness on the fracture surfaces (or the shear band) thus 

created. In order to account for the sliding along the fracture plane after a significant relative displacement (or 

plastic strain), a loss of dilation (i.e. shearing at constant volume) is then imposed. The ultimate plastic strain from 

which the dilatancy decreases is noted ult. Beyond this plastic deformation, the dilatancy rate gradually decreases 

and tends asymptotically to zero. 

Finally, an associated flow rule is assumed in tension. 

Gt
m = p                              (6) 

Equations (2) to (6) associated with the hardening/softening flow and a transition between brittle and ductile 

responses, allow to describe the nonlinear behaviour of the matrix. 

We designate (mp, sp) and (mr, sr) as the values of parameters (m, s) at the peak and the beginning residual phase. 

Assuming a transition between brittle and ductile behaviour for high confining pressure (3 > 3
b-d representing 

the brittle/ductile transition), residual strength must coincide with the peak strength. Consequently, equation (1) 

for peak and residual strengths makes it possible to express a relationship between the peak and residual strength 

parameters: 

𝑚𝑟 = 𝑚𝑝 + (𝑠𝑝 − 𝑠𝑟)
𝜎𝑐

𝜎3
𝑏𝑑                          (7) 

3.3. Case of weakness planes (induced anisotropy)  

In this study, the failure criterion on the weakness plane is a combination of Mohr-Coulomb envelope with strength 

«cut-off» in tension (i.e. Rankine criterion). Obviously, the tensile strength of these discontinuities should be lower 

than the value of 𝐶𝑤𝑝/𝑡𝑎𝑛(𝜑𝑤𝑝), which is the intersection between the Mohr-Coulomb yielding and the horizontal 

axis in plane (nn, ) (with 𝐶𝑤𝑝 and 𝜑𝑤𝑝 are the cohesion and friction angle of the weakness planes). This is 
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justified since we can associate each plane of weakness as a dilatant (or not) rock discontinuity (depending on its 

roughness type: primary and/or secondary).In the literature, more complex criteria have been considered (Duveau 

and Shao 1998; Prassetyo et al. 2017). The projection of a state of stress on the combination envelope is controlled 

by a non-associated flow rule for shear plastic behaviour and an associated flow one for tensile plastic behaviour. 

The local system (s, t, n) of reference axes is defined by the weakness plane consisting of (s, t) and n the outward 

unit normal of this plane. The magnitude of the tangential (shear) stress component on the weak plane, and the 

associated shear strain variables are: 

 𝜏 = √𝜎𝑠𝑛
2 + 𝜎𝑡𝑛

2   and   𝛾𝑤𝑝 = √𝜀𝑠𝑛
2 + 𝜀𝑡𝑛

2                             (8) 

The generalized stress vector used to describe the weak-plane yield surface has four components: ss, tt, nn, . 

The components of the corresponding generalized strain vector are: ss, tt, nn, wp. The weakness plane yield 

function with a tension cut-off is expressed in terms of (nn, ) as follow:  

{
𝐹𝑠
𝑤𝑝 = 𝜏 + 𝜎𝑛𝑛 𝑡𝑎𝑛 (

𝑤𝑝
) − 𝐶𝑤𝑝 

𝐹𝑡
𝑤𝑝 = 𝜎𝑛𝑛 − 𝜎𝑡

𝑤𝑝                           
                                (9) 

where σt
wp is the tensile strength of the weakness plane. 

The potential function is composed of two functions used to define shear (non-associated) and tensile (associated) 

plastic flow: 

{
𝐺𝑠

𝑤𝑝 = 𝜏 + 𝜎𝑛𝑛 𝑡𝑎𝑛(𝜓𝑤𝑝) 

𝐺𝑡
𝑤𝑝 = 𝜎𝑛𝑛                            

                                 (10) 

where wp is the weakness plane dilation angle. 

We assume that, the dilatancy rate along the weakness plane is constant and equal to tan (ψ
wp
) during the softening 

stage of the rock matrix (wp  ult - peak). Beyond to this deformation threshold, the dilatancy rate of weakness 

plane starts to decrease: 

𝑡𝑎𝑛(𝜓) = {

𝑡𝑎𝑛(𝜓𝑤𝑝)                                                 𝛾
𝑤𝑝 ≤ (𝛾𝑢𝑙𝑡 − 𝛾𝑝𝑒𝑎𝑘) 

𝑡𝑎𝑛(𝜓𝑤𝑝)𝑒
(1 − 

𝛾𝑤𝑝

(𝛾𝑢𝑙𝑡−𝛾𝑝𝑒𝑎𝑘)
⁄ )

          𝛾𝑤𝑝 > (𝛾𝑢𝑙𝑡 − 𝛾𝑝𝑒𝑎𝑘)
                              (11) 

The orientation of weakness plane depends on the stress state, which is determined according to the assumption 

presented in section 3.1 (see Fig. 2b). 

3.4. Numerical implementation and verification 

The proposed model is implemented according to the assumption of small strain. The total strain increment d can 

be subdivided in an elastic part e
d and a plastic part p

d : 
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𝑑𝜀 = 𝑑𝜀𝑒 +  𝑑𝜀𝑝    with    𝑑𝜀𝑝 =  
𝜕𝐺

𝜕𝜎
                                (12) 

where  is the plastic multiplier and G is the plastic potential for shear or tensile plastic flow, for both solid rock 

and weakness plane. 

If 𝐶 represents the fourth order elastic compliance tensor for transversely isotropic geomaterial, the incremental 

expression of Hooke’s law in terms of generalized stress and strain tensors has the form: 

𝑑𝜎 = 𝐶 𝑑𝜀𝑒 = 𝐶 (𝑑𝜀 − 𝑑𝜀𝑒)                               (12) 

Finally, the consistency condition 𝑑𝐹(, 𝜎) = 0 allows to express the stress increment as a function of total strain 

increment: 

𝑑𝜎 = [𝐶 −
(𝐶 ∶ 

𝜕𝐹

𝜕𝜎
)(𝐶 ∶ 

𝜕𝐺

𝜕𝜎
)

𝜕𝐹

𝜕𝜎
 ∶ 𝐶 ∶ 

𝜕𝐺

𝜕𝜎
 − 

𝜕𝐹

𝜕
  
𝜕𝐺

𝜕

]  𝑑𝜀                         (13) 

where F is the yield function;  is the accumulated plastic strain (e.g.  for the matrix rock or wp for the weakness 

plane);  is the generalized deviatoric stress (i.e. q for the matrix rock and the tangential stress () for the weakness 

plane). 

For both rock matrix and weakness planes yield surfaces, a function representing the bisector between domains Fs 

> 0 and Ft > 0 (see Fig. 2b and Appendix A) is evaluated in order to select the type of failure (in shear or in tension). 

At each step, the computation of new stresses is achieved by testing firstly the yield functions in the solid matrix, 

then along the plane of weakness. More precisely, the main algorithm is recapitulated below. 

• First approximation of stress tensor i, is evaluated by adding to the previous stress tensor the stress 

increment computed from the total strain increments and the Hooke’s law. 

• Computation of the yield function for rock matrix, Fm(pi, qi, i) according to equations (2) and (3) 

respectively for shear and tension failure. If the stress state, i, satisfies the yield criterion: Fm(pi, qi, i) > 

0, the new increment of stresses is computed as well as the new stress tensor, o. If Fm(pi, qi, i) ≤ 0, the 

current stress components are: o= i. 

The resulting stress tensor, o, is then examined for yield function on the weak plane.  

• Corresponding stress components in the local axes, ’o, are computed using the transformation from global 

coordinate system (x, y, z) to the local one (s, t, n). 

• Computation of the yield function for weak plane, Fwp(nn’o, ’o) according to equation (9). If the stress 

state ’o verifies the yield criterion Fwp(nn’o, ’o) > 0, the new increment of stresses is computed as well 

as the new stress tensor, n. If Fwp(nn’o, ’o) ≤ 0, the current new stresses are: n= ’o. 

• Back to global coordinate system (x, y, z). 
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• Parameters depending on the internal plastic variables are updated.  

This routine has been written in C++ and compiled as a Dynamic Link Library (DLL) file that can be loaded 

whenever it is needed.  

All parameters for the rock matrix have been already identified from triaxial tests for the short-term response (Su 

2003; Chiarelli et al. 2003; Armand et al. 2017b; Souley et al. 2017) and summarized in Table 2. Note that results 

of laboratory tests showed a wide variability of plastic strains, elastic limit, peak and residual strengths. The fitting 

of the parabolic criterion of Hoek and Brown (1980) based on these experimental data, allows to propose two sets 

of parameters m, s and c (even-though remember, these parameters no longer have the same meaning as the 

original Hoek and Brown definition) for the elastic limit and peak strength: one called “average” that was obtained 

by best fit of Hoek and Brown criterion from the experimental data and the other called “lower” which represents 

the lower bound of the experimental data. Regarding parameters related to the failure along planes of weakness, 

they are currently not able to be calibrated based on the laboratory tests. These parameters are chosen in the way 

that the modelling can reproduce the observations in the convergence and the fractured zone of both drifts GCS 

and GED. However, the characterization of the weakness plane parameters deserves further attention in future 

studies. The elastic characteristics along the planes of weakness are considered identical to those of the matrix as 

by default: Es=E1 (with E1, Es are Young moduli in the bedding plane of the rock matrix and of weakness plane); 

En=E3 (E3, En are Young moduli in the direction normal direction to the bedding plane of the rock matrix and 

weakness planes; G13=Gsn (G13, Gsn are shear moduli in the anisotropic plane of the rock matrix and weakness 

plane); 12=st and 13=sn (Poisson coefficient respectively in the isotropic and anisotropic planes). Table 2 

provides the list of parameters and input values.  

In order to verify the proposed model in terms of constitutive equations and numerical implementation, triaxial 

compression tests with different confining pressures (0.01, 1, 2, 5, 10, 20, and 30 MPa) are simulated. Fig. 3a 

presents the corresponding deviatoric stress - axial, lateral and volumetric strain curves for different confining 

pressure, while Fig. 3b shows the results of laboratory tests in terms of deviatoric stress versus axial displacement 

recorded by external sensors. The simulations were performed with the “best-estimated” values of the parameters 

si, ci, mi, sp, cp, and mp for the elastic limit and the peak strength. It can be seen that the mean values of the input 

strength parameters quantitatively reproduce the experimental curves.  

The simulations of triaxial compression were also used to verify the proposed model without and with the presence 

of weakness planes (see Fig. 4 and Fig. 5), where the input parameters are those listed in Table 1. As observed in 

Fig. 4a, the post-peak behaviour is confining pressure dependent and the transition stress between brittle failure 

and ductile behaviour is clearly marked for an input value of transition stress 3
bd about 25 MPa. The resulting 

curves display four stages (elastic, hardening in pre-peak, softening in post-peak and residual phases) when the 

confining pressure is below the transition stress level 3
bd, but only three stages (elastic, hardening and perfect 

plastic phase) under high confining pressure.  

As shown in Fig. 5a, the ubiquitous joints make the material more brittle. The failure of weakness planes occurs 

only in the post-peak stage of the rock matrix. The behaviour along the planes of weakness is frictional (sliding) 
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and without dilatancy (wp = 0): which explains the contracting character of volumetric strain for simulations at 2 

and 5 MPa of confinement (Fig. 5a). A dilatant behaviour like that in Fig. 4a should have been obtained if the 

dilatancy along planes of weakness is taken equal to that of the intact matrix. Hence, these joints are automatically 

deactivated when the confining pressure exceeds the transition stress 3
bd.  

Comparisons between the values of the elastic limit, the peak and the residual strengths for different confining 

stress in Fig. 4a and Fig. 5a, and the theoretical curves described by equations (2) and (8) are given in Fig. 4b and 

Fig. 5b. A perfect agreement can be observed for numerical and analytical solutions since the relative error for 

peak strength is less than 0.1%, and 3% for the elastic limit and the residual strength.  

4. Application to Meuse/Haute-Marne URL drifts 

4.1. Geomechanical model of GCS and GED drifts and numerical issues   

This section is devoted to applying the current model for 3D structure modelling of two drifts GCS (//H) and 

GED (//h) in the URL. The localisation of these two drifts with the URL is shown in Fig. 1. The non-triaxial of 

revolution stress paths must occur when considering the excavation of underground cavities. Drifts’ geometry is 

characterized by a radius of 2.6 m (average value of the radii of the two drifts) and a length of 32 m (even if the 

GED gallery is 71 m long). The drift centres are located at the depth of 490 m. The far field stress tensor is H = 

16.1 MPa; h = 12.4 MPa; v = 12.7 MPa at the depth of URL (Wileveau et al. 2007).  

The difference between GCS and GED consists in the drift orientation, the drift geometry (circular with a radius 

of 2.6 m for GCS and horseshoe geometry with a radius of 2.3 m for GED) and drift support (bolt, hanger and thin 

shotcrete for GCS versus bolt, 20 cm shotcrete and compressible wedge for GED). The support is not modelled, 

and a circular geometry of 2.6 m radius is considered for both drifts. Anisotropic responses around these two drifts 

due to the excavation, have been shown by exhaustive in-situ monitoring. The field observations about EFZ and ~ 

10 years of measurement in convergences of these two drifts are shown in Fig. 6, Fig. 7 and Fig. 8 (Armand et al. 

2013; 2014). As mentioned in the introduction, these anisotropic responses of the COx claystone have been of 

interest for several research teams for more than 10 years (Seyedi et al. 2017). All the teams have used a 2D strain 

plane approach with the convergence-confining method so far. Moreover, the reproduction of the field observation 

for both drifts GCS and GED with an identical set of material parameters has been still challenging.   

A purely mechanical instantaneous simulation is considered, without time effect due to hydro-mechanical 

couplings and creep behaviour. As a reminder, the pore pressure distribution from an instantaneously coupled 

hydro-mechanical simulation can be deduced exactly from a purely mechanical simulation for a poroelastic 

behaviour of material; and approximately for a poroelastoplastic behaviour of material (Vu et al. 2020a, b).   

The excavation is simply carried out in 32 steps where 1 m of material is cut along the tunnel for each step. The 

model geometry and mesh are displayed in Fig. 9. The geometrical model (68 m high, 34 m wide and 58 m long) 

involves 270,000 elements with the following characteristics: the element size consists of (a) 9 cm radially and 

tangentially around the walls of drifts; (b) in the first crown (COx_a in Fig. 9a) between radius 2.6 and 9 m, the 

element size increases radially from 9 to 30 cm, and from 30 cm to 1,8 m inside the domain COx_b, and so on; 
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and (c) 50 cm axially in the central part of the geometrical model. This element size was chosen based on our 

experience feedback, which recommends a representative global response of the observations with a reasonable 

computation time. It is known that simulations of the post-peak behaviour of geomaterials with continuous 

approaches lead to results that are strongly dependent on the mesh used. This has led, during the last two decades, 

to the development of methods and numerical tools to overcome this problem. We can cite three different solutions 

to overcome this problem from the numerical point of view: (a) calibration on the fixed grid structure (mesh 

resolution should be constant for any model using one calibrated data set). In other words, “calibrate” the model 

against the behaviour of a known case or own feedbacks; (b) adaptative re-meshing inside the localisation (mesh 

refinement), (c) extension of the constitutive model by internal scaling parameter (regularization), mainly: 

Cosserat theories, gradient theories and nonlocal approaches. These methods are widely developed and applied 

with success in several "house" and industrial finite element codes (Manica et al. 2018; Manica et al. 2021a, b ; 

Pardoen and Collin 2017; Yu et al. 2021a, b), but not in finite difference codes except the works of Alehossein 

and Korinets (2000) and Postill et al. (2021) on the local and non-local gradient approaches respectively, using the 

Mohr-Coulomb constitutive model with strain softening in FLAC. In this paper it is the first numerical solution 

(calibration on the fixed grid structure) that is used. More precisely, in the area of interest around the excavation, 

the residual plastic deformation is assumed to be a function of the volume elements divided by a reference volume 

V0 usually taken equal to 0.1(unit of length) x 0.1(unit of length) x 0.5(unit of length) based on our feedback. 

The initial in situ stresses are introduced in the model according to the depth. A zero normal displacement condition 

is applied for the bottom and lateral surfaces. The vertical stress corresponding to the overburden weight is applied 

on the top surface of the model.  

The proposed phenomenological anisotropic model remains continuous, therefore not well suitable to describe the 

networks of explicit fractures induced underground excavations. The biaxial, triaxial and radial extension tests 

performed by Zhang (2016), Desbois et al. (2017), Zhang et al. (2019) clearly showed the formation of clear 

fracture planes (individual or conjugate) in the post-peak phase and at the end of tests (Zhang et al. 2019). Indeed, 

the measurement of the permeability during a triaxial compression test exhibits that the permeability changes 

slightly during the elastic and the plastic hardening stages (Zhang 2016, Zhang et al. 2019); but increases 

drastically with the post-peak (plastic softening and residual) stages due to the occurrence of the induced cracks 

and shear bands. Besides, de la Vaissière et al (2015) showed a considerable increase in permeability in the ZFC 

and a moderate increase in permeability in the ZFD compared to the intact rock. Therefore, the zone close the 

gallery wall, where the excavation induces softening and residual regimes, can be considered as the ZFC, while 

the zone where only hardening regime is reached after the excavation, is assumed to be ZFD, with the type of the 

proposed model. 

Unlike the 2D configuration approach, 3D simulation yields the 3D characteristics of results, i.e. EFZ and 

convergence change from one cross section to another.  

To localise a section, we introduce two parameters: l is the distance of the considered section to the beginning of 

the drift; h is the distance between the face advance (or tunnel front) to the considered section. h varies from a 

negative value to a positive one when the face advance is before and after the considered section, respectively. 
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Five cross sections (1 to 5) of GCS and GED drifts will be examined in detail in terms of the plastic zones 

extension, the horizontal and vertical convergences and their ratio. They are located at l = 5.5, 10.5, 15.5, 20.5 and 

26.5 m. From the numerical point of view, different zones can be distinguished around the drifts. Pre-peak zone 

(termed by Hard state) corresponds to the domain of elements for which the mechanical behaviour remains in the 

pre-peak region after the initiation of plasticity. Failed zone (termed by Soft state) contains the elements with a 

post-peak behaviour (with failure along the weakness planes in shear or tension depending on the local stress state 

acting on the potential weakness plane). Fractured zone (termed by Residual state) when the residual regime is 

reached and finally tensile zone (termed by Tensile) for failure in tension. As previously stated, and for the sake 

of comparison with the in situ observations, these different zones are grouped together as follows: the numerical 

failed and fractured zones in ZFC domain, and pre-peak zone in terms of ZFD domain. Several different 

convergence criteria are available in FLAC3D to determine when equilibrium is reached (Maximum Out-of-Balance 

Force, Local Force Ratio, Average Force Ratio and Maximum Force Ratio). Each of these is based on the out-of-

balance force acting on the grid points (structural nodes). At equilibrium which reflects the numerical convergence 

of each excavation phase, the maximum out-of-balance force is almost zero. If the unbalanced forces approach a 

constant nonzero value, this indicates that failure and plastic flow are occurring within the model. In the numerical 

simulations, two of these criteria were systematically used at each of the 32 excavation stages of the GCS and 

GED drifts: (a) when the decrease of the Maximum Out-of-Balance Force reaches a plateau, and (b) when the 

Maximum Force Ratio, defined as the maximum out-of-balance force divided by the average total force acting on 

all grid points, is less than 10-5. 

In addition, for each drift, a total of 32 sequential excavation steps of one meter in length are performed. Each 

excavation sequence requires approximately 1 hour to reach equilibrium on a 3.20 GHz Intel (R) Xeon (R) 

computer. The total computation time is approximately 32 hours. 

 

4.2. Results of GCS and discussion  

The GCS drift, excavated in the direction of the principal horizontal major stress (H), is prescribed by quasi-

isotropic far field stress with a ratio of initial stresses h/v of 0.98. An isotropic rheological model generally leads 

to quasi-isotropic extension of EFZ and convergence, as reported in the benchmarking of the constitutive models 

developed for the COx claystone behaviour and summarized in Seyedi et al. (2017). This is the case when an 

isotropic version of the proposed model is used (Souley et al. 2017) which differs from the in situ observations as 

shown in Fig. 6 and Fig. 8. The proposed model takes into account the anisotropy in stiffness, but the plastic 

behaviour of the rock matrix is isotropic. However, the introduction of weakness planes allows reproducing of the 

induced anisotropy as shown below. 

Fig. 10 to Fig. 13 show the predicted plastic zones around the GCS drift. The first two figures represent the 

extensions of plastic zones at the end of the excavation. Whereas, the two last figures show the plastic zones for 

two cross sections (GCS1 and GCS3) at l = 5.5 and 15.5 m for different values of h.   
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Fig. 10 represents the numerically predicted distributions of ZFC and ZFD according to the previous analogy 

assumed between the plastic zones in pre and post peak regimes and the in situ observations of connected and 

diffuse fracture zones. The three-dimensional character of these zones is clearly highlighted. In particular, the cross 

sections GCS1 and GCS3 which are the most representative of the first 4 of 5 cross sections (Fig. 12) for different 

face advance are examined for h = +5.5 m (1xD), +10.5 m (2xD) and at the end of the excavation. When the 

face reaches the section positions (i.e. h=0) (Fig. 12a, Fig. 13a), the plasticity limited to the pre-peak behaviour 

develops at the forehead, as well as radially in the first 2 to 3 elements from the drift wall with extensions of 20 

and 30 cm (or 0.02xD and 0.04xD), for the roof-floor and the right side. For h = 1xD, the extension of ZFC consists 

of one element (at section GCS3 l = 15.5 m) and 2 elements (at section GCS1 l = 5.5 m) corresponding to 9 and 

20 cm at the roof-floor. Beyond the distance h = 1xD, the extent of ZFC remains constant. Conversely, on the right 

side, this zone extends from 60 to 90 cm (i.e. 0.1xD to 0.17xD) when then the tunnel front advances from h = 1xD 

to the end of the excavation. Therefore, there is anisotropy of ZFC extension between the roof-floor and the sides 

as observed around the M/HM URL structures (Armand et al. 2013, 2014). 

The examination of the ZFD in Fig. 12 and Fig. 13 shows its evolution as a function of the face advance and its 

anisotropy between the roof-floor and sides. In particular, at h = 1 m from the sections, ZFD extensions are 1.4 m 

and 1.7 m (or 0.26xD and 0.32xD) at the roof-floor and sides. The ZFD extent no longer increases beyond one 

diameter at the roof-floor (with an extension of 1.5 m): which is not the case for the sides. 

The extensions of ZFD and ZFC around the first 4 sections of the GCS drift were analysed in detail at the end of 

the excavation. Table 3 summarizes these extensions obtained from the numerically predicted extent of plastic 

zones for both intact matrix and weakness planes developing during the post-peak phase. We notice that the 

extension of the pre-peak plastic domain (or ZFD) is about 0.3xD, 0.4xD and 0.3xD respectively at the roof, sides 

and floor. These values remain close to the lower limit of the range of variation of the ZFD extensions observed 

in situ by Armand et al. (2014) and recalled in Table 1. The extension of the post-peak plastic domain (or ZFC) 

including shear and tensile failure along the weakness planes, is about 0.04xD, 0.2xD and 0.04xD respectively at 

the roof, sides and floor. These values also remain in the range of variation of the ZFC extensions observed in situ 

(Table 1). Specifically, they correspond to the average values measured in the floor-roof and sides of GCS drift. 

Finally, the anisotropy is more pronounced for post-peak behaviour. Macrocracks essentially develop close to the 

sidewall of drift, which, in turn, affects the magnitude of convergences. 

Fig. 14a shows the numerical result of the evolution of vertical and horizontal convergences around the GCS drift 

for sections 1 to 5 (with l = 5.5, 10.5, 15.5, 20.5 and 26.5 m). These are cumulated convergences according to the 

face advance from h = 0.5 m to the end of the excavation. The modelling result of the ratio between horizontal and 

vertical convergences is reported in Fig. 14b. 

As illustrated above (Fig. 12 and Fig. 13), the ZFC extent at the GCS sides continues to increase beyond h = 2xD 

in relation to the induced damage (failure along weakness planes) which develops according to the magnitude of 

the induced stresses. Cross sections 4 and 5 (l = 20.5 and 26.5 m) remain influenced by the end of the excavation. 

Conversely, the first two sections (1 and 2) located at a distance less than 2xD from the beginning of GCS, seem 

to be also affected by this proximity. Consequently, section 3 located in the middle of the gallery can be considered 
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as the most representative. The final instantaneous horizontal convergence predicted by the proposed model is 

about 29 mm, which is very close to the value of ~ 26 mm (2 x 13 mm) measured during the Mine-by experiment 

set up around GCS drift (Armand et al. 2013) (see Fig. 15) and higher than about14 mm obtained by Guayacan-

Carrillo et al. (2016a), where they interpreted the in situ measurements by the semi-empirical model proposed by 

Sulem et al. (1987). As a reminder, Guayacan-Carrillo et al. (2016a) proposed the instantaneous horizontal and 

vertical convergences: Ch (horizontal convergence) from 9.3 mm to 14.0 mm and Cv (vertical convergence) from 

4.8 mm to 7.5 mm when they calibrated the empirical convergence model for GCS drift. 

The slight difference between our prediction and the measurements can be explained by the fact that the numerical 

model did not take into account the flexible support and the bolt set up during the excavation of GCS. The predicted 

vertical convergence is about 16.5 mm, which leads to a convergence anisotropy ratio of 1.72. This value remains 

in the range of convergence ratios observed in situ. 

4.3. Results of GED and discussion  

Fig. 16-Fig. 19 illustrate the predicted extent of plastic zones around the GED drift. The anisotropic shape of the 

plastic zone is more pronounced than the quasi isotropic shape of GCS drift. This is due to the difference between 

the anisotropy ratios of the initial stresses within the section of the drift (1.3 for GED versus 1.02 for GCS). 

More precisely, Fig. 16 summarizes the numerically predicted distributions of ZFC and ZFD around GED. Similar 

to the case of GCS drift, the three-dimensional nature of their formations is again clearly highlighted, which is 

described by the change of the EFZ from one section to another. The EFZ of cross sections GED1 (l = 5.5 m) and 

GED3 (l = 15.5 m) corresponding to different face advance positions: h = +5.5 m (1 D), +10.5 m (2 D) and at 

the end of the excavation, are examined in details. 

Once the face reaches the section position (Fig. 18a, Fig. 19a), only pre-peak plastic (Hard state) zones develop 

around the entire drift circumference, with the extents of 0.05xD, 0.17xD and 0.17xD at the side wall, roof and 

floor of GED. Then, zones with post-peak behaviour (ZFC) initiate and develop around GED and the extents of 

the ZFC and ZFD become increasingly anisotropic when the excavation progresses. When the face reaches a 

distance h = 2xD from the section (1 or 3), the ZFC extends to 0.02xD, 0.3xD and 0.2xD at the side wall, roof and 

floor of GED. Beyond this distance h = 2xD, the ZFC extent no longer increases. 

Table 4 summarizes the extent of ZFC and ZFD from the predicted extent of plastic zones. One can notice that the 

extension of the plastic domain (including both ZFC and ZFD zones) is about 0.6xD, 0.3xD and 0.6xD respectively 

at the roof, sides and floor. As for the GCS drift, these values remain in the range of variation of the ZFD extensions 

observed in situ and specified in Table 1 (Armand et al. 2014). Indeed, they correspond to the average values 

measured around the GED drift. 

The extension of the post-peak plastic domain (or ZFC) is about 0.3xD, 0.02xD and 0.3xD respectively at the roof, 

sides and floor, which are also found in the range of variation of the ZFC extensions observed in situ (Table 1). 

Once again, they correspond to the average values measured in the floor-roof of GED drift. Even if the predicted 
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extension of ZFD appears to be underestimated with respect to the in situ observations, it can be evoked that the 

proposed model reproduces relatively well the extensions of the fractured zones observed around the GED drift. 

Fig. 20a displays the evolution of vertical and horizontal convergences of GED drift for sections 1 to 5, according 

to the face advance. In the direction of the initial principal minor stress in the cross section (i.e. horizontal for GCS 

and vertical for GED), the difference in the convergence between these five considered sections is less important 

in the case of GED compared to the GCS drift. This is explained by the anisotropy of the initial stresses. The 

absolute values of the instantaneous convergences obtained by the proposed model are found in the range: 45 mm 

to 50 mm for Cv and 17 mm to 24 mm for Ch. Guayacan-Carrillo et al. (2016a) taken the instantaneous 

convergences in the range: 24.5 mm to 32.2 mm for Cv and 5.3 mm to 8.4 mm for Ch. The numerical predicted 

ratio between vertical and horizontal convergences is shown in Fig. 20b, which is in the region of 2.3.  

As a conclusion, the proposed model reproduces fairly well, with a sole set of parameters, the absolute 

instantaneous convergences (Ch, Cv) and the ratio Ch/Cv for both drifts GCS and GED; the EFZ (ZFC and ZFD) 

for GED drift. The anisotropic shape of EFZ should be improved. The incorporation of the damage mechanics 

(coupling between the plasticity in pre-peak behaviour and the damage in the post-peak behaviour); as well as the 

non-local modelling have been considered to improve the modelling of the EFZ around GCS. Moreover, the 3D 

simulation allows avoiding the concept of convergence-deconfining curve used in the 2D simulation. This curve 

represents the deconfining ratio versus the distance from the advancing tunnel front to the considered section. The 

calibration of this convergence-deconfining curve is not a trivial task. Many theoretical and numerical works have 

been performed to propose an empirical equation for this curve for a tunnel within an elastoplastic rock. However, 

these empirical equations were usually obtained with the assumption of a circular plastic zone. This is not the case 

for GCS and GED drifts within the URL. Moreover, the 3D simulation gives 3D results about the excavation 

induced fractured zones and the convergence which change from one section to another, as well as the stress-strain 

state and plastic zone behind the tunnel front, which cannot be evaluated with 2D simulation.     

5. Conclusion and perspectives 

This paper presents the development of an anisotropic constitutive model for transversely isotropic geomaterials, 

its numerical implementation in the three-dimensional code FLAC3D, its verification and calibration, as well as its 

application in the 3D simulation of two drifts in the URL: GCS (//H) and GED (//h). Firstly, a non-linear 

elastoplastic model, based on the observation from the laboratory test performed on the COx sample, using the 

Hoek and Brown failure criterion, is presented. The elastic anisotropy, the almost isotropy of strength observed on 

the available tests carried out in several directions, the induced anisotropy observed on the in situ structures are 

the main ingredients for this model. The rock matrix behaviour is characterized by a non-linear behaviour in pre 

peak, a non-linear softening in post-peak and perfectly plastic behaviour in the residual phase. The model also 

takes into account the transition between the strain softening in post-peak under low and moderate confining 

pressures and the ductile behaviour under high confinements. 

Simulation of triaxial compression tests at different levels of confining pressure provides a verification of the 

implemented model. The resulting curves display four regions (elastic, hardening in pre-peak, softening in post-
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peak and residual phase) when the confining pressure is below the transition stress, and three regions (elastic, 

damage and perfect plastic phase) under high confining pressure. The introduction of induced anisotropy through 

the concept of weakness planes in post-peak phase was highlighted in the simulations on triaxial compression tests. 

In addition, the elastic limit, the peak and residual strengths derived from these simulations are compared with the 

theoretical curves in plan p-q (mean-deviatoric stresses): the corresponding relative error does not exceed 1%.  

Model parameters calibrated from the triaxial test on sample scale were used to model the mechanical responses 

of COx claystone due to the excavation. For this purpose, two drifts GCS and GED within URL were considered, 

where exhaustive monitoring information about the convergence and fractured zones are available. The modelling 

is three-dimensional, which is advantageous with respect to previous plane strain models. Indeed, the present 3D 

model allows gaining more insights regarding the fractured zone development after the front advancement during 

the excavation, the variation of convergence and the induced fracture zone along the tunnel axis. The proposed 

model reproduces fairly well the short term convergence, as well as the anisotropy in the ratio of convergence for 

these two galleries with respect to the measurement. Moreover, the ability of the implemented model to describe 

the plastic zones around an underground drift excavated in the Callovo-Oxfordian claystone is rather successfully 

tested, particularly for GED drift (// horizontal minor stress). The reproduction of the fractured zone around GCS 

drift exhibits a limitation of the present model, which should be improved in particular by examining more closely 

the weakness plane parameters for which we lack feedbacks. The results provide new insights on the understanding 

of the deformation mechanisms observed around the structures of Meuse/Haute-Marne Underground Research 

Laboratory. 

The next step will be to enrich the proposed model on the basis of new knowledge and experimental data, and/or 

other phenomena that have not been taken into account here (damage in the framework of damage mechanics, 

time-dependent behaviour, hydromechanical couplings, etc.). 
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Appendix A. Details on the conceptual model of weakness planes and numerical 

implementation  

Definition of terms plotted in Fig. 2b are recalled below: 

t is the prescribed tensile strength, if different to the Hoek and Brown tensile strength, 𝜎𝑡
𝐻𝐵 =

𝑠 𝜎𝑐

𝑚
 

O: intersection between tensile and shear yield functions 

T: tangent to the Hoek and Brown envelope 𝒞𝐻𝐵 at point O 

L1 bisects the area bounded by BOT 

L2: vertical line passing through the confining stress of 1 atm 

𝓓𝟏 : domain bordered by 3-axis, BO segment and the half-line OL1. 𝓓𝟏 is associated to the tensile failure, with 

a fracture plane normal to the tensile direction 

𝓓𝟐 : domain delimited by OL1, OA and AL2. 𝓓𝟐 is associated to the shear failure, with fracture plane oriented 

normal to 3 (i.e. parallel to 1-direction, the maximum compressive stress)  

𝓓𝟑 : domain delimited by AL2 and 𝐴𝒞𝐻𝐵. 𝓓𝟑 is associated to the shear failure, with conjugate fractures with an 

angle f of ±(
𝜋

4
−

𝜑𝑤𝑝

2
) with respect to 1-direction, the maximum compressive stress and 𝜑𝑤𝑝 is the internal 

friction angle of the weak planes.  

 

Finally, line L1 represents the diagonal between the surfaces Fs
m = 0 and Fs

m = 0 in the (σ1-σ3, σ3)-plane and divides 

the complementary domain of elastic area (Fs
m > 0 and/or Fs

m > 0) into two distinct subdomains: 𝓓𝟏 and 𝓓𝟐. In 

subdomain 𝓓𝟐 (respectively subdomain 𝓓𝟏), projection will be performed by using Fs
m and Gs

m (respectively Ft
m 

and Gt
m) and their associated partial derivatives for shear failure (respectively tensile failure). It is also the same 

procedure for the weakness planes. 
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Table 1 Recapitulation of fractures zone extension around drifts in URL (Armand et al. 2014)  

N65//h In situ observations (after Armand et al. 2014) 

 Extensional fractures extent Shear fractures extent ZFC ZFD 

 Min Average Max Min Average Max extent extent 

Roof 0.2xD 0.3xD 0.4xD 0.5xD 0.6xD 0.8xD 0.4xD 0.8xD 

Sides 0.1xD 0.1xD 0.2xD - - - 0.2xD 0.6xD 

Floor 0.2xD 0.4xD 0.5xD 0.8xD 0.8xD 1.1xD 0.5xD 1.1xD 

N155//H In situ observations (after Armand et al. 2014) 

 Extensional fractures extent Shear fractures extent ZFC ZFD 

 Min Average Max Min Average Max extent extent 

Roof - 0.1xD 0.15xD - - - 0.15xD 0.5xD 

Sides 0.01xD 0.2xD 0.4xD 0.7xD 0.8xD 1xD 0.4xD 1.0xD 

Floor - 0.1xD 0.15xD - - - 0.15xD 0.5xD 

 

 
Table 2 Values of input parameters (lower bound) 

Parameter Value Parameter Value Parameter Value Parameter Value 

E1=Es 5.6 GPa mi 1.5 mp 2 3
bd 25 MPa 

E3=En 4 GPa si 1 sp 0.128 sr 0 

G13=Gsn  (a) ci 9.6 MPa cp 33.5 MPa mr(output) 2.172 

12=st 0.3 Cwp 0.9 MPa wp 37° peak 5.75 10-3 

13=sn 0.25 t
wp 0.125 MPa wp 0° res 15.5 10-3 

0 -0.1 m 0.3 b 600 ult 16.5 10-3 

(a) G13=1806.5 MPa is estimated based on the empirical relationship proposed by Lekhnitski (1981) 

 

 

Table 3 Predicted plastic zones around GCS drift and their correlation with the ZFD and ZFC zones  

N155//H Numerical predictions 

 Extent of fractured and failed zones Extent of pre-peak plastic zones ZFC ZFD 

  Min Average Max Min Average Max extent extent 

Roof 0.02xD 0.02xD 0.04xD 0.3xD 0.3xD 0.3xD 0.04xD 0.3xD 

Sides 0.06xD 0.14xD 0.19xD 0.4xD 0.4xD 0.4xD 0.2xD 0.4xD 

Floor 0.02xD 0.03xD 0.04xD 0.3xD 0.3xD 0.3xD 0.04xD 0.3xD 
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Table 4 Predicted plastic zones around GED drift and their correlation with the ZFD and ZFC zones  

N65//h Numerical predictions of extension / diameter 

 Extent of fractured and failed zones Extent of pre-peak plastic zones ZFC ZFD 

  Min Average Max Min Average Max extent extent 

Roof 0.3xD 0.3xD 0.3xD 0.5xD 0.5xD 0.6xD 0.3xD 0.6xD 

Sides - 0.01xD 0.02xD 0.2xD 0.3xD 0.3xD 0.02xD 0.3xD 

Floor 0.2xD 0.2xD 0.3xD 0.6xD 0.6xD 0.6xD 0.3xD 0.6xD 
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Fig.1: Meuse/Haute-Marne URL drifts network (colour per year) 

 

    

Fig. 2:  Schematic of failure envelopes for distinct rock mass failure mechanisms: (a) synthesis after Diederichs (2003), (b) 

weakness plane failure envelope and orientation adopted in the proposed model (definitions are reported in Appendix A) 
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Fig. 3:  Triaxial compression tests: (a) numerical simulations, deviatoric stress vs strains; (b) laboratory tests, deviatoric stress 

vs axial displacement (axial strain axis was added: values of strains were back-calculated by dividing the axial displacement 

measured with the external inter-plateau sensors and the average sample height of 75.6 mm) 

 

 

 

Fig. 4:  Numerical verification and validation – single matrix: (a) triaxial compression simulations, (b) elastic limit, peak and 

residual strengths: numerical and theoretical solutions 

 

 

 

Fig. 5: Numerical verification and validation – both matrix and weakness planes: (a) triaxial compression simulations, (b) 

elastic limit, peak and residual strengths: numerical and theoretical solutions 
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Fig. 6:  Conceptual model of EFZ for drifts // H (Armand et al. 2014) 

 

 

 

Fig. 7:  Conceptual model of EFZ for drifts // h (Armand et al. 2014) 

 

Fig. 8:  Measured convergences of GED (//h) and GCS (//H) drifts 
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Fig. 9:  Geometry and mesh for modelling GCS and GED drifts: (a) 32 steps of drifts excavation and surrounding groups, (b) 

mesh size, (c) cross-section of group COx_a surrounding the drifts (cylinder with inner radius of 2.6 m and outer radius of 5.2 

m), (d) zoom of mesh in COx_a  

 

 

Fig. 10:  Predicted extent of plastic zones around the GCS drift: (a) full 32m of excavation; (b)-(c) view of the last 12m of 

excavation  
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Fig. 11: Predicted extent of failed (associated to post-peak behaviour) zones around GCS: (a) and (b) zone with strain softening 

behaviour (Soft state); (c) and (d) zones in residual phase 

 

 

Fig. 12: Extension of plastic zones around section GCS1 (located at 5.5 m). Excavation face at: (a) the section position; (b) 5.5 

m (1 D) after section GCS1; (c) 10.5 m (2 D) after section GCS1; (d) 26.5 m (5 D) after section GCS1 or end of the 

excavation 

 

(a) (b)

(c) (d)



35 

 

 

Fig. 13: Extension of plastic zones around section GCS3 (located at 15.5 m). Excavation face at: (a) the section position; (b) 

5.5 m (1 D) after section GCS3; (c) 10.5 m (2 D) after section GCS3; (d) 16.5 m (3 D) after section GCS3 or end of the 

excavation  

 
 

 

Fig. 14: Results of numerical simulations -  (a) Magnitude of horizontal and vertical convergences and (b) ratio of convergences 

with respect to the face advance for several cross section positions (5.5, 10.5, 15.5, 20.5 and 26.5 m) of GCS drift 
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Fig. 15: Radial displacement in the ground around GCS drift during the short term response (Armand et al. 2013) 

 

 

 

 

Fig. 16: Predicted extent of plastic zones around the GED drift: (a) full 32 m of excavation; (b)-(c) the last 12m of excavation  
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Fig. 17: Predicted extent of failed (associated to post-peak behaviour) zones around GED: (a) and (b) zone with strain softening 

behaviour (Soft zones); (c) and (d) zones in residual phase  

 

 

Fig. 18: Extension of plastic zones around section GED1 (l  = 5.5 m). Excavation face at: (a) h = 0; (b) h = 5.5 m (1 D); (c) h 

= 10.5 m (2 D); (d) h = 26.5 m (5 D)  or end of the excavation 
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Fig. 19: Extension of plastic zones around section GED3 (l = 15.5 m). Excavation face at: (a) position = 0; (b) h = 5.5 m (1 

D); (c) h = 10.5 m (2xD); (d) h = 16.5 m (3 D) or end of the excavation 

 

 

 

Fig. 20: Results of numerical simulations - Horizontal and vertical convergences (a) and ratio of convergences (b) with respect 

to the face advance for several cross section positions (l = 5.5, 10.5, 15.5, 20.5 and 26.5 m) of GED drift 
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