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Abstract. We introduce the first toolbox that allows ex-
ploring the benefit of air pollution mitigation scenarios in
the every-day air quality forecasts through a web interface.
Chemistry-transport models (CTMs) are required to forecast
air pollution episodes and assess the benefit that shall be ex-
pected from mitigation strategies. However, their complexity
prohibits offering a high level of flexibility in the tested emis-
sion reductions. The Air Control Toolbox (ACT) introduces
an innovative automated calibration method to cope with this
limitation. It consists of a surrogate model trained on a lim-
ited set of sensitivity scenarios to allow exploring any com-
bination of mitigation measures. As such, we take the best of
the physical and chemical complexity of CTMs, operated on
high-performance computers for the every-day forecast, but
we approximate a simplified response function that can be
operated through a website to emulate the sensitivity of the
atmospheric system to anthropogenic emission changes for a
given day and location.

The numerical experimental plan to design the structure of
the surrogate model is detailed by increasing level of com-
plexity. The structure of the surrogate model ultimately se-
lected is a quadrivariate polynomial of first order for resi-
dential heating emissions and second order for agriculture,
industry and traffic emissions with three interaction terms. It
is calibrated against 12 sensitivity CTM simulations, at each
grid point and every day for PM10, PM2.5, O3 (both as daily
mean and daily maximum) and NO2. The validation study
demonstrates that we can keep relative errors below 2 % at
95 % of the grid points and days for all pollutants.

The selected approach makes ACT the first air quality
surrogate model capable to capture non-linearities in atmo-
spheric chemistry response. Existing air quality surrogate

models generally rely on a linearity assumption over a given
range of emission reductions, which often limits their appli-
cability to annual indicators. Such a structure makes ACT
especially relevant to understand the main drivers of air pol-
lution episode analysis. This feature is a strong asset of this
innovative tool which makes it also relevant for source appor-
tionment and chemical regime analysis. This breakthrough
was only possible by assuming uniform and constant emis-
sion reductions for the four targeted activity sectors. This
version of the tool is therefore not suited to investigate short-
term mitigation measures or spatially varying emission re-
ductions.

1 Introduction

The two most widespread applications of atmospheric chem-
istry modelling are (i) short-term air quality forecasting and
(ii) long-term analysis of mitigation strategies. We introduce
here the first toolbox able to address both issues at once, so
that the user can explore the benefit of a long-term emission
reduction control strategy for the present-day air quality fore-
cast. Such a flexibility is provided by making the toolbox
available through a web interface. The quality is ensured by
relying on an emulator, or surrogate model, of the response
of comprehensive air quality models to incremental emission
reductions.

The development of atmospheric chemistry-transport
models is motivated by the need to account for the disper-
sion and chemical evolution of pollutants in the atmosphere.
A given influx of air pollutant emissions shall result in very
different air concentrations depending on the meteorological
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conditions because of the dynamical and physical conditions
(including advection, deposition, scavenging, turbulent mix-
ing, etc.) and because of the chemical production and loss of
secondary pollutants. As a result of this complexity of atmo-
spheric chemistry and physics, there is no direct relationship
between an incremental change of the emissions flux and re-
sulting atmospheric concentrations.

Various approaches to air quality forecasting have been de-
veloped since the 1970s (Zhang et al., 2012). The first ap-
proaches relied on statistical regressions between observed
air pollutant concentrations and various precursors (mainly
meteorological variables). But such approaches faced struc-
tural limitations, chiefly in accounting for non-local air
pollution brought about by long-range transport. Thus, 3-
D chemistry-transport models are now widespread, for in-
stance, in the European Air quality forecasts operated by the
Copernicus Atmosphere Monitoring Services (Marécal et al.,
2015; Engelen and Peuch, 2017).

Three-dimensional chemistry-transport models are also
generally used to assess the benefit expected from a given
air pollution control strategy (Colette et al., 2012). In that
case, the computational burden increases because annual or
multi-annual simulations are required. Such a burden consti-
tutes a substantial limitation for the assessment of air pollu-
tion control strategies, where the end user is generally in-
terested to compare the relative benefit of a series on in-
dividual mitigation measures. The replication of long-term
chemistry-transport simulation for each mitigation strategy
becomes then prohibitive.

That is why alternate techniques were developed for de-
cision support applications by means of surrogate models
that consist in simplified regressions fitted to the response of
a comprehensive air quality model (Cohan and Napelenok,
2011; Amann et al., 2008; Pisoni et al., 2017). Such surrogate
models generally rely on the assumption that the response to
an incremental emission change can be approximated with
a linear fit over a limited range of emission reduction mag-
nitude. Such an approximation is required to limit the de-
grees of freedom of the surrogate model, especially when
some geographical variability is accounted for in the surro-
gate model (i.e. when the emission reduction may vary in
space, when exploring different magnitudes of emission re-
duction by country, for instance). The linearity assumption is
also supported by limiting the scope of surrogate models to
long-term indicators, such as annual mean exposure, which
have a more linear response than short-term responses (Thu-
nis et al., 2015).

In the present paper, we introduce a first surrogate re-
sponse model (denoted the Air Control Toolbox (ACT) https:
//policy.atmosphere.copernicus.eu/CAMS_ACT.php, last ac-
cess: 1 February 2022), which is able to capture the non-
linear response of any magnitude of emission reduction for
every-day air quality forecast. The model is designed to cap-
ture the daily means of both the PM10 and PM2.5 fractions of
particulate pollution and nitrogen dioxide (NO2) as well as

the daily mean and daily maximum of ozone (O3avg , O3max ).
The spatial coverage is the greater European continent.

The overall objective is to offer the users a high degree
of flexibility to explore any mitigation scenario through a
web interface. We are targeting four activity sectors and for
each of them the available emission reduction should cover
the whole 0 % to 100 % range, for instance by 5 % incre-
ments. Using an explicit approach, this would imply 214 or
194 481 chemistry-transport simulations, which is obviously
not feasible for computational reasons. The whole point of
the present paper is therefore to design a methodology to re-
duce this number down to a reasonable number of simula-
tions which can be performed on a daily basis and used as a
training set to calibrate a simple response model.

The selected architecture of the response model is a poly-
nomial function whose coefficients can be explicitly esti-
mated from a limited number of simulations. Fitting more
complex regression models could achieve better accuracy but
only at the cost of a larger training set. We will see that
a quadrivariate (four activity sectors) second-order polyno-
mial can be well constrained with only a dozen of chemistry-
transport simulations, which is quite acceptable with regards
to the operational constrains of every-day production in an
air quality forecasting system.

With this approach, all the complexity of the atmospheric
chemistry response to incremental emission changes is em-
bedded in a polynomial surrogate which is derived every day
from on a subset of chemistry-transport simulations.

The use of a complete chemistry-transport model to build
the training simulations allows accounting for all the impor-
tant processes bearing upon the forecasted air quality, includ-
ing long-range transport and chemistry. And the surrogate
model is able capture some of the non-linearities existing be-
tween concentration and emission changes while remaining
simple enough, in the sense that only a few coefficients need
to be resolved.

The only two simplifications limiting the range of appli-
cation of ACT are that emission reductions are assumed to
apply (i) over the long term and (ii) over the whole mod-
elling domain uniformly. ACT is therefore not suited to as-
sess the benefit of emergency measures to mitigate air pol-
lution episodes. It also not designed to assess the impact on
long-term exposure to air pollution. The purpose of the tool
is rather to assess the main activity sectors driving the day-to-
day air pollution variability. Several diagnostics are proposed
to achieve this by providing the source allocation and chem-
ical regimes at various receptor locations, as well as map-
ping the benefit of reducing emissions over the whole mod-
elling domain. If we take the analogy with climate change,
the scope of ACT is analogous to attribution studies where
one intends to quantify the role of climate change in the cur-
rent meteorological situation, which is different than assess-
ing the benefit of greenhouse gas strategies to mitigate long-
term climate change.
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Once the polynomial structure of the model is decided, an
important part of the work consists in identifying the optimal
set of those 10 to 15 chemistry-transport simulations that al-
low fitting a surrogate with adequate performance over any
air quality situation. Most of the present paper is devoted to
the description on how this numerical experiment plan is de-
veloped. The various methods (including overall surrogate
structure, input data and the underlying air quality forecast
system) are presented in Sect. 2, the step-by-step develop-
ment and validation of the surrogate ACT model is intro-
duced in Sect. 3. In Sect. 4, we present the web interface
as well as a few case studies, and the use of the model in
source allocation and chemical regime analysis is discussed
in Sects. 5 and 6, respectively.

2 Methods

2.1 Testing periods

The ambition of the ACT surrogate model is to apply to the
every-day air quality forecast. The surrogate model should
therefore present satisfactory performance in any situation
but especially during high air pollution episodes. For the de-
velopment and validation purposes of the present article, we
identified three case studies that are selected for their variety
in terms of air pollution situation:

– a case of intense cold spell with typical winter-
time particulate matter pollution (December 2016–
January 2017, Forêt et al., 2017);

– a springtime PM episode dominated by ammonium ni-
trate formation (March 2015, Petit et al., 2017);

– a summertime ozone episode (June 2017, Tarrason et
al., 2017).

Note however that those periods do not constitute a specific
training period for the surrogate model which is intended to
be re-fitted to new chemistry-transport model (CTM) simu-
lations every forecasted day in an automated calibration ap-
proach. Those episodes are only selected to identify the best
design for the surrogate and assess its performance in repro-
ducing the full CTM. We will see in Sect. 2.4 that in total 46
simulations were required to identify the optimum surrogate
model structure and demonstrate its performance. All these
46 simulations covered the 4 months selected in the years
2015 to 2017 to capture a variety of air pollution episodes.
But once the structure of the surrogate model is identified,
the model itself is intended to be calibrated automatically on
the basis of the day-to-day forecast.

2.2 Chemistry-transport model

The air quality simulations used for both the design of the
numerical experiment and the every-day training of the ACT

tool are performed with the CHIMERE chemistry-transport
model (Mailler et al., 2017; Menut et al., 2013). The model is
widely used for air quality research and application ranging
from short-term forecasting (Marécal et al., 2015) to projec-
tion at a climate scale (Colette et al., 2015).

We use a simulation setup similar to the operational re-
gional forecast performed under the Copernicus Atmosphere
Monitoring Service (http://regional.atmosphere.copernicus.
eu, last access: 1 February 2022), albeit with a lower spa-
tial resolution: 0.25◦ instead of 0.1◦. The CHIMERE model
version is CHIMERE2016a using Melchior gas-phase chem-
istry, a two-product organic aerosol scheme and ISORROPIA
thermodynamics.

The anthropogenic emissions in the reference simulations
are the Netherlands Organisation for Applied Scientific Re-
search – Monitoring Atmospheric Composition and Climate
(TNO-MACCIII) (Kuenen et al., 2014). Meteorological data
are operational analyses of the IFS (Integrated Forecasting
System) model of the European Centre for Medium-Range
Weather Forecasts. The chemical boundary conditions are
also obtained from ECMWF, as with the IFS model.

2.3 Surrogate model structure

The structure of the surrogate model is chosen to be a poly-
nomial calibrated to 10 to 15 individual CHIMERE simu-
lations performed every day for the air quality forecast ex-
tending between D+ 0 and D+ 2. The choice of a polyno-
mial is for clarity and simplicity, and alternative parametric
or non-parametric structures could be explored. The num-
ber of training scenarios (10 to 15) is constrained by the op-
erational feasibility to perform multiple chemistry-transport
simulations.

Four main activity sectors are desired to be captured by
ACT, which correspond in terms of SNAP sectors (Selected
Nomenclature for sources of Air Pollution) to the following:

– AGR indicates agriculture (SNAP sector 10: including
both crops and livestock);

– IND indicates industry (SNAP sectors 1, 3, 4: combus-
tion in energy and transformation industries, combus-
tion in manufacturing industry, extraction and distribu-
tion of fossil fuels and geothermal energy);

– RH indicates residential heating (SNAP sector 2: non-
industrial combustion plants);

– TRA indicates road transport (SNAP sector 7: urban and
non-urban roads and motorways).

At present, the following sectors are therefore excluded
from the tool, although they could be included in future ver-
sions: SNAP5 (extraction and distribution of fossil fuels and
geothermal energy), SNAP6 (solvent and other product use),
SNAP8 (off-road sources and machineries such as railways,
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shipping and air transport), SNAP9 (waste treatment and dis-
posal).

Considering the goal to cover four activity sectors, and the
operational constrain to compute only about 10 to 15 train-
ing scenarios every day, we can derive a limit in the number
of coefficients which we can estimate. We conclude that the
surrogate model can be at most a third-order polynomial or
even less if interaction terms are accounted for.

It should be noted that the structure of the surrogate model
ultimately developed is expected to deliver satisfactory per-
formance for all pollutants (PM10, PM2.5, O3avg , O3max and
NO2). The final objective is to implement the surrogate
model in an operational forecasting system with a continu-
ous production, no matter whether the focus is on ozone or
particulate matter episodes. Therefore, the selected structure
required to deliver satisfactory performance for a given pol-
lutant (e.g. a higher-degree polynomial, including interaction
terms) can also yield indirect benefits for the other pollutants.

2.4 Emission reduction scenario available for
development purposes

For development purposes, we performed an extensive set of
CHIMERE simulations over the three air pollution episodes
selected in Sect. 2.1 with various levels of emission reduc-
tion (10 %, 30 %, 60 %, 90 % and 100 %) for each of the
four activity sectors (AGR, IND, RH, TRA). In all cases,
emissions reductions are applied uniformly over Europe. It
is also important to stress that all chemical species for a
given activity sector are reduced by the same amount. This
is different and complementary with the approach chosen for
instance in the European Monitoring and Evaluation Pro-
gramme (EMEP) source receptor matrices (Amann et al.,
2008) or the SHERPA tool (Pisoni et al., 2017). In the re-
mainder of the paper, those scenarios will be referenced by
collating the sector and corresponding emission reduction
magnitude, e.g. AGR60 for a 60 % reduction of agricultural
emissions.

In addition to those emission reduction scenarios for indi-
vidual sectors, we also explored interactions with scenarios
where two sectors are reduced simultaneously. We included
emission reductions of 30 %/60 % and 60 %/30 % for all pairs
as well as 100 %/100 % reduction. Lastly, a 20 %/50 % reduc-
tion level was also included, so that in total we included 45
emission reduction scenarios in this design phase:

– Reference

– AGR10, TRA10, RH10, IND10

– AGR30, TRA30, RH30, IND30

– AGR60, TRA60, RH60, IND60

– AGR90, TRA90, RH90, IND90

– AGR100, TRA100, RH100, IND100

– TRA20AGR50, TRA30AGR60, TRA60AGR30,
TRA100AGR100

– TRA20IND50, TRA30IND60, TRA60IND30,
TRA100IND100

– AGR20IND50, AGR30IND60, AGR60IND30,
AGR100IND100

– AGR20RH50, AGR30RH60, AGR60RH30,
AGR100RH100

– IND20RH50, IND30RH60, IND60RH30,
IND100RH100

– TRA20RH50, TRA30RH60, TRA60RH30,
TRA100RH100

3 Design of the optimal surrogate model

Here, we present the various steps towards building the poly-
nomial surrogate model calibrated on an optimal set of train-
ing scenarios. The complexity of the model increases grad-
ually from a univariate form to a multivariable non-linear
polynomial including interactions. But to start with, the re-
sponses of air quality to a given emission reduction for vari-
ous locations and episodes are illustrated.

3.1 Univariate sensitivity to emission reductions

3.1.1 Univariate air quality response at individual
location

In this section, we present the sensitivity to emission changes
for either PM10 or O3 in three target cities (Brussels, Paris
and Milan) and for the three types of episodes. We aim
to illustrate to what extent the air quality response is lin-
ear for each activity sector and species. At this stage, we
only present the response in the complete air quality model
(CHIMERE); the ability of a surrogate to reproduce this sen-
sibility will be the focus of the following sections.

In Fig. 1, we show the difference, at a given point, be-
tween the PM10 concentration when reducing emission of a
single activity sector and the concentrations in the reference
simulation. Those differences can be computed from various
levels of reduction: 0 % (reference), 10 %, 30 %, 60 %, 90 %
and 100 %.

The PM10 concentration response to incremental emission
reductions depends on the date, location, and activity sector.
The temporal and spatial sensitivity yield substantial com-
plexity in air quality modelling. But we note here that the re-
lationship to incremental emission changes can be relatively
simple and well fitted by low-order polynomial or even linear
relationships.

The residential heating (RH) sector contributes mainly
with primary PM10 emissions or organic aerosol precursors,

Geosci. Model Dev., 15, 1441–1465, 2022 https://doi.org/10.5194/gmd-15-1441-2022
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Figure 1. Modelled PM10 reduction (y axis: positive for a decrease with respect to the reference, µg m−3) for a given reduction in agri-
culture (green), industrial (red), residential heating (blue) and traffic (black) emissions (x axis: in %) in Brussels, Paris and Milan and for
20 March 2015 (a, c, e) and 1 December 2016 (b, d, f).

and its response is the closest to linearity for 20 March 2015
and 1 December 2016 and the three selected cities. It is
also the case for the traffic (TRA) sector. But for industry
(IND), and even more so for agriculture (AGR), there is
a clear non-linear response. In most cases, such responses
follow a second-order polynomial. It is for Milan that the
steepness of the quadratic term is largest. And for the first
episode (March 2015), which is the episode the most influ-
enced by ammonium nitrate pollution, the shape is closer to
a third-order polynomial for Brussels and Paris. Very similar
behaviour is found for PM2.5, displayed in the Supplement
(Fig. S1).

The ozone sensitivity to emission changes is illustrated in
Fig. 2 for both ozone peaks and ozone daily average. As far
as ozone peaks are concerned, a quadratic sensitivity is found
for traffic and industrial sources, the main providers of NOx
and VOC emissions. For the selected day (which is the peak

of the episode), traffic is the main factor, although industry
is sensitive also for Brussels. Note the negative contribution
of agriculture which, by providing NH3, sequestrates a frac-
tion of nitrogen oxides to form ammonium nitrate, leading
indirectly to decrease ozone levels.

The sensitivity to the traffic sector is very different for
ozone daily average because that sector is the main contrib-
utor to NOx emissions. The switch from high-NOx to low-
NOx regimes can be clearly seen in all three cities in the
sensitivity of daily average O3 when the emission reduction
exceeds 60 % for the traffic sector. This very distinct sensi-
tivity of O3 daily maximum and daily averages is due to the
titration process, which affects more strongly nighttime low-
ozone concentrations and is therefore less visible on the daily
maximum. In Fig. 2, it is a specific feature of the traffic sec-
tor, which is not seen, for instance, for industrial emissions. It
should be noted that the NO2/NOx ratio is very different for
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Figure 2. Same as Fig. 1 for ozone daily maximum (O3max ) and daily average (O3avg ) on 2 June 2017.

both sectors. In the CHIMERE modelling setup used here,
20 % of NOx emissions are allocated to NO2 for the traffic
sector, while for other sources including industry it is only
4.5 % of NOx emissions that are constituted of NO2. But this
larger share of NOx emissions as NO in the industry sector
would rather imply a lower titration of O3 by NO in traffic
emissions compared to industrial sources. And in summer,
NO and NO2 will even out very fast at the spatial scales of a
regional chemistry-transport model. The stronger impact of
titration when reducing traffic emissions in Fig. 2 is there-
fore rather a consequence of the overall larger share of total
NOx emissions compared to other activity sectors. The cor-
responding figures for NO2 for both a wintertime (Decem-
ber 2016) and summertime (June 2017) episode are provided
in the Supplement (Fig. S2), although the response is mostly
linear.

3.1.2 Univariate model performance over Europe

Here, we investigate the selection of the optimal model in-
dependently for each activity sector; thus, we introduce four
univariate models for the activity sectors: AGR, IND, RH,
and TRA. The calibration is also performed for the four pol-
lutants of interest: PM10, PM2.5, O3max , O3avg , NO2.

For each day, and each pollutant, a polynomial model is
calibrated at each grid point of the modelling domain. We in-
troduce the following notations for a third-order polynomial,
with αi,j , βi,j , γi,j the coefficients (the later two being nulli-
fied for linear or quadratic forms):

Ci,j −C
ref
i,j = αi,j ·

(
δsec)
+βi,j ·

(
δsec)2

+ γi,j ·
(
δsec)3

,

where

δsec
=

(
εsec

εref

)
.
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– Cref
i,j is the air pollutant concentration (for either PM10,

PM2.5, O3max , O3avg or NO2) modelled with the CTM for
the reference simulation with emissions εref.

– Ci,j is the air pollutant concentration modelled with the
CTM for the sensitivity simulation with reduced emis-
sions for sector “sec”: εsec reduced by a uniform factor
δsec over the domain. In addition to being uniform in
space, the reduction factor is also identical for all emit-
ted precursor species since it is applied to the whole ac-
tivity sector.

– Throughout the paper, the coefficients α, β and γ of
such polynomials will be computed for each i,j pair
of latitude, longitude indices in the geographical mod-
elling domain, so the indices will be dropped in the fol-
lowing notations.

Depending on the model complexity (linear, quadratic or
cubic), the model is calibrated with one, two or three sen-
sitivity simulations (in addition to the reference). The pairs
involving the 0 % reduction and any of the other amount of
reduction allow computing a linear polynomial. Triplets in-
volving the 0 % reduction and any combination of two other
reductions are used to compute a quadratic polynomial. And
an analogous quadruplet is used for cubic polynomials. Then
the model is tested by computing the error of its prediction
with respect to the remaining available sensitivity simula-
tions that were not used in the calibration. For the purpose
of model development, we performed sensitivity simulations
over the three selected case studies with uniform reductions
of the emissions for AGR, IND, TRA and RH by 10 %, 30 %,
60 %, 90 % and 100 %. The corresponding list of scenarios
available for training and testing is summarized in Table 1;
there are 5, 10 and 10 combinations for the linear, quadratic
and cubic forms, respectively.

The error that we discuss here is the absolute difference
between the concentration change predicted with the surro-
gate model for a given emission reduction (Ĉ−Cref) and the
corresponding validation CHIMERE simulation (C−Cref)
for the same emission reduction (δsec). Each polynomial
model can be tested against several independent CHIMERE
validation simulations (4, 3 and 2, for linear, quadratic and
cubic forms, respectively), so that an average of absolute er-
rors is taken (Ĉ−C). We also include a relative error, where
a normalization by the corresponding pollutant concentration
is used ((Ĉ−C)/C).

The errors of the models are computed for each day and
grid point, allowing a discussion of the surrogate perfor-
mance both in terms of spatial and temporal variability.

Figure 3 shows the day-to-day variation of the absolute
and relative errors of the various univariate PM10 models for
the agriculture sector, averaged for all grid points in the re-
gion 40 to 55◦ N and 10◦W to 30◦ E. The time period dis-
played here spans from 30 November 2016 to 29 Decem-
ber 2016 and includes two important air pollution episodes

around 8 and 20 December 2016. The models are listed in
the same order as in Table 1 with first the 5 linear models,
then the 10 quadratic and 10 cubic forms.

The first five surrogate models with solid lines and blue
colours have a linear structure. They have larger errors than
the following more complex models, with relative errors
ranging from 1.4 % to 4 %. The worst linear model is com-
puted with the 10 % emission reduction scenario (and the ref-
erence), whereas the linear model computed with the 90 %
emission reduction scenario is performing better than several
more complex models.

Moving to a second-order polynomial improves notably
the performance. In total, 10 combinations of training scenar-
ios (and the reference) are available to compute a quadratic
polynomial. For each of them, three validation scenarios
are available to assess the performance. The best quadratic
model for that time period relies on the 60 % and 100 % emis-
sion reductions, its relative error is lower than 0.1 µg m−3 or
0.65 %. Note that the quadratic models using training scenar-
ios confined within a narrow range of emission reductions
(e.g. 10 % and 30 %, or 90 % and 100 %) do not perform well,
even when compared to the simple linear polynomial.

The third-order polynomial performs best, except the last
model which uses only the largest emission reduction and
is therefore too weakly constrained for the lower range of re-
ductions. The smallest error for a cubic model is 0.05 µg m−3

or 0.37 %.
At this stage, it becomes clear that a trade-off must be

sought between model performance and complexity consid-
ering that moving from a second- to third-order polynomial
requires computing one more training scenario, whereas the
error of the quadratic polynomial is already below 1 %.

The errors presented in Fig. 3 are an average over a large
fraction of Europe. To check if they do not hide some com-
pensations between different regions, we also show in the
map of relative errors, averaged over the whole month of De-
cember 2016 (Fig. 4). The quadratic model performing best
according to Fig. 3 is calibrated to 60 % and 100 % emission
reductions. The map of error shows that the largest errors are
found over the Po Valley, but it is also the case of all the
other quadratic models represented in the figure. Therefore,
we conclude that the selection of the best-performing model
done on the basis of average performance in Fig. 3 does not
include compensation between different regions.

A similar analysis is performed for the other activity sec-
tors; the analogues of Fig. 3 for traffic, residential heating and
industry are provided in the Supplement (Figs. S3 to S8).

The performance of the univariate model is presented in
Fig. 5 for PM10. The four activity sectors are still treated in-
dependently at this stage; the interactions and performance
of multivariate models will be discussed in Sect. 3.2 and 3.3,
respectively. Instead of showing the average error in space or
time as in Figs. 3 and 4, respectively, we show here the whole
distribution of error for any grid point in western Europe, and
any day over three 1-month particulate matter air pollution
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Table 1. List of CTM sensitivity simulations used to train and test the various linear, quadratic and cubic forms of the surrogate model.

Model Training Testing

Linear 1 Ref, 10 % 30 %, 60 %, 90 %, 100 %
2 Ref, 30 % 10 %, 60 %, 90 %, 100 %
3 Ref, 60 % 10 %, 30 %, 90 %, 100 %
4 Ref, 90 % 10 %, 30 %, 60 %, 100 %
5 Ref, 100 % 10 %, 30 %, 60 %, 90 %

Quadratic 6 Ref, 10 %, 30 % 60 %, 90 %, 100 %
7 Ref, 10 %, 60 % 30 %, 90 %, 100 %
8 Ref, 10 %, 90 % 30 %, 60 %, 100 %
9 Ref, 10 %, 100 % 30 %, 60 %, 90 %

10 Ref, 30 %, 60 % 10 %, 90 %, 100 %
11 Ref, 30 %, 90 % 10 %, 60 %, 100 %
12 Ref, 30 %, 100 % 10 %, 60 %, 90 %
13 Ref, 60 %, 90 % 10 %, 30 %, 100 %
14 Ref, 60 %, 100 % 10 %, 30 %, 90 %
15 Ref, 90 %, 100 % 10 %, 30 %, 60 %

Cubic 16 Ref, 10 %, 30 %, 60 % 90 %, 100 %
17 Ref, 10 %, 30 %, 90 % 60 %, 100 %
18 Ref, 10 %, 30 %, 100 % 60 %, 90 %
19 Ref, 10 %, 60 %, 90 % 30 %, 100 %
20 Ref, 10 %, 60 %, 100 % 30 %, 90 %
21 Ref, 10 %, 90 %, 100 % 30 %, 60 %
22 Ref, 30 %, 60 %, 90 % 10 %, 100 %
23 Ref, 30 %, 60 %, 100 % 10 %, 90 %
24 Ref, 30 %, 90 %, 100 % 10 %, 60 %
25 Ref, 60 %, 90 %, 100 % 10 %, 30 %

episodes (March 2015, December 2016 and January 2017).
The main features of those distributions are given as box
plots with the boxes providing the first quartile, median and
third quartile. Whiskers extend to 1.5 times the interquartile
range from the borders of the box, and the extreme points ly-
ing outside of that range are also provided. As in Fig. 3 and
Table 1, we show (from left to right) first the five linear sur-
rogate models, and then the 10 quadratic and 10 cubic forms.
The numerical values of the median of those distributions are
given in the Supplement (Table S1).

For each activity sector, we find in general that the linear
models do not perform as well as the quadratic or cubic poly-
nomials. But for some activity sectors, the linear model can
be considered satisfactory.

It is the case for the residential heating sector, where a lin-
ear model relying on the scenario with 90 % reduction (index
4 in the x axis of Fig. 5) is already very good: the upper
95 % confidence interval is lower than 0.1 %. The median of
relative errors is then 0.03 % (Table S1) and the gain when
moving to a quadratic form is only a factor of 2.

On the contrary, for industry and traffic, we opt for a
quadratic model (using 60 % and 100 % reductions, index 14
in the x axis of Fig. 5) which yields median errors below
0.1 % (0.099 % and 0.028 % for IND and TRA, respectively)
and the gain in term of median error is a factor of 3–4 com-

pared to the linear forms. For the selected quadratic form and
60 % and 100 % reduction training scenarios, we can ensure
that the relative error of the surrogate model is below 10 %
for any day and any grid point and even below 0.1 % for 75 %
of the points in the distribution.

For the impact of the agricultural sector on PM10, the non-
linearity is such that we have to lower slightly the ambition
on the performance of the surrogate. Nevertheless, by select-
ing a quadratic form trained on the scenario with 60 % and
100 % reduction (index 14 in the x axis of Fig. 5), we can
still ensure that the relative error does not exceed 10 % for
any day and grid point, and even remains below than 1 % for
75 % of the points in the distribution.

The choice to select a quadratic model for industry and
traffic is further supported by the analysis for ozone (Fig. 6,
and corresponding numerical values in Table S2 in the Sup-
plement), where a clear improvement is found compared to
linear forms. Selecting a quadratic model trained on 60 % and
100 % emission reduction scenarios allows reaching relative
errors lower than 10 % for any day and any grid point, and
95 % confidence interval lower than 0.1 %.

A linear model could be fit for purpose with regards
to ozone sensitivity to agriculture emissions, but since a
quadratic form was selected for PM10, it will also benefit the
ozone models. For residential heating, most errors are below
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Figure 3. Absolute (a, µg m−3) and relative (b, %) error over western Europe of the univariate surrogate model for the agriculture activity
sector in December 2016. The coloured lines are for individual polynomial surrogate models and training scenarios (x axis: 5 linear, 10
quadratic and 10 cubic forms with indices of the x axis matching the rows of Table 1). The grey curve gives the day-to-day variation of PM10
(µg m−3) averaged over the region (displayed on the right-hand-side y axis).

0.001 % so that the ozone result only confirms the satisfac-
tory behaviour of the linear model.

3.2 Bivariate models and interactions

After having introduced quadratic terms, we investigate
cross-sector interactions. First, we assess the need of whether
or not to account for interaction terms. In the case where the
added value of interaction terms is demonstrated, we identify
the optimal training scenarios.

The surrogate models that we use here are bivariate,
second-order polynomials, plus an interaction term; quadri-
variate models will be discussed in Sect. 3.3. For instance,
for the bivariate model of agriculture and industry, we have

the following structure:

CAGR,IND
−Cref

= αAGR
· δAGR

+βAGR
·

(
δAGR

)2
+αIND

·
(
δIND)

+βIND
·
(
δIND)2

+ γ ·
(
δAGR

)
·
(
δIND)

.

In order to assess the need to account for interactions, we
only use training scenarios with 30 % and 60 % reduction
levels.

First a bivariate quadratic model without interactions is
trained with the 30 % and 60 % reduction levels and tested
against corresponding interaction scenarios. Taking the ex-
ample of agriculture and industry, we would have the two
training and testing configurations in lines 3 and 4 of Table 2.
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Figure 4. Relative error (%) averaged over the month of December 2016 for the quadratic univariate PM10 models with respect to the
agriculture activity sector. The sensitivity scenarios used to train the individual models are indicated in the title of each panel, as well as the
average error.

The box plots of Fig. 7 display the performance when in-
cluding (first two box plots of each panel) or excluding (last
two box plots) interaction terms. The numeric values of the
median of these distributions are available in Tables S3 and
S4 of the Supplement. As could be expected given the rela-
tively linear behaviour of the response to residential heating
emission changes, interactions do not bring substantial added
value for those terms: (AGR, RH), (IND, RH), (TRA, RH).
On the contrary, keeping 75 % of the points and days with a
relative error lower than 1 % requires us to account for inter-
actions for the pairs (AGR, IND) and (TRA, AGR).

For ozone (Fig. 8 and Table S4 of the Supplement), the
only important interaction terms are for the (TRA, IND) pair
of sectors, which was expected since those bring the largest
share of ozone precursor emissions. When ignoring their in-
teractions, the upper 95th confidence interval of relative error
distribution can reach 1 %, whereas it remains below 0.1 %
when interactions are taken into account.

For the pairs where interactions must be taken into account
– (AGR, IND), (TRA, IND) and (TRA, AGR) – we remain
to identify the optimal level of reduction in the training sce-
nario. We set the range of reduction identified in Sect. 3.1.2
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Figure 5. Relative error (%) of the PM10 univariate surrogate models for either AGR, IND, RH, TRA (a–d) and for various polynomial
forms and training scenarios (x axis: 5 linear, 10 quadratic and 10 cubic forms with indices of the x axis matching the rows of Table 1). The
box plots indicate the minimum, first quartile, median, third quartile and maximum in the distribution of relative errors at each grid point in
western Europe and each day over three air pollution events (March 2015, December 2016, January 2017). The horizontal dotted lines are
for 0.1 %, 1 % and 10 % errors.

for the quadratic terms (60 %/100 %) and seek to identify the
optimal reduction for the scenario designed to capture inter-
action terms. The list of available combinations to train and
test each interaction term is given in Table 3.

The 30 %/60 % reductions are optimal for the (AGR, IND)
and (TRA, IND) pairs, but for the (TRA, AGR) pair, better
performance is found with a 100/100 interaction term. The
same feature is found for both PM10 and O3max , as seen in
Figs. 9 and 10, and corresponding numerical values in Ta-
bles S5 and S6 of the Supplement.

3.3 Quadrivariate models and interactions

The methodology followed in Sect. 3.1 and 3.2 consists in
selecting first the optimal structure for univariate models,
before investigating bivariate models including interactions
terms. Such a step-by-step approach allows a clear introduc-
tion of the methodology. This presentation has a clear peda-
gogical advantage. It is also relevant for a potential develop-
ment of a similar approach in a different context. One could
consider developing an ACT tool over a different region or
at higher spatial resolution. But, in that case, nothing guar-
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Figure 6. Same as Fig. 5 for O3max during the June 2017 episode.

antees that the same model structure would be selected, in
particular if non-linearities affect different activity sectors.

However, such a sequential approach carries a risk of not
selecting the optimal structure, as pointed out for stepwise
regression approaches. Indeed, with a sequential method, we
assume that the optimal structure and training scenario re-
mains valid when including interactions whereas there is
a possibility that the addition of an interaction term could
change the selection of univariate terms.

Therefore, we investigated directly a four-dimensional
model with the following structure:

CAGR,IND,RH,TRA
−Cref

= αAGR
·

(
δAGR

)
+βAGR

·

(
δAGR

)2

+αIND
·
(
δIND)

+βIND
·
(
δIND)2

+αRH
·
(
δRH)
+αTRA

·

(
δTRA

)
+βTRA

·

(
δTRA

)2
+ γAGR,IND

·

(
δAGR

)
·
(
δIND)

+ γ TRA,AGR
·

(
δTRA

)
·

(
δAGR

)
+ γ TRA,IND

·

(
δTRA

)
·
(
δIND)

.

Such a model requires two training scenarios for AGR, IND,
TRA, one for RH and one for each of the three interaction
terms. With this approach, all possible two-term interactions
are indeed taken into account as only those involving RH
are excluded because we have demonstrated earlier that this
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Figure 7. Relative error (%) of the PM10 bivariate surrogate models (a–f: AI: AGR and IND, AR: AGR and RH, IR: IND and RH, TA:
TRA and AGR, TI: TRA and IND, TR: TRA and RH). For each panel, the box plots of the distribution of errors are given for two models
with interactions (a, d) and two models without interactions (c, f), where indices in the x axis match the row of Table 2. The distributions
of relative errors include each grid point in western Europe and each day over three air pollution events (March 2015, December 2016,
January 2017). The horizontal dotted lines are for 0.1 %, 1 % and 10 % errors.

Figure 8. Same as Fig. 7 for O3max and June 2017.

factor could be well approximated with a linear relationship
(and therefore irrelevant for second-order interactions).

We did not investigate all possible of the 46 available
testing scenarios but a subset applying the same range
of reduction for each of the univariate component (i.e.,
for instance, only AGR30, AGR60, IND30, IND60, RH30,
TRA30, TRA60) and complementary reduction for the in-
teraction terms (not using 30 %/60 % reductions for our ex-
ample). With these constrains, we are still left with an im-
pressive number of 285 combinations. The performance (as
median relative error) of the optimal set of training scenar-

ios identified in Sect. 3.1 and 3.2 is confirmed here as it
ranks respectively 21st, 4th and 7th for the PM10 episodes of
March 2015, December 2016, January 2017. Other combina-
tions of training scenarios can indeed be identified for given
episodes, but the choice we propose is also robust across var-
ious episodes and always within 5 % of the errors of the op-
timal model. For ozone daily maximum, the model with the
step-by-step methodology beats any of the other 285 config-
urations.
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Figure 9. Relative error (%) of the PM10 bivariate surrogate models (a–c: AI: AGR and IND, TA: TRA and AGR, TI: TRA and IND). For
each panel, the box plots of the distribution of errors are given for four models with interactions trained on different scenarios where indices
in the x axis match the row of Tables 3 and 2. The distributions of relative errors include each grid point in western Europe and each day
over three air pollution events (March 2015, December 2016, January 2017). The horizontal dotted lines are for 0.1 %, 1 % and 10 % errors.

Figure 10. Same as Fig. 9 for O3max and June 2017.

4 Final structure and performance

To summarize, the model that we selected is a quadrivari-
ate polynomial, first order for RH emissions and quadratic
for AGR, IND and TRA, with interaction terms for the pairs:
(AGR, IND), (TRA, IND) and (TRA, AGR). The optimal
set of training scenarios include the 10 sensitivity simula-
tions selected above, to which a reference is added as well as
a simulation where the emissions of sectors are reduced by
100 % to ensure that the model remains bounded:

– Reference

– AGR60, AGR100

– IND60, IND100

– RH90

– TRA60, TRA100

– AGR30IND60

– TRA30IND60

– TRA100AGR100

– AGR100IND100RH100TRA100

This final model is tested against the 34 available scenarios
not used in the training. We conclude that with such a model

structure and training scenarios, it is possible to reach the sur-
rogate model performance summarized in Fig. 11 that shows
that relative errors are below 1 % at 75 % of the grid points
and days, below 2 % at 95 % of the grid points and days, and
below 10 % for any grid points and days. More specifically,
the single highest error over the 864 248 grid points and days
considered is 7.5 %, 7.9 %, 4.8 %, 2.8 % and 2.9 % for PM10,
PM2.5, NO2, O3max and O3avg .

This structure is selected because of its good performance
for all relevant ambient air pollutant as demonstrated here
over a range of air pollution episodes. In the operational
model, the overall structure of the model is frozen, while only
the coefficients of the surrogate are recomputed every day on
the basis of the current air quality forecast. It should be noted
however that any evolution of the model such as increasing
the spatial resolution, implementation over a different geo-
graphic area or including other activity sector would require
revising this structure.

Further increasing the degree of the polynomial would cer-
tainly improve the quality of the surrogate model. The only
two reasons not to engage in that direction are (i) to avoid in-
creasing the computation burden with more training scenar-
ios and (ii) when considering that the performance achieved
at order 2 is already very satisfactory. The only higher-order
interaction scenario removing emissions from all four sec-
tors is designed as a closure to avoid any potential negative
concentrations.
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Figure 11. Relative error of the final selected surrogate model for
all pollutants. The box plots represent the distribution of relative er-
rors over each grid point in western Europe and each day during
the relevant air pollution events: wintertime (March 2015, Decem-
ber 2016, January 2017) for PM10, PM2.5 and NO2, summertime
(June 2017) for O3max (i.e. daily maximum ozone) and O3avg (daily
average).

5 Scenario analysis in air quality forecasts

5.1 Description of ACT interface

The routine production of ACT relies on two main steps. First
the 12 training scenarios corresponding to the current air
quality forecast are simulated on a high-performance com-
puter with the CHIMERE model with a setup inspired from
the French Air Quality Platform Prev’Air (Rouïl et al., 2009)
and the European CAMS regional production (Marécal et al.,
2015). Then the surrogate model is automatically calibrated
and exported to a web interface using the shiny package of
the R language.

An annotated screenshot of the ACT web interface is given
in Fig. S9 of the Supplement. First, the pollutant of interest
is selected in the list of compounds for which the surrogate
has been validated: PM10, PM2.5, NO2, O3max and O3avg , all
of which are daily mean values, except for O3max which is
the daily maximum level. The base time of the forecast can
also be changed up with access to a long history as well as
its valid time.

A series of slide bars allow the user to define its tailored
scenario, reducing by any percentage the emission originat-
ing from road transportation, industry, residential heating and
agriculture. Considering that there are also other sources of
pollution than those included in ACT (i.e. AGR, IND, RH
and TRA), a possibility to include or remove those other con-
tributions is offered in order to visualize a reference simula-
tion including only the sources upon which the user can inter-
act through the slide bars. Such “other contributions” include
mainly natural emissions (e.g. dust and sea salt for particulate
matter, or biogenic VOCs) but also some activity sectors not

included at present in the tool (e.g. international shipping). It
is computed by withdrawing from the CHIMERE reference
simulation a scenario emulated with ACT with all four ac-
tivity sectors set to zero. As a consequence, the tropospheric
ozone burden is also withdrawn; that is why the correspond-
ing menu refers to “natural and background concentrations”.

The results are then displayed as a map for either the se-
lected scenario or the difference compared to the reference
simulation.

5.2 Case studies of scenario analysis

The use of the ACT interface is illustrated here, taking as
example the training episodes introduced in Sect. 2.1.

5.2.1 March 2015

In March 2015, a remarkable PM10 episode spread through-
out a large part of western Europe for almost a week. The
daily mean for 18 March 2015 displayed in Fig. 12 is given
either with all sources included (left) or only for the sources
included in ACT: AGR, IND, RH, TRA (so that in that panel
natural and background concentrations are excluded). As ex-
plained in Sect. 4.1, the other sources are mainly natural
(desert dust and sea salt), but they also include some activity
sectors not available in ACT (such as international shipping).

During that episode, the PM10 composition was domi-
nated by inorganic aerosols (Petit et al., 2017), and more
specifically ammonium nitrate, which is formed by chem-
ical reactions between ammonia and nitrogen oxides emit-
ted by any combustion sources (traffic or other). In Europe,
93 % of annual NH3 emissions were due to agriculture in
2015 (according to EMEP emissions for EU28 available at
https://www.ceip.at, last access: 1 February 2022), about half
of which were due to livestock and the other half to fertilizer.
Fertilizer spreading is a very seasonal activity that dominates
in March. Because NH3 resulting from fertilizer spreading is
emitted over very large areas, and because of the lifetime of
fine PM in the atmosphere, the resulting air pollution plume
can reach a substantial geographical extent as we can see
here with high PM10 levels modelled far out over the Atlantic
Ocean. This type of air pollution event is a textbook example
of the regional character of atmospheric air pollution.

In order to illustrate the capacities of the ACT tool, four
scenarios are emulated by removing independently 100 %
of the emission of each of the four main activity sectors
(Fig. 12). These scenarios are all emulated on the basis of
the simulation excluding natural sources, i.e. to be compared
to the top-right panel of Fig. 12.

The reduction of agricultural emissions has the largest ef-
fect on PM10 concentrations and only a couple of hotspots re-
main, for instance, in the Po Valley. On the contrary, none of
the scenarios where only one of the other sectors is reduced
manages to reach low PM10 levels. This is because NH3 re-
mains in excess and removing all the NOx from traffic has
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Figure 12. First row: PM10 concentrations on 18 March 2015 including (left) or excluding (right) natural and background concentrations.
Following rows: PM10 daily average concentrations emulated with ACT for 18 March 2015 for a 100 % reduction of traffic emissions
(second row, left), residential emissions (second row, right), industry emissions (third row, left), agriculture emissions (third row, right) and
both traffic and industry (fourth row, right).
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little effect if the NOx from industry and residential heat-
ing remains available. We can note however that the punc-
tual sources in Turkey or Ukraine disappear in the scenario
where industrial emissions are set to zero. Lastly, industrial
emissions have a larger effect on regional pollution than traf-
fic, which seems contradictory to the high attention given to
road transportation during major air pollution episodes.

Lastly, we also display an emulated scenario where both
traffic and industrial emissions are set to zero, whereas agri-
culture emission are unchanged. Here, we obtain low PM10
levels similar to the no-agriculture scenario because most
sulfur and nitrogen oxides are removed.

5.2.2 December 2016

In December 2016, a large particulate matter episode devel-
oped in western Europe under the influence of cold and sta-
ble meteorological conditions that kept air pollutants near the
ground in the inversion layer (Forêt et al., 2017). In addition,
cold temperatures induced an increase in residential heating
emission. The reference simulation for daily mean PM10 on
1 December 2016 is presented in Fig. 13. It only includes the
sources of the main activity sectors (e.g. excluding natural
and background concentrations).

High PM10 concentrations are modelled over northern
Italy but also a large part of northern France as well as the
southwestern UK. There are also some scattered areas of pol-
lution in eastern Ukraine. The removal of emission from each
of the four main activity sectors is emulated with ACT in
Fig. 13, using as reference the simulation excluding natural
sources. All sectors have an influence on PM10 concentra-
tions, but the largest contribution is attributed to agriculture,
which is really the only source that has an impact on back-
ground PM10, although some hotspots remain. According to
the scenario where a 100 % reduction of industrial emission
in emulated, it seems that the PM10 peak in eastern Ukraine
is due to industrial activities. The hotspots in Paris and Mi-
lan remain to some extent in all of the four scenarios, demon-
strating that air pollution in those areas can only be mitigated
by acting on all activity sectors.

The large role of agriculture is due to the high sensitiv-
ity of atmospheric chemistry to ammonia (NH3) emissions
which reacts with nitrogen oxides emitted from any com-
bustion source (traffic or other) to form ammonium nitrate.
Given the strong seasonality of fertilizer spreading, ammo-
nia emissions in December are likely due mainly to livestock
emissions. The ACT results illustrate clearly the importance
of agriculture for PM air pollution by allowing to emulate a
scenario by removing all NH3 emissions. One should how-
ever keep in mind the challenge in mitigating NH3, where
the emission reduction between 2005 and 2020 is only 1 %
to 24 % in the Gothenburg protocol depending on the country
(Bessagnet et al., 2014).

5.2.3 June 2017

For ozone, we selected the intense episode of June 2017
(Fig. 14) (Tarrason et al., 2017). An ozone anomaly above
60 to 70 µg m−3 was due to European emissions of the four
main activity sectors, but Fig. 15 also highlights the impor-
tance of tropospheric burden for ozone air pollution where
a large fraction cannot be mitigated by reducing European
emissions alone.

The analysis of emission reduction responses (Fig. 14) is
much more predictable than the impact on PM. Reducing
emissions from residential and agriculture sectors has almost
no impact on ozone concentrations. Ozone is driven by emis-
sions from traffic (nitrogen oxides) and from industry (ni-
trogen oxides and volatile organic compounds). For the case
studied, removing traffic emissions decreases ozone concen-
trations by 20 to 60 µg m−3 in most of the places, and the
impact is not as strong with a 100 % reduction in industry
emissions.

6 Source allocation mode

The surrogate ACT model can also be used in source alloca-
tion mode. By reducing successively each activity sector by
100 %, it is possible to compute its contribution to the bur-
den of air pollution for a given day and location. Here, the
contribution would be the gain in concentration reduction in-
duced by removing emissions from a given activity sector.
It may differ substantially from a source apportionment ap-
proach where the objective is to assess the contribution – in
mass – of a sector to the overall PM burden. A good illus-
tration of such differences is the underestimation of the in-
fluence of a sector such as agriculture that only contributes
with relatively light compounds in terms of molecular weight
(NH3) but is very sensitive in the formation of secondary PM.
The methodological difference and purposes are explained,
for instance, in Clappier et al. (2017), which also emphasize
the role of interaction terms further illustrated below.

Unlike source apportionment, the allocation we introduce
here indeed shows the reduction of concentration that can be
achieved by removing totally the emissions of an activity sec-
tors. Such results are generally obtained by zeroing out an-
thropogenic emissions in a full CTM simulation. It can also
be extrapolated from sensitivity simulation based only on
15 % to 30 % emission reductions. But then the uncertainties
become substantial in the case of non-linear response. The
structure of ACT, by being calibrated and tested for emission
reductions ranging from 0 % to 100 %, offers a more reliable
response in that context.

For the two PM10 episodes and the O3 episode introduced
in Sect. 2.1 and for the city of Paris, we isolate in Fig. 15
the impact of each of the four activity sectors as well as nat-
ural and background concentrations. A specific focus is also
given on how interaction terms are handled in this decompo-
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Figure 13. First row: PM10 concentrations on 1 December 2016 including (left) or excluding (right) natural and background concentrations.
Following rows: PM10 daily average concentrations emulated with ACT for 1 December 2016 for a 100 % reduction of traffic emissions
(second row, left), residential emissions (second row, right), industry emissions (third row, left) and agriculture emissions (third row, right).

sition. In the left column, the gap between individual sectors
and the overall reduction is explicitly provided as an inter-
action term. Here, the contribution of each activity sector is
assessed by setting its emissions to zero (referred to as top-
down brute force method in Clappier et al., 2017). Interac-
tions are computed by difference between the sum of individ-
ual contribution and a scenario emulated with all four activity
sector removed simultaneously (which is constrained by the

scenario “AGR100IND100RH100TRA100”, Sect. 3.4). And
the remaining fraction corresponds to natural sources or any
other pollutant precursor not included in ACT (natural and
background concentration).

From this decomposition, the large influence of agriculture
appears clearly for the March 2015 PM10 episode in Paris
(Fig. 15). Traffic and industry are also important contribu-
tors, but residential heating has a smaller contribution. For
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Figure 14. First row: O3max concentrations on 21 June 2017 including (left) or excluding (right) natural and background concentrations.
Following rows: O3max concentrations emulated with ACT for 21 June 2017 for a 100 % reduction of traffic emissions (second row, left),
residential emissions (second row, right), industry emissions (third row, left) and agriculture emissions (third row, right).

the December 2016 PM10 episode, the agriculture contribu-
tion is only second behind traffic. Residential heating is more
important than for the March 2015 episode, but it could also
be underestimated by the model, which used an emission in-
ventory that does not capture very well residential heating,
in particular in relation with wood burning. This underesti-
mation of residential emission has been widely documented
as it has a very strong impact on model performance to cap-
ture wintertime peaks (Denier van der Gon et al., 2015). The
expected future improvements in the consistency of reported

condensable PM in emission inventories should notably im-
prove model performance. Until then, this feature provides us
with an opportunity to highlight that the diagnostics derived
with the surrogate model remains highly sensitive to un-
derlying hypotheses in emission inventories and chemistry-
transport modelling.

For ozone, the picture is very different; a large fraction of
ozone is actually attributed to the tropospheric burden. But
during the ozone air pollution event (14 and 19–22 June), a
larger contribution of traffic is found, whereas the impact of
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Figure 15. Source allocation using the ACT surrogate model for PM10 in March 2015 (a, b) and December 2016 (c, d) and for O3max in
June 2017 as in absolute levels (µg m−3) with explicit (a, c, e) or redistributed (b, d, f) interaction terms.

Figure 16. PM10 concentration reduction (positive for a decrease in blue) corresponding to a given reduction in traffic and agriculture
emissions over the Paris area – daily average for 20 March 2015 (a) and 1 December 2016 (b).

industry is very small (a different conclusion will hold for
other cities as presented in Sect. 6). This presentation for
ozone highlights very well the challenge of mitigating back-
ground levels on the basis of European emission mitigation.
Conversely, it also shows precisely the need to act on Euro-
pean emission during the main ozone peak.

When interactions are negative, the sum of individual con-
tribution of each activity sector exceed the total (“net”) in the
reference simulation. It is clearly the case for the strong PM10
episode of March 2015, but conversely the interactions can
also be positive as illustrated for the O3 episode of June 2017.
The importance of interactions was expected considering the
complexity of atmospheric chemistry. But it constitutes an
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artefact that must be dealt with when performing a source
allocation by treating each sector independently.

There is no fully satisfactory approach to handle interac-
tion terms in such a decomposition. The simplest alternative
is to distribute one-fourth of those interactions into each of
the four contributions which leads to rescaling the reference
simulation (Table 4). The contribution of individual sector
can change substantially, which is also a reminder for the
overall uncertainty of the approach. For instance, the share
of agriculture is reduced from 32 % to 23 % in the case of the
March 2015 PM episode. But at least the ranking of each sec-
tor is not changed and their qualitative evolution, displayed
in the right column of Fig. 15, is similar.

7 Chemical regimes

The surrogate ACT model trained on CHIMERE sensitiv-
ity simulations also allows exploring the chemical sensitiv-
ity (or regimes) within the parameter space of sectoral emis-
sion reductions. ACT is a quadrivariate second-order poly-
nomial with interactions using as predictors the four sectors
considered. By plotting the surface response to two of these
four sectors in a 2-D parameter space, it is possible to as-
sess chemical regimes for a given day, location and pollu-
tant. In doing so, we perform an analogy with the classical
ozone production isopleths of Sillman (1999) by substituting
the NOx and VOC emissions in the x and y axes by different
activity sectors.

Figure 16 compares two particulate pollution days, over
Paris areas, in March 2015 and December 2016, respectively.
In March 2015, reducing agriculture emissions has a strong
positive impact on the reduction of PM10 concentrations that
decrease sharply, while the impact of traffic emissions reduc-
tion is much less effective with the isopleth close to vertical
lines. The inverse conclusions can be drawn for the Decem-
ber 2016 episode, where a linear decrease of PM10 is in-
duced by traffic emission reductions, whereas the isopleths
are closer to horizontal lines, depicting a low sensitivity to
agricultural emission changes.

Ozone chemical regimes can also be investigated for a
high-ozone episode (21 June 2017), for various locations and
for both ozone daily maxima and daily means (Fig. 17).

Chemical regimes leading to the formation of high-ozone
values (as the slope of isopleths for daily maximum ozone)
are quite similar over Paris and Milan. But in Brussels a
stronger sensitivity to industrial emissions is found. The iso-
pleths for daily average ozone on the same day are very dif-
ferent. For all levels of industrial emissions, we find that a de-
crease of traffic emissions leads first to an increase of ozone
before becoming efficient for the largest levels of emission
reduction.

8 Conclusion

We presented the first surrogate air quality model de-
signed to explore custom air pollution mitigation scenar-
ios in the every-day air quality forecast. This tool ap-
plies for PM10, PM2.5, O3 (both as daily mean and daily
maximum) and NO2, and covers the following activity
sectors: agriculture, industry, road transportation and res-
idential heating. It can be implemented within an op-
erational air quality forecasting system and operated in-
teractively by any user through a web interface (https://
policy.atmosphere.copernicus.eu/CAMS_ACT.php, last ac-
cess: 1 February 2022).

Because of the complexity of atmospheric chemistry and
physics, chemistry-transport models are required to account
for the fate of air pollutants in the atmosphere. Simplified
models have been developed over the past for assessment
purposes, for instance, to identify optimal long-term mitiga-
tion strategies. However, such simplified models rely on as-
sumptions which are not valid over short time periods, such
as the linearity of the response of air concentrations to incre-
mental emission changes.

We introduce a new surrogate modelling approach, whose
main strength is to apply for short timescales, so that it can be
embedded in an air quality forecast system. This challenge is
achieved by calibrating every day a new surrogate model on
the basis of the forecast of the corresponding day. Most of
the complexity of atmospheric processes remains therefore
represented within the full chemistry-transport model, and
the only purpose of the surrogate is to offer flexibility.

First, we investigated the non-linearity of the response of
atmospheric pollutant concentrations to incremental emis-
sion changes for various pollutants, areas and different
episode typologies. We concluded that whereas the response
was mainly linear for residential heating, non-linearities were
important, especially for agriculture emissions and their im-
pact on PM10 formation, and traffic and industrial emissions
for ozone pollution.

The numerical experiment plan to identify the best model
structure and the corresponding optimal set of training sce-
narios is presented by increasing level of complexity. We
ultimately select a quadrivariate polynomial of first order
for residential heating emissions and second order for agri-
culture, industry and traffic emissions with three interaction
terms. The surrogate is trained on 10 sensitivity simulations,
to which a reference and a closure simulation must be added.
With such a structure, we can ensure that relative errors re-
main below 2 % at 95 % of the grid points and days for PM10,
PM2.5, NO2, O3max and O3avg .

The user interface is available online and a few case stud-
ies are presented. The emulation of custom scenarios is in-
troduced for two PM10 and one ozone episode. It highlights
the important role of agricultural emission in the formation
of regional-scale PM episodes, although several hotspots can
only be mitigated by acting on all sectors. For ozone, the
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Table 2. List of CTM sensitivity simulations used to train and test the need to account for interactions in the quadratic forms of the surrogate
model.

Model Training Testing

Interaction 1 Ref, AGR30, AGR60, IND30, IND60, AGR60IND30 AGR30IND60
2 Ref, AGR30, AGR60, IND30, IND60, AGR30IND60 AGR60IND30

No Interaction 3 Ref, AGR30, AGR60, IND30, IND60 AGR30IND60
4 Ref, AGR30, AGR60, IND30, IND60 AGR60IND30

Figure 17. Same as Fig. 16 for ozone daily maximum (a, c, e) and ozone daily mean (b, d, f) and Brussels, Paris and Milan for a high-ozone
day (21 June 2017).
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Table 3. List of CTM sensitivity simulations used to select the optimal scenario by training and testing the various combinations to account
for interactions in the quadratic forms of the surrogate model.

Model Training Testing

Interaction 1 Ref, AGR60, AGR100, IND60, IND100, AGR20IND50 AGR30IND60, AGR60IND30, AGR100IND100
2 Ref, AGR60, AGR100, IND60, IND100, AGR30IND60 AGR20IND50, AGR60IND30, AGR100IND100
3 Ref, AGR60, AGR100, IND60, IND100, AGR60IND30 AGR20IND50, AGR30IND60, AGR100IND100
4 Ref, AGR60, AGR100, IND60, IND100, AGR100IND100 AGR20IND50, AGR30IND60, AGR60IND30

Table 4. Relative contributions (%) of the four main activity sectors as well as natural and background concentrations (“other”) averaged
over the three selected air pollution episodes, either with explicit interaction terms or with interactions redistributed within individual contri-
butions.

PM10, March 2015 PM10, December 2016 O3max , June 2017

Explicit interaction Redistributed interactions Explicit interaction Redistributed interactions Explicit interaction Redistributed interactions

AGR 32 23 24 21 −1 0
IND 17 11 11 10 1 4
RH 9 15 16 17 0 1
TRA 18 23 24 23 7 10
Other 24 28 24 28 92 85

tropospheric burden is important, but during a strong air pol-
lution episode, action on European sources of traffic and in-
dustry can reduce peak levels.

The surrogate model can also be used for source alloca-
tion, although it requires additional assumptions on the way
interaction terms are handled. We also present an innovative
application for chemical regime analysis for both ozone and
particulate air pollution, providing new insight on the identi-
fication of the most efficient activity sector to be targeted for
air pollution episode mitigation.

At present, the main limitation of ACT is that it relies on
emission reductions that are uniform over Europe. Adding
geographical flexibility is one of the priorities for further de-
velopment.

To our knowledge, this model is the first surrogate, or em-
ulator, able to cover a short timescale for air pollution stud-
ies. This development was only made possible by assuming
uniform and constant emission reductions for the four tar-
geted activity sectors. The fact that emission reductions are
assumed to be applied over the long term makes ACT not
suited to assess the benefit of emergency measures to miti-
gate air pollution episodes. The purpose of the tool is rather
to assess the main activity sectors driving the day-to-day air
pollution variability.

Although the structure of the model is determined once by
the outcome of the present study, the surrogate is calibrated
every day to a new air quality forecast, therefore paving the
way to further develop machine learning in the field of air
quality forecasting.

Code availability. The script used for the operational daily train-
ing of the ACT surrogate is available at https://github.com/

acolette/ACT_v1.0 (last access: 15 February 2022) (https://
doi.org/10.5281/zenodo.5973299, Colette, 2022). The underlying
CHIMERE chemistry-transport model is available at https://www.
lmd.polytechnique.fr/chimere/chimere.php (Mailler et al., 2017).

Data availability. The modelling results used in the present study
are archived by the authors and can be obtained from the corre-
sponding author upon request.
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Author contributions. AC conceptualized the model, designed the
experiment and performed the simulations with support of FM. VL
and BR designed the interface of the web toolbox. AC and LR pre-
pared the manuscript with contributions from all co-authors.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The high-performance simulations were per-
formed on the Centre de Calcul Recherche et Technologie.

https://doi.org/10.5194/gmd-15-1441-2022 Geosci. Model Dev., 15, 1441–1465, 2022

https://github.com/acolette/ACT_v1.0
https://github.com/acolette/ACT_v1.0
https://doi.org/10.5281/zenodo.5973299
https://doi.org/10.5281/zenodo.5973299
https://www.lmd.polytechnique.fr/chimere/chimere.php
https://www.lmd.polytechnique.fr/chimere/chimere.php
https://doi.org/10.5194/gmd-15-1441-2022-supplement


1464 A. Colette et al.: Air Control Toolbox (ACT_v1.0)

Financial support. The present work was funded under the Coper-
nicus Atmosphere Monitoring Service Policy Support contract
(CAMS_71), also benefiting from the support of the French Min-
istère de la Transition Ecologique.

Review statement. This paper was edited by Ignacio Pisso and re-
viewed by two anonymous referees.

References

Amann, M., Bertok, I., Cofala, J., Heyes, C., Klimont, Z., Rafaj,
P., Schöpp, W., and Wagner, F.: National Emission Ceilings for
2020 Based on the 2008 Climate and Energy Package, IIASA,
Laxenburg, 2008.

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes,
C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M.,
Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter,
W.: Cost-effective control of air quality and greenhouse gases
in Europe: Modeling and policy applications, Environ. Modell.
Softw., 26, 1489–1501, 2011.

Bessagnet, B., Beauchamp, M., Guerreiro, C., de Leeuw, F., Tsyro,
S., Colette, A., Meleux, F., Rouïl, L., Ruyssenaars, P., Sauter,
F., Velders, G. J. M., Foltescu, V. L., and van Aardenne, J.: Can
further mitigation of ammonia emissions reduce exceedances of
particulate matter air quality standards?, Environ. Sci. Policy, 44,
149–163, 2014.

Clappier, A., Belis, C. A., Pernigotti, D., and Thunis, P.: Source
apportionment and sensitivity analysis: two methodologies with
two different purposes, Geosci. Model Dev., 10, 4245–4256,
https://doi.org/10.5194/gmd-10-4245-2017, 2017.

Cohan, D. S. and Napelenok, S. L.: Air Quality Response Modeling
for Decision Support, Atmosphere, 2, 407–425, 2011.

Colette, A.: acolette/ACT_v1.0: Air Control Toolbox (ACT_v1.0)
(V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5973299,
2022.

Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A.,
Nyiri, A., Rao, S., Amann, M., Bessagnet, B., D’Angiola, A.,
Gauss, M., Heyes, C., Klimont, Z., Meleux, F., Memmesheimer,
M., Mieville, A., Rouïl, L., Russo, F., Schucht, S., Simp-
son, D., Stordal, F., Tampieri, F., and Vrac, M.: Future air
quality in Europe: a multi-model assessment of projected ex-
posure to ozone, Atmos. Chem. Phys., 12, 10613–10630,
https://doi.org/10.5194/acp-12-10613-2012, 2012.

Colette, A., Andersson, C., Baklanov, A., Bessagnet, B., Brandt,
J., Christensen, J. H., Doherty, R., Engardt, M., Geels, C., Gi-
annakopoulos, C., Hedegaard, G. H., Katragkou, E., Langner, J.,
Lei, H., Manders, A., Melas, D., Meleux, F., Rouïl, L., Sofiev, M.,
Soares, J., Stevenson, D. S., Tombrou-Tzella, M., Varotsos, K. V.,
and Young, P.: Is the ozone climate penalty robust in Europe?,
Environ. Res. Lett., 10, 084015, https://doi.org/10.1088/1748-
9326/10/8/084015, 2015.

Denier van der Gon, H. A. C., Bergström, R., Fountoukis, C.,
Johansson, C., Pandis, S. N., Simpson, D., and Visschedijk,
A. J. H.: Particulate emissions from residential wood com-
bustion in Europe – revised estimates and an evaluation, At-
mos. Chem. Phys., 15, 6503–6519, https://doi.org/10.5194/acp-
15-6503-2015, 2015.

Engelen, R. J. and Peuch, V.: The Copernicus Atmosphere Monitor-
ing Service: facilitating the prediction of air quality from global
to local scales, AGU Fall Meeting Abstracts, San Francisco, De-
cember 2017, American Geophysical Union, Fall Meeting, ab-
stract #A31N-02, 2017.

Forêt, G., Haeffelin, M., Kreitz, M., Boucher, O., Beekmann, M.,
Formenti, P., Bodichon, R., Dupont, J. C., Drouin, M. A., Bravo-
Aranda, J. A., Favez, O., Ghersi, V., Gratien, A., Michoud, V.,
Gros, V., and Té, Y.: Analyse préliminaire de l’épisode de pol-
lution francien de décembre 2016, La Météorologie, 96, 11–15,
https://doi.org/10.4267/2042/61967, 2017.

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and De-
nier van der Gon, H. A. C.: TNO-MACC_II emission inven-
tory; a multi-year (2003–2009) consistent high-resolution Euro-
pean emission inventory for air quality modelling, Atmos. Chem.
Phys., 14, 10963–10976, https://doi.org/10.5194/acp-14-10963-
2014, 2014.

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat,
F., Siour, G., Turquety, S., Briant, R., Tuccella, P., Bessag-
net, B., Colette, A., Létinois, L., Markakis, K., and Meleux,
F.: CHIMERE-2017: from urban to hemispheric chemistry-
transport modeling, Geosci. Model Dev., 10, 2397–2423,
https://doi.org/10.5194/gmd-10-2397-2017, 2017 (data available
at: https://www.lmd.polytechnique.fr/chimere/chimere.php, last
access: 15 February 2022).

Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta,
J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet,
B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier,
R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H.,
Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E.,
Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E.,
Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen,
J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I.,
Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Par-
mentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S.,
Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M.,
Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van
Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A re-
gional air quality forecasting system over Europe: the MACC-II
daily ensemble production, Geosci. Model Dev., 8, 2777–2813,
https://doi.org/10.5194/gmd-8-2777-2015, 2015.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M.,
Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic,
A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour,
G., Turquety, S., Valari, M., Vautard, R., and Vivanco,
M. G.: CHIMERE 2013: a model for regional atmospheric
composition modelling, Geosci. Model Dev., 6, 981–1028,
https://doi.org/10.5194/gmd-6-981-2013, 2013.

Petit, J. E., Amodeo, T., Meleux, F., Bessagnet, B., Menut, L.,
Grenier, D., Pellan, Y., Ockler, A., Rocq, B., Gros, V., Sciare,
J., and Favez, O.: Characterising an intense PM pollution
episode in March 2015 in France from multi-site approach
and near real time data: Climatology, variabilities, geographi-
cal origins and model evaluation, Atmos. Environ., 155, 68–84,
https://doi.org/10.1016/j.atmosenv.2017.02.012, 2017.

Pisoni, E., Clappier, A., Degraeuwe, B., and Thunis, P.:
Adding spatial flexibility to source-receptor relationships for
air quality modeling, Environ. Modell. Softw., 90, 68–77,
https://doi.org/10.1016/j.envsoft.2017.01.001, 2017.

Geosci. Model Dev., 15, 1441–1465, 2022 https://doi.org/10.5194/gmd-15-1441-2022

https://doi.org/10.5194/gmd-10-4245-2017
https://doi.org/10.5281/zenodo.5973299
https://doi.org/10.5194/acp-12-10613-2012
https://doi.org/10.1088/1748-9326/10/8/084015
https://doi.org/10.1088/1748-9326/10/8/084015
https://doi.org/10.5194/acp-15-6503-2015
https://doi.org/10.5194/acp-15-6503-2015
https://doi.org/10.4267/2042/61967
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.5194/gmd-10-2397-2017
https://www.lmd.polytechnique.fr/chimere/chimere.php
https://doi.org/10.5194/gmd-8-2777-2015
https://doi.org/10.5194/gmd-6-981-2013
https://doi.org/10.1016/j.atmosenv.2017.02.012
https://doi.org/10.1016/j.envsoft.2017.01.001


A. Colette et al.: Air Control Toolbox (ACT_v1.0) 1465

Rouïl, L., Honore, C., Vautard, R., Beekmann, M., Bessagnet, B.,
Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., Flaud, J.
M., Menut, L., Martin, D., Peuch, A., Peuch, V. H., and Pois-
son, N.: PREV’AIR An Operational Forecasting and Mapping
System for Air Quality in Europe, B. Am. Meteorol. Soc., 90,
73–83, 10.1175/2008bams2390.1, 2009.

Sillman, S.: The relation between ozone, NOx and hydrocarbons
in urban and polluted rural environments, Atmos. Environ., 33,
1821–1845, 1999.

Tarrason, L., Hamer, P., Rouïl, L., and Meleux, F.: Interim An-
nual Assessment Report for 2017, European air quality in
2017, available at: https://policy.atmosphere.copernicus.eu/
reports/CAMS-71_SC12019_D1.2.1-2017_202004_V1.pdf
(last access: 15 February 2022), 2017.

Thunis, P., Clappier, A., Pisoni, E., and Degraeuwe, B.: Quantifica-
tion of non-linearities as a function of time averaging in regional
air quality modeling applications, Atmos. Environ., 103, 263–
275, 2015.

Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part I: History, techniques, and
current status, Atmos. Environ., 60, 632–655, 2012.

https://doi.org/10.5194/gmd-15-1441-2022 Geosci. Model Dev., 15, 1441–1465, 2022

https://policy.atmosphere.copernicus.eu/reports/CAMS-71_SC12019_D1.2.1-2017_202004_V1.pdf
https://policy.atmosphere.copernicus.eu/reports/CAMS-71_SC12019_D1.2.1-2017_202004_V1.pdf


Supplement of Geosci. Model Dev., 15, 1441–1465, 2022
https://doi.org/10.5194/gmd-15-1441-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Supplement of

Air Control Toolbox (ACT_v1.0): a flexible surrogate model to
explore mitigation scenarios in air quality forecasts
Augustin Colette et al.

Correspondence to: Augustin Colette (augustin.colette@ineris.fr)

The copyright of individual parts of the supplement might differ from the article licence.



 

  

  

 
 

Figure S1 : Modelled PM2.5 reduction (y-axis : positive for a decrease with respect to the reference, µg/m3) for a given 

reduction in Agriculture (green), Industrial (red), Residential Heating (blue), and Traffic (black) emissions (x-axis: in 

%) in Brussels, Paris and Milano (top to bottom) and for 20150320 (left) and 20161201 (right). 



  

 
 

  
Figure S2 : Same as Figure S1 for NO2 20161201 and 20170620 



 
 
 

 
 

Figure S3 : Absolute (top, µg/m3) and relative (bottom, %) error over Western Europe of the univariate surrogate model 

for the Industry activity sector in December 2016. The colored lines are for individual polynomial surrogate models and 

training scenarios (x-axis: 5 linear, 10 quadratic and 10 cubic forms with indices of the x-axis matching the rows of 

Table 1). The grey curve gives the day-to-day variation of PM10 (µg/m3) averaged over the region (displayed on the 

right-hand-side y-axis) 



 
 

 
Figure S4 : Same as Figure S3 for Traffic 

 



 
 
 

 
Figure S5 : Same as Figure S3 for Residential Heating 



 

Figure S6 : Relative error (%) averaged over the month of December 2016 for the quadratic univariate PM10 models 

with respect to the industry activity sector. The sensitivity scenarios used to train the individual models are indicated 

in the title of each panel, as well as the average error. 



 

Figure S7 : Same as Figure S6 for Residential heating 



 

Figure S8 : Same as Figure S6 for Traffic 



  

 

Polynomial Training  AGR IND RH TRA 

x 10 3,933 1,133 0,130 0,339 

x 30 3,123 0,894 0,082 0,236 

x 60 1,983 0,573 0,047 0,137 

x 90 1,310 0,382 0,032 0,092 

x 100 1,463 0,471 0,036 0,106 

x+x2 10 30 3,540 0,698 0,284 0,407 

x+x2 10 60 2,097 0,329 0,066 0,117 

x+x2 10 90 0,833 0,137 0,027 0,046 

x+x2 10 100 0,856 0,147 0,027 0,047 

x+x2 30 60  1,917 0,285 0,055 0,096 

x+x2 30 90 0,663 0,104 0,018 0,031 

x+x2 30 100 0,646 0,105 0,017 0,030 

x+x2 60 90 0,697 0,101 0,017 0,032 

x+x2 60 100 0,634 0,099 0,015 0,028 

x+x2 90 100 1,563 0,254 0,029 0,058 

x+x2+x3 10 30 60 3,437 0,634 0,315 0,428 

x+x2+x3 10 30 90 0,867 0,140 0,054 0,076 

x+x2+x3 10 30 100 0,736 0,122 0,049 0,068 

x+x2+x3 10 60 90 0,596 0,081 0,022 0,034 

x+x2+x3 10 60 100 0,407 0,057 0,017 0,026 

x+x2+x3 10 90 100 0,739 0,099 0,024 0,038 

x+x2+x3 30 60 90 0,560 0,074 0,020 0,032 

x+x2+x3 30 60 100 0,360 0,049 0,015 0,022 

x+x2+x3 30 90 100 0,514 0,068 0,017 0,027 

x+x2+x3 60 90 100 1,150 0,143 0,029 0,051 
Table S1 : Relative error (%) of the PM10 univariate polynomial surrogate models averaged over Western Europe for 

three air pollution episodes (201503, 201612, 201701) for various polynomial structures, and various set of Chimere 

simulations used in the training. A color shading is applied to highlight the worst (red) and best (green) performances. 

  



 

Polynomial Training  AGR IND RH TRA 

x 10 0,083 0,500 0,002 0,738 

x 30 0,070 0,390 0,001 0,571 

x 60 0,053 0,241 0,001 0,347 

x 90 0,037 0,159 0,001 0,229 

x 100 0,045 0,191 0,001 0,273 

x+x2 10 30 0,115 0,184 0,002 0,263 

x+x2 10 60 0,077 0,104 0,001 0,141 

x+x2 10 90 0,034 0,040 0,000 0,053 

x+x2 10 100 0,036 0,043 0,000 0,057 

x+x2 30 60  0,072 0,090 0,000 0,122 

x+x2 30 90 0,028 0,030 0,000 0,039 

x+x2 30 100 0,028 0,030 0,000 0,039 

x+x2 60 90 0,029 0,030 0,000 0,039 

x+x2 60 100 0,028 0,029 0,000 0,038 

x+x2 90 100 0,078 0,068 0,000 0,083 

x+x2+x3 10 30 60 0,114 0,125 0,002 0,179 

x+x2+x3 10 30 90 0,035 0,029 0,000 0,038 

x+x2+x3 10 30 100 0,029 0,025 0,000 0,033 

x+x2+x3 10 60 90 0,027 0,018 0,000 0,022 

x+x2+x3 10 60 100 0,018 0,012 0,000 0,016 

x+x2+x3 10 90 100 0,034 0,022 0,000 0,027 

x+x2+x3 30 60 90 0,025 0,016 0,000 0,020 

x+x2+x3 30 60 100 0,016 0,011 0,000 0,014 

x+x2+x3 30 90 100 0,024 0,015 0,000 0,018 

x+x2+x3 60 90 100 0,054 0,032 0,000 0,039 
Table S.2 : Same as Table S.1 for ozone daily maximum for the month of 201706. 

AI AR IR TA TI TR model 

0,355 0,102 0,051 0,244 0,069 0,039 1 

0,355 0,102 0,051 0,244 0,069 0,039 2 

0,878 0,286 0,158 0,651 0,271 0,090 3 

1,025 0,289 0,147 0,704 0,283 0,091 4 

Table S.3 : Relative error (%) of the PM10 univariate polynomial surrogate models averaged over Western Europe for 

three air pollution episodes (201503, 201612, 201701) when including or excluding interaction terms. A color shading is 

applied to highlight the worst (red) and best (green) performances 

  



 

AI AR IR TA TI TR model 

0,011 0,001 0,003 0,008 0,032 0,005 1 

0,011 0,001 0,003 0,008 0,032 0,005 2 

0,017 0,001 0,012 0,022 0,317 0,019 3 

0,020 0,002 0,011 0,019 0,312 0,018 4 

Table S.4 : Same as Table S.3 for ozone daily maximum for the month of 201706. 

AI AR IR TA TI TR model 

1,003 0,941 0,128 0,535 0,067 0,057 1 

0,638 0,558 0,072 0,614 0,074 0,028 2 

0,884 0,781 0,095 0,519 0,060 0,031 3 

0,996 0,832 0,127 0,353 0,128 0,054 4 

Table S.5 : Relative error (%) of the PM10 univariate polynomial surrogate models averaged over Western Europe for 

three air pollution episodes (201503, 201612, 201701) when using different interaction sensitivity scenarios. A color 

shading is applied to highlight the worst (red) and best (green) performances 

AI AR IR TA TI TR Model 

0,047 0,037 0,045 0,065 0,049 0,060 1 

0,040 0,022 0,026 0,048 0,034 0,034 2 

0,047 0,030 0,036 0,062 0,037 0,047 3 

0,037 0,031 0,034 0,048 0,153 0,043 4 

Table S.6 : Same as Table S.5 for O3max 



 

Figure S.9: Screenshot of the ACT web interface, https://policy.atmosphere.copernicus.eu/CAMS_ACT.php. 
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