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Abstract

To date, the accurate prediction of tunnel boring machine (TBM) performance remains a considerable challenge owing to the complex
interactions between the TBM and ground. Using evolutionary polynomial regression (EPR) and random forest (RF), this study devel-
ops two novel prediction models for TBM performance. Both models can predict the TBM penetration rate and field penetration index as
outputs with four input parameters: the uniaxial compressive strength, intact rock brittleness index, distance between planes of weakness,
and angle between the tunnel axis and planes of weakness (a). First, the performances of both EPR- and RF-based models are examined
by comparison with the conventional numerical regression method (i.e., multivariate linear regression). Subsequently, the performances
of the RF- and EPR-based models are further investigated and compared, including the model robustness for unknown datasets, interior
relationships between input and output parameters, and variable importance. The results indicate that the RF-based model has greater
prediction accuracy, particularly in identifying outliers, whereas the EPR-based model is more convenient to use by field engineers owing
to its explicit expression. Both EPR- and RF-based models can accurately identify the relationships between the input and output param-
eters. This ensures their excellent generalization ability and high prediction accuracy on unknown datasets.

Keywords: Tunnel boring machine; Evolutionary polynomial regression; Random forest; Optimization; Regularization
1 Introduction

Tunnel boring machines (TBMs) have been extensively
used for tunnel construction in rock and soil
(Mahmoodzadeh et al., 2021; Zakhem & El Naggar,
2020). The accurate prediction of TBM performance is cru-
cial for estimating project schedules and selecting machine
types and specifications (Gong & Zhao, 2009; Hassanpour
et al., 2009). Thus, many empirical and semi-empirical for-
mulations have been proposed to predict TBM perfor-
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mance. Empirical formulations have been developed
using linear and non-linear regression analysis of the stud-
ied performance and influential factors (Benato & Oreste,
2015; Kahraman et al., 2003). However, the datasets tend
to be collected from a given project; Thus, the application
scope of the empirical formulations is typically limited to a
specific project. One of the most typical empirical models is
the Norwegian University of Science and Technology
model. Based on the rock properties and the cutting geom-
etry, the semi-empirical models theoretically analyze the
rock fragmentation process and predict the TBM perfor-
mance. The most representative semi-empirical model is
the family of the Colorado School of Mines model
(Ozdemir, 1977; Rostami, 1997; Rostami & Ozdemir,
1993; Yagiz, 2002), although specific model parameters
behalf of KeAi Communications Co. Ltd.
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must be determined from the numerical regression of labo-
ratory tests. Moreover, discrepancies always exist between
the predicted performance of the empirical and semi-
empirical formulations and the measured results owing to
the complex interaction between the TBM and ground.

Machine learning (ML), characterized by strong map-
ping capability, has recently been applied to address
sophisticated and uncertain problems that cannot be well
addressed through conventional methodologies(Atangana
Njock et al., 2020; Chen et al., 2019a; Elbaz et al., 2021;
Shen et al., 2020; Zhang et al., 2021a, 2020a, 2020d).
Hence, as an alternative method, ML algorithms have been
gradually employed to predict TBM performance. These
algorithms include the adaptive neuro-fuzzy inference sys-
tem (Ghasemi et al., 2014; Grima et al., 2000), artificial
neural network (ANN) (Armaghani et al., 2017;
Benardos & Kaliampakos, 2004; Koopialipoor et al.,
2019b; Yagiz et al., 2009), extreme learning machine
(Shao et al., 2013), support vector machine (SVM)
(Fattahi & Babanouri, 2017; Mahdevari et al., 2014), deci-
sion tree (Jakubowski et al., 2017), the group method of
data handling (Koopialipoor et al., 2019a), and the deep
neural network (DNN) (Koopialipoor et al., 2019b). Nev-
ertheless, previous researches have tended to neglect three
important objective factors: the applicability of ML algo-
rithms, size of the datasets, and number of input variables.
ML-based models require considerable domain expertise to
extract the features that transform the raw data into a suit-
able internal representation.

Deep learning (DL) allows a machine to accept raw data
and automatically discovers the representations required
for detection or classification (LeCun et al., 2015). DL fur-
ther improves ML algorithms making full use of the raw
data and mitigating the dependence on domain expert
knowledge. However, DL algorithms, such as DNN,
require numerous data to extract the useful features and
tune the internal hyperparameters. Moreover, they merely
derive the modeling properties to map the prescribed
parameters rather than search for the relationships between
the parameters; therefore the physical meaning behind
these models cannot be determined. To the best of the
authors’ knowledge regarding, the published research, the
maximum database used for developing a TBM perfor-
mance prediction model involved only 1286 datasets
(Koopialipoor et al., 2019b), which was considerably smal-
ler than the size of the model used in the ML domain. If the
number of datasets is insufficient, it is possible that an
advanced and complex ML algorithm is not the best option
for the development of a model for TBM performance pre-
diction. Moreover, the previous ML-based models for
TBM performance prediction were developed based on
the prescribed input parameters determined by a domain
expert. However, a method for the selection of the input
parameters was not emphasized, leading to different
parameter combinations in these previous ML-based mod-
els. Increasing the number of input parameter would
increases the model complexity; Moreover, it is unreason-
able to adopt excessive input variables for a small number
of datasets. However, if the number of input parameters is
considerably small, the generalization ability of the model
could be reduced. Therefore, the tradeoff between model
complexity and generalization ability must be considered.

Finally, the meaning behind the current ML-based mod-
els has not been revealed, making it difficult to provide use-
ful information to guide the TBM tunneling process.
Considering the applicability of ML algorithms and the
state-of-the-art, genetic programming (GP) and ensemble
algorithm random forest (RF) are more appropriate for
predicting TBM performance than other complex ML
algorithms. GP is an evolutionary computing algorithm
that derives its modeling properties by generating an expli-
cit and structured representation of the system (Koza,
1992). The GP-based models are represented by an explicit
expression. Therefore, they are practically useful in engi-
neering practice, and the computational cost of determin-
ing a GP-based model is considerably less than that of an
ML-based model. An enhanced GP algorithm integrated
with the conventional numerical regression method and
GP symbolic regression method, termed evolutionary poly-
nomial regression (EPR), has been proposed (Giustolisi &
Savic, 2006) and has been successfully used in geotechnical
engineering (Jin et al., 2019; Nassr et al., 2018; Yin et al.,
2016). RF is simple, quick, easily parallelized, and resistant
to outliers and noise (Nadi & Moradi, 2019; Zhang, 2019).
Breiman (2001) demonstrated that RF provides useful
internal estimates of error, strength, correlation, and vari-
able importance. Owing to these advantages, RF has been
extensively used in the engineering domain and outper-
forms other ML algorithms such as ANN and SVM (Ao
et al., 2019; Chen et al., 2019b; Zhang et al., 2020c,
2021b, 2020e; Zhou et al., 2016).

This study aims to develop two models with the mini-
mum number of possible input parameters using EPR
and RF alternatively for TBM performance prediction
characterized by the penetration rate (PR) and field pene-
tration index (FPI). The developed models are compared
with a multivariate linear regression (MLR)-based model.
The performance of both the RF- and EPR-based predic-
tion models are comprehensively investigated, including
the model robustness for unknown datasets, interior
relationships between input and output parameters, and
variable importance. Based on these results, recommenda-
tions for simple, reliable, and practical models for TBM
performance prediction in engineering practices are
presented.

2 Methodology for TBM performance prediction

2.1 EPR modeling process

EPR is a hybrid regression approach that integrates the
conventional numerical regression and GP symbolic regres-
sion methods (Giustolisi & Savic, 2006). The EPR model-
ing process can be primarily categorized into two steps,



Table 1
Values of the parameters in GA.

pcross pmutation Nmaxgen Nsizepop Lower Upper

0.7 0.1 500 20 –1 5

Note: pcross and pmutation are the probability of crossover and mutation,
respectively; Nmaxgen is the prescribed maximum number of generations;
Nsizepop is the population size; and lower and upper are the lower and
upper bounds of the element value in the exponent matrix, respectively.
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namely, structure identification and parameter estimation.
In the first step, the optimization algorithm (e.g., genetic
algorithm, GA), is employed to search for an exponent
matrix that determines the expression of the new trans-
formed variable (Zhang et al., 2021b). Further, it should
be noted that other stochastic optimization algorithms,
such as differential evolution, particle swarm optimization,
and backtracking search algorithm, can be used, rather
than GA. For a given input matrix X = [x1, x2, ∙∙∙, xj,
∙∙∙, xn] and exponent matrix E = [e1, e2, ∙∙∙, ej, ∙∙∙, en], the
expression of the ith transformed term is obtained by

xti ¼ xei1
1 xei2

2 � � � xeij
j � � � xein

n : ð1Þ
In the second step, the constant coefficient for each

transformed term is estimated by solving the least-squares
linear problem after determining the transformed term
matrix X ti = [xt1, xt2,∙∙∙, xti, ∙∙∙, xtm]. Thus, a typical EPR
expression can be formulated as

y ¼
Xm

i¼1
F xti; aið Þ þ a0: ð2Þ

Here y is the predicted output, m is the number of trans-
formed terms, F is the EPR function, ai is the constant
coefficient for the ith transformed term, and a0 is the
optional bias coefficient.

Subsequently, the value of the objective function for
optimization is calculated using the temporary EPR-
based formulation (Eq. (2)). If the results satisfy the termi-
nation condition, the optimum EPR formulation is deter-
mined. Otherwise, the values of the exponent matrix are
updated by the optimization algorithm. In this study, the
GA optimization algorithm is used as it is a standard algo-
rithm in a class of evolutionary algorithms and has been
extensively used in the engineering domain (Yin et al.,
2016, 2017). The search process of the optimum matrix E
is terminated when the value of the GA objective function
remains constant, and the recursive step achieves the max-
imum generation.

The 10-fold cross validation (CV) and ridge (L2) regu-
larization methods are adopted to enhance the model
robustness and avoid overfitting. In particular, the 10-
fold CV method divides the original training set into 10
subsets. In each training round, nine random subsets are
employed to train the model, and the remaining subset is
used to validate the model performance. A total of 10
EPR models with the same exponent matrix and different
constants are established. Each model yields an error that
is represented by the sum of squared errors on the respec-
tive validation subset. The performance of the exponent
matrix is evaluated based on the average error of the 10
models, rather than a prescribed single training set. Conse-
quently, the effect of the randomness of the training set on
the model performance is reduced. This enhances the
robustness of the model. L2 regularization penalizes model
complexity by adding a term to the objective function.
Thus, the overfitting problem can be avoided. The objec-
tive function of the GA is defined as
J Hð Þ ¼ 1
10l

P10
j¼1

Pl
i¼1

ypji � ymji
h i2

þ k
2
jjxjj22 ;

jjxjj22 ¼ xTx ;

ð3Þ

where l is the number of datasets in each validation subset,
H is the exponent matrix, ypji is the predicted ith output in

the jth validation set, ymji is the measured ith output in the

jth validation set, k is the regularization parameter, and
x is the vector consisting of the elements in the exponent
matrix. The GA parameters used in this study are listed
in Table 1.
2.2 Random forest modeling process

RF is an ensemble learning algorithm with a collection
of decision trees (Zhang et al., 2020b). Two powerful ML
techniques, namely, bootstrap aggregating (Breiman,
1996) and random subspace (Ho, 1998) are adopted in
RF, thereby enhancing its generalization ability. In RF, n
bootstrap sets are first created by sampling and replacing
N training examples from the training set; the number of
samples and features in each bootstrap set are arbitrary
(Zhang et al., 2019). Then, n decision trees grow using
the respective bootstrap set. Each node tests a particular
feature, and the leaves of a tree represent the output labels.
Each decision tree forms a regression or classification
space, and the final result of RF aggregates the outputs
from n decision trees (Liaw & Wiener, 2002).

y ¼ 1

n

Xn

i¼1
yi xð Þ; ð4Þ

where n is the total number of decision trees, y is the aver-
age output of all trees, and yi(x) is the prediction of a single
decision tree.
2.3 Evaluation indicators

Three indicators (i.e., mean absolute error (MAE), mean
absolute percentage error (MAPE), and Pearson correla-
tion coefficient (R); see Eqs. (5)–(7)) are used to evaluate
the model performance. Small values of MAE, MAPE,
and a large value of R indicate the excellent performance
of the model.

MAE ¼ 1

n

Xn

i¼1
ypi � ymi
�� ��; ð5Þ



Fig. 1. Evolution of value of objective function on test set.

Table 2
Statistical characteristics of datasets.

Parameter Max Min Mean SD

UCS (MPa) 200 118 150.1 22.1
BI (kN/mm) 58.0 24.9 34.6 8.4
DPW (m) 2 0.05 1.02 0.64
a (�) 89 2 44.72 23.20
PR (m/h) 1.27 3.07 2.04 0.36
FPI (kN∙r/mm) 147.7 45.2 81.8 19.5

Note: SD is the standard deviation.
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MAPE ¼ 1

n

Xn

i¼1

ypi � ymi
ymi

����
����� 100%; ð6Þ

R ¼
Pn

i¼1 ymi � y
�m

� �
ypi � y

�p
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ymi � y

�
m

� �2Pn
i¼1 ypi � y

�
p

� �2q ; ð7Þ

here, ymi is the measured ith output, ypi is the predicted ith

output, y
�m is the mean value of the measured output, y

�p

is the mean value of the predicted output, and n is the total
number of datasets.

3 Database

The database used in this study was obtained from the
Queens Water Tunnel No. 3 Stage 2 (7.5 km in length
and 7.06 m in diameter), which has been widely used in pre-
dicting the performance of TBMs (Yagiz, 2008). This data-
base contains 151 datasets within five different types of
rock: (1) mafic-to-mesocratic gneiss, amphibolite, and
schist (60/151, 39.74%), (2) mafic-to-mesocratic orthog-
neiss (31/151, 20.53%), (3) massive garnet amphibolite
and larger mafic dikes (13/151, 8.61%), (4) granitoid (felsic)
gneiss and orthogneiss (45/151, 29.80%), and (5) rhyodacite
dike (2/151, 1.32%). Seven parameters were recorded,
including the uniaxial compressive strength (UCS), Brazil-
ian tensile strength (BTS), intact rock brittleness index (BI)
defined based on the punch penetration test (Yagiz, 2009),
distance between the planes of weakness (DPW), the angle
between the tunnel axis, and the planes of weakness (a),
PR, and FPI. The output parameters PR and FPI were cal-
culated using Eqs. (8)–(10) (Hassanpour et al., 2009). To
achieve a tradeoff between model complexity and accuracy,
according to the feature selection investigation displayed in
Fig. 1, the four parameters UCS, BI, DPW, and a were
proven to be closely related to the TBM performance,
and they were selected as the input parameters of the
ML-based models to predict PR and FPI. Moreover, the
values of the objective function converged to a constant
(i.e., no overfitting issue occurred), indicating the effective-
ness of the overfitting prevention strategy used in this
study. The statistical characteristics of these six parameters
are summarized in Table 2.

PR m=hð Þ ¼ Boring length mð Þ
Boring time ðhÞ ; ð8Þ

PR mm=rð Þ ¼ PR m=hð Þ � 1000

RPM� 60
; ð9Þ

FPI kN � r=mmð Þ ¼ F n kNð Þ
PR ðmm=rÞ ; ð10Þ

here, RPM is the cutter head revolution speed and Fn is the
cutter load or normal force.

The scatter plots in Fig. 2 indicate the relationships
between the input and output parameters. Evidently, the
relationships of the four input parameters with PR are
opposite to those with FPI, ensuring consistency with the
actual condition. The increase in BI induces a large
increase in PR and a decrease in FPI, whereas the increase
in DPW decreased PR and increased FPI. A quadratic rela-
tionship exists between a and PR and a similar quadratic
relationship between a and FPI. The maximum PR and
minimum FPI were observed when a was appropriately
45�. When a was close to 0� and 90�, PR and FPI demon-
strated a decreasing and increasing trend, respectively. The
relationships between the output parameters and three
input parameters mentioned previously are commonly
observed and reported in engineering practice (Gong &
Zhao, 2009; Hassanpour et al., 2009). Regarding the
remaining input parameter UCS, no clear relationships
between UCS and the two output parameters PR and
FPI were observed in this project. Considering that UCS
is an important parameter for PR and FPI prediction in
other models (Hassanpour et al., 2009; Hassanpour et al.,
2011; Kahraman et al., 2003), it was adopted as an input
parameter to ensure that the ML-based models could
extend their application scope. In summary, in this project,
the most relevant parameter for PR was BI, followed by
DPW, UCS, and a. The most relevant parameter for FPI
was DPW, followed by BI, a, and UCS.

All datasets were mapped to the interval (�1, 1) using
Eq. (11) before training the model to reduce the computa-
tional cost and eliminate the scale difference of the param-
eters. For parameter x , the normalized value is obtained
from



Fig. 2. Relationships between influential and output parameters.
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xnorm ¼ x� xmin

xmax � xmin

x
�
max � x

�
min

� �þ x
�
min; ð11Þ

where xmax and xmin are the maximum and minimum val-

ues of the variable x and x
�
max and x

�
min = 1 and �1, respec-

tively. It was necessary to transform the final output into
the original vector space.
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Test set         0.18     9.4      0.87

MAE

    
(a)                                         

Fig. 3. Comparison between measured and predicted result
4 Predicted results

4.1 MLR

MLR is a commonly used method to develop an empir-
ical model for TBM performance prediction. In this study,
(b)
s using the MLR-based model for (a) PR and (b) FPI.



Table 3
Effect of k value on the model performance on the test set.

k PR FPI

MAE MAPE R MAE MAPE R

0 0.171 9.238 0.89 9.666 11.827 0.88
0.0001 0.165 8.473 0.89 10.579 12.341 0.87
0.001 0.173 9.277 0.89 10.649 12.534 0.83
0.01 0.181 9.780 0.86 11.053 12.940 0.83
0.1 0.266 13.974 0.64 12.143 13.996 0.75

Fig. 4. Prediction performance of EPR-based models with different
numbers of transformed terms for (a) PR and (b) FPI.

Table 4
Formulations for EPR-based PR and FPI prediction models.

k NTT Formulation

PR 0.0001 8 PR ¼ 0:1164

�1:285BI3DP

FPI 0 8 FPI ¼ �0:39

�0:4804UCS

Note: NTT is the number of transformed terms.
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to compare with the two proposed ML-based models, the
MLR-based model was employed to first predict PR and
FPI. The predicted PR and FPI values obtained using the
MLR-based model are presented in Fig. 3. Noticeably,
the predicted PR and FPI were close to the measured
results, and the prediction error for FPI was greater than
that for PR. The discrepancy between the measured and
predicted results of a large FPI, exceeding 140 kN∙r/mm,
for both the training and test sets is due to the scarcity of
datasets. The corresponding empirical equations are
expressed in Eqs. (12)–(13), which reveal the relationships
between the input and output parameters.

PR ¼ �0:0033UCSþ 0:0289BI� 0:2326DPW

þ 0:0053aþ 1:5596 ð12Þ
FPI ¼ 0:0315UCS� 1:0460BIþ 12:5863DPW

� 0:3329aþ 114:2132 ð13Þ
Noticeably, the input parameter relationships with PR

and FPI were opposite. An increase in UCS and DPW
led to a decrease in PR and increase in FPI, whereas an
increase in BI and a resulted in an increase in PR and
decrease in FPI. Except for the relationships of a with
PR and FPI, the results were consistent with the commonly
accepted relationships (Gong & Zhao, 2009; Hassanpour
et al., 2009). The deficiency of the MLR method is that
nonlinear relationships cannot be identified, thereby limit-
ing its application scope and prediction accuracy.

4.2 EPR

The EPR modeling process must determine the opti-
mum number of transformed terms and the value of the
regularization parameter k. Considering the tradeoff
between model complexity and accuracy, 10 EPR-based
models with the number of transformed terms in the range
of 3–12 were developed to predict PR and FPI, respec-
tively. The value of k was in the range (0, 0.0001, 0.001,
0.01, 0.1), and the value of the element in the exponent
matrix was in the range (–1, 0, 1, 2, 3, 4). The MAE and
MAPE values obtained using these models are presented
in Fig. 4. It should be noted that the value of the regular-
ization parameter k is optimum in these models. In sum-
mary, the values of MAE and MAPE decrease with an
increase in the number of transformed terms. After MAE
and MAPE reach a minimum, the rise in the number of
� 0:2422UCS� 0:2145BI3þ1:5473BI3DPW�UCS� aþ0:4558DPW

W�UCS3a� 0:5008DPW2a2þ0:4094a3 � 0:2129 BI3DPW�a
UCS

57þ 0:251DPWþ 0:0578UCS3BI�a
DPW � 0:151BI�DPW2þ0:4448UCS2BI� a

� BI�DPW� aþ 0:0577 UCS3BI�DPW
a � 0:3577a3 � 0:8412BI3a2



Fig. 5. Comparison between measured and predicted results using the
EPR-based model for (a) PR and (b) FPI. (P =M line denotes predictions
equal to measurements.)
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transformed terms increases the MAE and MAPE. Table 3
displays the effect of k on the model performance on the
test set. By comparing the MAE and MAPE yielded by
the models with different numbers of transformed terms,
the optimum number of transformed terms was eight for
both the PR and FPI prediction models. Further, the cor-
responding values of k were 0.0001 and zero for the opti-
mum PR and FPI prediction models, respectively. The
formulations of the optimum EPR-based PR and FPI pre-
diction models are presented in Table 4.

Figure 5 presents the predicted PR and FPI values
obtained using the optimum EPR-based models. The
EPR-based models outperformed the MLR-based models
with reduced values of MAE and MAPE (approximately
10%) and greater values of R (approximately 0.9). By com-
paring Figs. 2(a) and (b), it can be observed that the EPR-
based model improved the accuracy in predicting reduced
values of PR (less than 2.5 m/h) and demonstrated superior
performance in predicting greater values of FPI (greater
than 120 kN∙r/mm). The nonlinear combination of the
input parameters in the EPR-based models enhanced the
prediction accuracy. The explicit formulation is practically
useful in engineering practice.

4.3 RF

In this study, the number of trees used in the RF ran-
ged from 5 to 500 with an interval of five. The ranges of
the four parameters were sufficiently large to determine
the optimum combination of hyperparameters. In the
RF-based models for PR and FPI prediction, the ultimate
optimum hyperparameters were five. Figure 6 presents the
predicted PR and FPI values obtained using the optimum
RF-based models. Evidently, compared with MLR- and
EPR-based models, the prediction performance of the
RF-based models improved dramatically with the lowest
values of MAE and MAPE, but the greatest value of R.
The prediction accuracy was approximately double that
of the MLR-based models. Based on Figs. 5(a) and (b),
the RF-based models improved the accuracy in predicting
large values of PR and FPI, and the results were close to
the P = M line (which denotes predictions equals to mea-
surements). The results indicate that the RF performed
well in identifying the nonlinear relationships of high-
dimensional parameters, thereby improving the prediction
accuracy.

5 Performance comparison and further discussions

5.1 Performance comparison

Tables 5 and 6 summarize the values of the indicators
for predicting PR and FPI using the optimum MLR-,
EPR-, and RF-based models. It can be observed that the
RF-based model demonstrated the best performance, fol-
lowed by the EPR- and MLR-based models. Figure 7 pre-
sents the evolution of the predicted PR and FPI using the
three methods. Compared with the MLR-based model,
both EPR- and RF-based models demonstrated superior
performance in capturing the evolution of PR and FPI.
As observed in Fig. 7(b), the RF-based model could iden-
tify the large values of FPI (greater than 120 kN∙r/mm)
that occurred in Rock III, whereas both MLR- and
EPR-based models underestimated the FPI in that range.
All three methods produced the greatest prediction error



Fig. 6. Comparison between measured and predicted results using the RF-based model for (a) PR and (b) FPI.
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in Rock I because Rock I consisted of mafic to mesocratic
gneiss, amphibolite, and schist. The complexity of the rock
components and insufficient datasets in this category made
it difficult to predict PR and FPI. The results indicate that
the simple ML algorithms (e.g., EPR and RF-based models
with only four input parameters) are reliable and conve-
nient for use in predicting PR and FPI in engineering
practice.

5.2 Robustness investigation

Both EPR- and RF-based models can accurately predict
PR and FPI, as mentioned previously, for a given tunnel
project. The prediction performance of both models on
unknown datasets is worthy of further exploration to
Table 5
Indicator values for the PR prediction model.

Indicator Training set Test set

MAE MAPE R MAE MAPE R

MLR 0.18 9.2 0.79 0.18 9.4 0.87
EPR 0.16 8.0 0.84 0.17 8.5 0.89
RF 0.08 3.9 0.95 0.13 7.0 0.91

Table 6
Indicator values for the FPI prediction model.

Indicator Training set Test set

MAE MAPE R MAE MAPE R

MLR 9.82 12.2 0.75 11.85 14.2 0.79
EPR 8.87 11.0 0.81 9.67 11.8 0.88
RF 4.31 5.2 0.94 7.20 8.8 0.89
examine their robustness. Hence, 10 000 synthetic datasets
with four input parameters were generated wherein each
input parameter complied with a normal distribution
wherein the mean and SD values of each input parameter
were identical to the values presented in Table 2. Based
on these synthetic datasets, the distributions of the pre-
dicted PR and FPI using the EPR- and RF-based models
are presented in Fig. 8. Noticeably, the predicted PR and
FPI perfectly met the normal distribution with a coefficient
of determination close to one. Moreover, the mean and SD
values of the predicted PR and FPI using both ML-based
models demonstrated acceptable agreement with the mean
and SD values of the measured PR and FPI. To quantita-
tively evaluate robustness, Jin et al. (2019) proposed a
robustness ratio index to define the model robustness.

xR ¼ N r

N t

� 100%; ð14Þ

where xR is robustness ratio, Nr is the number of datasets
with the predicted values within a reasonable range, and
Nt is the total number of datasets. The predicted output
values should be within a reasonable range for a robust
model. If the values of the input parameters are reasonable,
a high value of the robustness ratio index indicates that the
model was robust. As shown in Fig. 8, the robustness ratio
attained 98.87% and 98.51% for the EPR-based PR and
FPI prediction models, respectively. The robustness ratio
of the RF-based PR and FPI models achieved 100% as
the predicted results of RF are a linear combination of
the output parameter values in the training set. Thus, the
predicted results using the RF-based model were limited



Fig. 7. Evolution of predicted results using three prediction models for (a) PR and (b) FPI.
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to a fixed range. These results indicate that both EPR- and
RF-based prediction models have significant predictive
ability on unknown datasets. Therefore, they are suffi-
ciently robust to extend their application scope.
5.3 Parametric analysis

To reveal the internal mechanism of the EPR- and
RF-based models, a parametric analysis was performed.
In each round, three input parameters were fixed to
investigate the effect of each parameter on PR, and the
parameter to study increased from its minimum to max-
imum. The relationships between the input and output
parameters in the EPR-based PR and FPI prediction
models are presented in Figs. 9(a) and 9(b), respectively.
Noticeably, the four input parameters exhibited a smooth
relationship with PR and FPI. Herein, the input param-
eters UCS, BI, and DPW exhibited an approximately
monotonous relationship with PR and FPI, and a pre-
sented a quadratic relationship with PR and FPI. The
parametric results in the EPR-based models complied
with the relationships observed in the in situ datasets
(Armetti et al., 2018; Gong & Zhao, 2009). Nevertheless,
smooth relationships were not observed in the RF-based



Fig. 8. Distribution of predicted (a) PR using EPR, (b) FPI using EPR, (c) PR using RF, and (d) FPI using RF.
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models (see Figs. 9(c) and 9(d)) as the outputs of RF
derived from the linear combination of the output
parameters were discontinuous. Smoother relationships
could be observed with the increasing size of the data-
sets. The general trends of PR and FPI with the varia-
tion of the four input parameters were consistent with
the results in EPR, except for the relationships PR–
UCS and FPI–a. In the RF-based model, the predicted
PR decreased quickly to a minimum value with the
increase in UCS. Thereafter, the predicted PR rebounded
marginally. The predicted FPI decreased monotonously
with an increase in a, rather than a quadratic relation-
ship that appeared in the EPR-based model. Such rela-
tionships were different from the in situ investigation as
the small size of datasets used in this study limited the
capability of the RF-based models to accurately identify
the relationships between the input and output parame-
ters. Moreover, the relationships of BI and DPW with
PR and FPI are nonlinear, whereas in the EPR-based
models, these relationships are linear, which could
explain why the RF-based models demonstrated greater
accuracy in predicting PR and FPI. Overall, the accurate
identification of the relationships between the input and
output parameters indicates the excellent generalization
ability of the EPR and RF-based models, thereby guar-
anteeing excellent prediction performance on both exist-
ing and unknown datasets.
5.4 Variable importance

The variable importance measure (VIM) in RF-based
models can be determined internally. This section investi-



Fig. 9. Relationships between the input and (a) PR in the EPR-based model, (b) FPI in EPR-based model, (c) PR in RF-based model, and (d) FPI in RF-
based model.
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gates the VIM in the RF-based PR and FPI prediction
models. The ultimate importance of the studied feature in
the RF-based model is the average value of the VIM for
all trees. On this basis, the mean and SD values of the vari-
able importance in the RF-based PR and FPI prediction
models are presented in Fig. 10. PR was considerably more
sensitive to BI than to a, UCS, and DPW sequentially. The
most important variables for predicting FPI was a, fol-
lowed by BI, DPW, and UCS.

6 Conclusions

Using two ML algorithms (i.e., EPR and RF), this
study developed two novel models for TBM performance
prediction characterized by the PR and FPI. RF has
recently exhibited excellent performance in modeling
geotechnical issues. However, it has not been applied to
predict PR and FPI. Thus, the performance of RF on this
issue deserves further investigation. Unlike the RF-based
model, which is an implicit model, EPR is an explicit for-
mulation that integrates L2 regularization and k-fold CV
to prevent the overfitting issue and enhance the model
robustness. A comparison between EPR- and RF-based
models is necessary to understand the tradeoff between
accuracy and applicability. Only four input parameters
were used: the UCS, intact rock BI, DPW, and a. The
developed models were compared with an MLR-based
model. The performance of both RF- and EPR-based pre-



Fig. 10. Variable importance in the RF model for (a) PR and (b) FPI.
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diction models were comprehensively investigated includ-
ing the model robustness for unknown datasets, interior
relationships between the input and output parameters,
and variable importance. The following conclusions can
be drawn:

(1) Unlike the conventional numerical regression method
MLR, both EPR- and RF-based models demon-
strated superior performance in predicting PR and
FPI. The RF-based model had the greatest prediction
accuracy, particularly in identifying outliers. How-
ever, its prediction range was more limited than that
in the training set. The EPR-based model was more
convenient to use by in situ engineers owing to its
explicit expression.

(2) Both EPR- and RF-based models could accurately
identify the relationships between the input and out-
put parameters, thereby guaranteeing their excellent
generalization ability and prediction performance
on unknown datasets.

(3) Variable importance measured internally by the RF-
based models indicated that PR is considerably more
sensitive to BI than to a, UCS, and DPW sequen-
tially, whereas the most important variable for pre-
dicting FPI is a, followed by BI, DPW, and UCS.
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