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Abstract 

The widespread use and release of nanomaterials (NMs) in aquatic ecosystems is a concerning 

issue as well as the fate and behavior of the NMs in relation to the aquatic organisms. In this 

work, the freshwater microcrustacean D. magna was exposed to 12 different and well-known 

NMs under the same conditions for 24h and then placed in clean media for 120h, in order to 

determine their different uptake and elimination behaviors. The results showed that most of the 

tested NMs displayed a fast uptake during the first hours arriving to a plateau by the end of the 

uptake phase. The elimination behavior was determined by a fast loss of NMs during the first 

hours in the clean media, mainly stimulated by the presence of food. Remaining NMs 

concentrations can still be found at the end of the elimination phase. Two NMs had a different 

profile i) ZnO-NM110 exhibited increase and loss during the uptake phase, and ii) SiO2-NM204 

did not show any uptake. A toxicokinetic model was applied and the uptake and elimination 

rates were found along with the dynamic bioconcentration factors. These values allowed to 

compare the NMs, to cluster them by their similar rates, and to determine that the TiO2-NM102 

is the one that has the fastest uptake and elimination behavior,  SiO2-NM204 has the slowest 

uptake and CeO2<10nm has the slowest elimination. The present work represents a first attempt 

to compare different NMs based on their uptake and elimination behaviors from a perspective 

of the nano-bio interactions influence. 
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1. Introduction 

From production to release, metal oxide nanomaterials (NMs) predominate in emissions to 

water according to the NMs estimated global mass flow (Keller and Lazareva, 2014). The 

applications of these NMs are widely spread. For example SiO2 NMs have many application in 

industry as ceramic producing, glass making, cosmetic products, medicines, magnetic mixtures 

and to increase the strength and stability of industrial coverings (Shariati et al., 2020). 

Applications of TiO2 NMs include food industry, personal care products, catalysis, purification 

agents, antimicrobial agents and numerous coatings of building materials (Tan and Wang, 

2017). CeO2 NMs have been used increasingly in ceramics, photosensitive glass, fuel catalysts, 

sunscreens and paints (Angel et al., 2015). ZnO NMs are being used in sunscreens, cosmetics, 

ointments (antimicrobial), paints, plastics and electronic semi-conductors (Bhuvaneshwari et 

al., 2018). Given this widespread use of NMs containing products and the augmented number 

of NMs applications, it is expected that the amount of metal-based engineered NMs released 

into the aquatic environment will continue to increase (Baek et al., 2019).  

Aquatic organisms have to cope with this increasing presence of NMs in their ecosystems. The 

toxic effect of metallic oxide NMs in aquatic organisms has been widely observed during the 

last decades; from microalgae (Nguyen et al., 2020), passing through marine invertebrates 

(Canesi and Corsi, 2016) to fish (Handy et al., 2008). Concerning freshwater, Daphnia magna 

is a well-known ecotoxicological test organism that had already been used to test NMs effects 

(Juganson et al., 2015). The interest of this filer-feeding organism in the NMs uptake and 

elimination experiments is that the uptake capacity for the aquatic exposure is related to their 

normal feeding behaviors (Roberts et al., 2007), specially for low concentration exposures (Zhu 

et al., 2009). Uptake and elimination studies in D. magna already exist, as they represent a key 

level in trophic chains while feeding on unicellular organisms and serving as prey for second 
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consumers (Petersen et al., 2019), but the experiments are always focused on one or two NMs 

at the time, i.e.  TiO2 NMs (Tan and Wang, 2017), CuO NMs (Wu et al., 2017), Ag NMs 

(Ribeiro et al., 2017) (Kalman et al., 2015) (Pakrashi et al., 2017), Au NMs (Skjolding et al., 

2014), ZnO NMs (Danabas et al., 2020). 

Modelling the NMs uptake in organisms is essential to reinforce experimental research, develop 

overarching theories, improve our fundamental understanding of NMs exposure and hazard, 

and thus to enable risk assessment of NMs (Baalousha et al., 2016). There are several 

publications concerning the exercise of modelling the exposure, uptake and elimination of NMs 

in aquatic organisms (Arini et al., 2020) (Garner et al., 2018) (Wray and Klaine, 2015) (Croteau 

et al., 2011). Specifically, D. magna has also been used in NMs modelling studies (Fan et al., 

2016) (Khan et al., 2015) (Sakamoto et al., 2015). Nonetheless, in the NMs environmental risk 

assessment, there is uncertainty about the actual forms and environmental concentrations of 

NMs and exposure modelling, as well as the difficulty to determine which facets of the physic-

chemical properties of NMs are the most important to the hazard (Klaine et al., 2012). 

Understanding nanomaterial–biological (nano-bio) interactions, and organism responses to the 

NMs, is a crucial step in elucidating their environmental safety and facilitating their regulation 

(A. Ellis and Lynch, 2020). The nano-bio interaction, as understood for this study, is a set of 

multiple physical, chemical and biological interactions; that globally includes all possible 

interactions between an organism and a NM. The parameters that rule these interactions can 

depend on the NMs properties, the organism’s characteristics and the combination of both. 

The unique behavior of the NMs substances as particulate pollutants and their underlying 

physicochemical mechanisms that lead to the accumulation of different NMs into aquatic 

organisms are still not well understood, and they have been studied in a case-by-case basis as 

previously shown. To date, there are very few studies where different NMs are tested under the 

same experimental conditions, so comparison between different NMs uptake and elimination 
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behaviors is difficult, though essential, if we want to better understand the mechanisms that 

drive these phenomena. 

Therefore, using the freshwater cladoceran D. magna and a set of 12 different and well-known 

metal oxide NMs, the authors present a systematic study that aims to answer the following 

questions: First, are the uptake and elimination behaviors of the tested NMs different? And 

which are the characteristics of these differences? Are these behaviors suitable for being 

modeled? And if so, how the model resulting parameters as the uptake and elimination rates 

can inform us about the different interactions of NMs and organisms? Finally, the possibility 

of clustering NMs with similar uptake and/or elimination characteristics is addressed. 

2. Materials and Methods  

2.1. Test organism 

The test organism of this study is the freshwater cladoceran Daphnia magna Straus. The 

organisms are raised permanently in the laboratory facilities in an Elendt M4 media 

(composition in Supplementary Data). Temperature is at 20 ± 2°C with a day-night cycle of 

16h of light (1000-1500 lux). They are fed daily with freshwater microalgae (Chlorella 

vulgaris, Desmodesmus subspicatus and Raphidocellis subcapitata) at 2 mg/L TOC and the 

offspring is daily removed. 

2.2. Nanomaterials preparation and characterization 

The set of the chosen nanomaterials for this study came from the JRC Nanomaterial Repository 

and are considered as reference nanomaterials as they are well known and characterized. The 

set consisted on 6 TiO2 NMs (NM100, NM101, NM102, NM103, NM104 and NM105), 3 SiO2 

NMs (NM200, NM202 and NM204), 1 ZnO NMs (NM110) and the 2 CeO2 NMs were named 

in relation to their diameter size as CeO2<10nm (NanoBYK®) and CeO2 <25nm (Sigma Aldrich 
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nanoCeO2). The description, preparation protocols and main characteristics of the NMs are 

detailed in a precedent work (Rivero Arze et al., 2020). NMs stock suspensions were prepared 

at 1 g/L in ultrapure water and added directly to the test containers with ISO media to arrive to 

the exposure concentration of 1 mg/L.  

Stock and exposure suspensions were characterized (size distribution and zeta potential) by 

Dynamic Light Scattering (DLS; NanoZS, Malvern Instruments®). For each analysis, three 

measurements were done at 10 mg/L, directly after sampling. Noninvasive back scatter 

detection at 173° with a He-Ne laser (λ = 633 nm) as light source was used. The aggregates or 

agglomerates sizes were determined by the Non-Negative Least Squares (NNLS) analysis 

method at 25 °C, after an equilibration time of 60 s. Each measurement is an average of 13 runs 

of 10 s.  

The dissolution of ZnO-NM110 was studied in three independent replicates under the same 

organisms’ exposure conditions (1 mg/L) using centrifugal ultrafilters (3kDa NMWCO, 

Amicon® Ultra, Milipore). Samples were collected at 0, 2, 6 and 24h; centrifugated at 4000g 

for 40 minutes and dosed by ICP-OES as detailed below.  

2.3.Uptake and elimination experiments 

For each uptake and elimination experiment, 1100 neonates were put in 10 aquariums of 4 L of 

M4 media each one, distributing 110 organisms per aquarium. For one week the daphnids were 

fed with the freshwater microalgae Raphidocelis subcapitata at a concentration equivalent of 1 

mg/L TOC. When the organisms arrived at their 8th day, the uptake phase started. Prior to the 

exposure, the daphnids were fed one last time, after one hour they were placed in clean ISO 

media for acclimatization and to clean their guts, where they remained for another hour. This 

time was chosen base on previous studies that showed that 15-30 minutes are necessary to clear 

the guts of daphnids from non-contaminated algae (Barata et al., 2002).  
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Then, the organisms were placed by groups of 50 individuals in 1L containers with ISO media 

spiked with NMs at a concentration of 1mg/L. This concentration was chosen based on a ‘sub-

lethal’ effect concentration scale for the organisms and taking into account the results of (Zhu 

et al., 2010), where good delimitations of the uptake and elimination curves were obtained for 

nTiO2. The sampling of the uptake phase was made in independent triplicates at 0, 1, 2, 4, 6 

and 24 hours, each sample consisted on 25 individuals of each container, leaving the other 25 

for the elimination phase (experimental design in Supplementary Data). The collected 

individuals were left to swim freely during 5 minutes in a clean media container to lose any 

weakly attached NMs to the carapace and to ensure that no additional NMs, coming from the 

media, were added to the samples. After 24h of exposure, the daphnids were collected, placed 

in other set of containers with clean ISO media and fed daily with R. subcapitata 1.7 mg/L TOC 

for the elimination phase. The sampling of this phase was done at 2, 6, 24, 48 and 120 hours. 

All samples were dried in an oven at 70°C for 24h in order to obtain their dry weight. 

2.4.  Acid digestion and ICP-OES analysis 

Samples of TiO2, ZnO and CeO2 NMs exposed daphnids and media were digested in 50 mL 

Teflon reactors using 3 mL of ultra-pure HNO3 and 2 mL of HBF4. For the SiO2 NMs samples 

HF was used instead of HBF4 and they were neutralized with 20 mL of 55 g/L ultra-pure boric 

acid after digestion . The acid digestion was carried out using a microwave (Mars6, CEM), for 

the SiO2 NMs samples, the process consisted on a 30 min temperature rise ramp until 205°C 

and hold for 30 min (1800 W). For the rest of the samples the digestion program had four 

temperature rise ramps, i) to 120°C for 15 min, ii) to 140°C for 5 min, iii) to 160°C for 5 min, 

iv) to 200°C for 10 min with a hold at that temperature for 20 min.   
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Water samples were taken at the middle of the water column. Each time 5 mL of media were 

sampled at the beginning and the end of the uptake and elimination phases respectively. The 

acid digestion process was the same as the one applied to the organisms. 

After digestion, all samples were adjusted to a final volume of 50mL and analyzed using an 

inductively coupled plasma optical emission spectrometry (ICP-OES; Agilent Technologies 

5110). For some water samples, an inductively coupled plasma mass spectrometry (ICP-MS 

Agilent Technologies 7500cx) was used to analyze the lower concentration points.   

2.5. Modelling 

Toxicokinetic (TK) models were obtained for each tested NMs with the uptake and elimination 

data obtained previously from the ICP-OES results. The analysis was made using the 

MOSAICbioacc web platform that is available on http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/, 

hosted at the Rhône-Alpes Bioinformatics Center PRABI. MOSAICbioacc uses the JAGS 

(version 4.3.0) and R (version 4.0.2) software, and particularly packages RJags (version 4.10), 

jagsUI (version 1.5.1) and Shiny (version 1.6.0) (Ratier et al., 2020a).   

The organisms are considered as single compartments for which a first-order kinetic 

bioaccumulation model can be applied, as showed in the equations (Eq1) and (Eq2). Models 

are fitted to bioaccumulation data using Bayesian inference via Monte Carlo Markov Chain 

(MCMC) sampling (Ratier et al., 2020b). 

Equation 1. 

𝑑𝐶𝑝(𝑡)

𝑑𝑡
=  𝑘𝑢𝑤 ×  𝑐𝑤 − (𝑘𝑒𝑒) × 𝐶𝑝(𝑡)    𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑡𝑐 

Equation 2. 

𝑑𝐶𝑝(𝑡)

𝑑𝑡
=  −(𝑘𝑒𝑒) × 𝐶𝑝(𝑡)   𝑓𝑜𝑟 𝑡 > 𝑡𝑐 

http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/
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With: t = time (hours); tc = duration of the uptake phase (hours); Cp(t) = internal concentration 

of the parent compound at time (µg.g-1); kee = elimination rates of excretion (hours-1); cw = 

exposure concentration of water route (µg.g-1); kuw = uptake rate of water exposure (hours-1). 

This model also provides data of the bioaccumulation factor (BCFk) as a relationship between 

the uptake rate and the elimination rate (Eq3). BCFk, kuw and kee are  given as a probability 

distribution and summarized with its median and its 95% uncertainty limits (95% credible 

interval delimited by the 2.5% and the 97.5% quantiles of the probability distribution) (Ratier 

et al., 2020a) 

Equation 3. 

𝐵𝐶𝐹𝑘 =
𝑘𝑢𝑤

𝑘𝑒𝑒
 

Many criteria for a goodness of fit are given by the model: i) the posterior predictive check plot 

that inform about the fitting quality of the model, with the percentage of data in credible interval 

(expected to be >95%) ii) the comparison of prior and posterior distributions inform about the 

robustness of the inference process, iii) the potential scale reduction factor (PSRF) which is 

expected to be close to 1.00, checks the convergence of the MCMC chains. (Ratier et al., 2020a) 

2.6. Statistical analysis 

The significative differences between the non-contaminated daphnid samples (T0) and the 

uptake and elimination samples were analyzed with RStudio (version 1.3.1073). Preliminary 

tests of normality and variance homogeneity were carried out. And according to the results of 

those tests, the Kruskal-Wallis test for non-parametrical data was applied with significance of 

p < 0.05. 
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3. Results  

3.1.  NMs characterization 

The applied NMs dispersion protocol has allowed to obtain the NMs stock suspensions that 

were diluted in the ISO media (pH 7.8 ± 0.2) and then characterized by DLS. The results, 

illustrated in Table 1, show that the measured agglomerates size and surface charge vary 

between the different NMs. The smaller agglomerates are presented in SiO2-NM202 in the order 

of 178 nm and the bigger were those of TiO2-NM102, ZnO-NM110 and SiO2-NM200 that had 

a size above 1000 nm. Regarding the NMs surface charge (Z potential), TiO2 NMs are not very 

charged and SiO2 NMs are the most negatively charged ones with Z potential around -16 mV. 

Mostly all NMs are also negatively charged being only 2 positively charged (TiO2-NM103 and 

TiO2-NM104).  

Table 1. Hydrodynamic diameter (Z-average in intensity, d.nm) and zeta potential (mV) 

measures for all the NMs suspensions in ISO media. 

NMs 
Hydrodynamic 

diameter (nm) 
Z potential (mV) 

TiO2-NM100 361.3 ± 14.7 -7.6 ± 0.87 

TiO2-NM101 792.2 ± 46.6 -8.4 ± 0.78 

TiO2-NM102 2279.3 ± 295.4 a -5.5 ± 0.71 

TiO2-NM103 889.7 ± 23.3  3.9 ± 0.02 

TiO2-NM104 677.7 ± 97.1 4.7 ± 0.02 

TiO2-NM105 844.4 ± 124.7 -1.9 ± 0.46 

ZnO-NM110 2468 ± 153.0 a  -2.1 ± 0.29 

SiO2-NM200 1144.5 ± 307.8 a -14.9 ± 1.10 

SiO2-NM202 177.9 ± 5.6 -16.4 ± 0.79 

SiO2-NM204 1027.1 ± 79.6 a -16.9 ± 0.53 

CeO2<10nm 684.5 ± 107.8 -13.3 ± 0.55 

CeO2<25nm 987 ± 42.8 -7.0 ± 1.15 
aTo consider with care since size cannot be determined with precision by DLS above 1000 nm. 

3.2. Uptake and elimination kinetics 

D. magna individuals were exposed to 1 mg/L of each of the twelve NMs during 24 h of uptake 

and then they were kept in clean media for 120 h for elimination. Samples were taken and the 

content of metal were dosed. The results showed an uptake and elimination profile for each 

NMs as showed in figure 1. Once the exposure have started, all the points are significantly 
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different from the non-contaminated daphnids all along the uptake and elimination phases 

except for some elimination points as follows: TiO2-NM101-120h, ZnO-NM110-48h and 120h, 

SiO2-NM200-24h, 48h and 120h; and SiO2-NM204-48h. 

 

Figure 1: Uptake and elimination profiles for the set of tested NMs at 1 mg/L exposure 

concentration in Daphnia magna. The figures show the body burden in g/Kg of dry weight, 

over time (h). Range bars show minimum and maximum values of the replicates. For ZnO 

NM110 the behavior profile is zoomed in the same graphic. 



11 
 

Similar behaviors were identified for 10 out of the 12 tested NMs, where the concentration in 

the organisms increased rapidly during the first 6 hours of exposure. After 6h the uptake 

behavior reaches slowly a plateau towards 24h, except for TiO2-NM103 and CeO2<10nm for 

which the uptake is still increasing until the end of the exposure phase. SiO2-NM204 showed a 

lower accumulation profile than the others. During the first hours of the elimination phase, NMs 

concentrations dropped drastically. After the 120h in clean media none of these 10 NMs was 

completely eliminated. The remaining NMs concentrations found at this point represent 

between 0.2% to 8.3% of the 24h uptake concentration. 

The two different behaviors observed were firstly for ZnO-NM110, where the concentration in 

the organisms was 50 to 100 times smaller, and the organisms started accumulating the NMs 

for the first hour; then, the concentration kept dropping until 6h and finally it increased at the 

24h measuring point. The organisms kept a 14.7% of the 24h Zn concentration at the end of the 

elimination phase. The second case of different behavior is for SiO2-NM202 that showed no 

apparent uptake at any moment since all the samples concentrations, from all the three 

independent replicates, were under the quantification limit of the ICP-OES (50 µg/L of Si).  

The metal concentration in water was also followed, having measure points at the beginning 

and at the end of the two phases (uptake and elimination).  Water samples were analyzed, and 

the results are showed on Table 2. The concentrations at the beginning of the experience showed 

that the looked-for concentration of 1 mg/L for the exposure was achieved (0.91 to 1.53 mg/L). 

The results of NM202 are in accordance with the no uptake by the organisms shown for this 

NMs, the initial and final concentrations are very similar and no increase of the SiO2 water 

concentration was measured as release after the elimination phase. Similar behavior is showed 

for the NM110 NMs that had very little uptake. For the rest of the tested NMs, at the end of the 

uptake phase, the water concentration decays. A mass balance calculation was done to see how 

much of the lost concentration in water during uptake phase was found in the organisms. The 
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results showed that between 55 to 100% of the metal decrease in water was found in the dosed 

organisms. The SiO2 and ZnO NMs along with TiO2-NM103 presented above 90% of the NMs 

difference in daphnids. For the beginning of the elimination phase, it was verified that the media 

was clean having all the dosed values under the quantification limit. Consequently, the 

elimination of NMs from the daphnids can be observed with the metal increase in the media at 

the end of the elimination phase.  

Table 2. NMs concentration in water at the beginning and at the end of the uptake and 

elimination phases. And the percentage of the lost NMs concentration during the uptake phase 

found in the organisms. 

NMs Composition 
Uptake t0 

(mg/L) 

Uptake t24 

(mg/L) 

% of the uptake 

difference (t24-t0) found 

in the organisms 

Elimination 

t0 (mg/L) 

Elimination 

t120 (mg/L) 

TiO2-NM100 TiO2 1.11 ± 0.04 0.69 ± 0.03 87.4 < lqb 0.11 ± 0.01 

TiO2-NM101 TiO2 0.91 ± 0.02 0.25 ± 0.01 59.3 < lqb 0.20 ± 0.01 

TiO2-NM102 TiO2 1.14 ± 0.07 0.26 ± 0.10 62.8 < lqb 0.32 ± 0.01 

TiO2-NM103 TiO2 0.96 ± 0.01 0.46 ± 0.06 90.7 < lqb 0.18 ± 0.01 

TiO2-NM104 TiO2 1.01 ± 0.01 0.40 ± 0.03 66.0 < lqb 0.24 ± 0.01 

TiO2-NM105 TiO2 1.13 ± 0.00 0.42 ± 0.12 74.2 < lqb 0.28 ± 0.01 

ZnO-NM110 ZnO 1.10 ± 0.00 1.10 ± 0.01 99.7 < lqb < lqb 

SiO2-NM200 SiO2 0.95 ± 0.01 0.93 ± 0.31 125.5 < lqb 0.22 ± 0.05 

SiO2-NM202 SiO2 1.53 ± 0.16 1.37 ± 0.23 -a < lqb < lqb 

SiO2-NM204 SiO2 1.22 ± 0.04 0.94 ± 0.10 94.0 < lqb 0.49 ± 0.22 

CeO2<10nm CeO2 1.09 ± 0.02 0.40 ± 0.01 73.6 < lqb 0.27 ± 0.00 

CeO2<25nm CeO2 0.95 ± 0.02 0.24 ± 0.01 55.1 < lqb 0.34 ± 0.01 
a Calculation not possible since there is no uptake data for this NMs 
b Analytical quantification limits equivalency for TiO2 is 0.08 mg/L; for ZnO is 0.06 mg/L; SiO2 is 0.21 mg/L 

and CeO2 is 0.03 mg/L 

The dissolution profile of ZnO NMs was also studied. This NM present a high dissolution in 

these experimental conditions, showing already a 32.6±3.6% of dissolved Zn at T0, 55.6±0.8% 

at 6h and arriving at 84.1 ± 3.9% at 24h. The complete profile is presented in Supplementary 

Data.  

3.3. Modelling 

The obtained data from the ICP-OES dosing were used to fill the model on the MOSAICbioacc 

platform. SiO2-NMs204 and ZnO-NMs110 were not considered for the modelling process since 

the first one was not accumulated at all and the second one had a profile not compatible with 
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the model because the uptake concentrations in the organisms dropped and resumed. The 

measured water concentration was used to fill the model. 

The resulting values of the model showed similarities and differences in the uptake and 

elimination behaviors, as presented on Table 3. For the uptake, resemblances can be found in a 

group of low kuw (slower uptakes) for TiO2-NM100, TiO2-NM104, SiO2-NM204 and 

CeO2<10nm. Another group of intermediate uptakes is formed by TiO2-NM101, TiO2-NM103, 

TiO2-NM105, SiO2-NM200 and CeO2<25nm. And TiO2-NM102 differentiates itself from the 

others with a higher kuw (53840 h-1) representing the fastest uptake behavior. The same exercise 

for kee showed low elimination rates for TiO2-NM103 and CeO2<10nm. Intermediate lost rates 

for TiO2-NM100, TiO2-NM104, TiO2-NM105, SiO2-NM200, SiO2-NM204 and CeO2<25nm. 

And a fast elimination behavior for TiO2-NM101 and TiO2-NM102 (kee = 0,74 h-1 and 0,79 h-1 

respectively). The figures corresponding to the modeled curves and the validated goodness-of-

a-fit criterion are detailed in Supplementary Data, as well as relationship figures between kuw, 

kee and BCFk that showed a more extended distribution of the uptake values in relationship to 

the BCFk.  

Table 3. Modelling results. Uptake rate (kuw), elimination rate (kee), kinetic bioaccumulation 

factor (BCFk). The parameters are presented as a distribution between the 2.5% and the 97.5%. 

The median value is shown at the 50% column of each parameter. 

NMs  
kuw (h-1) kee (h-1) BCFk 

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 

TiO2-NM100 9759 11950 14950 0.379 0.475 0.615 22630 25122 27527 

TiO2-NM101 28180 32090 36790 0.642 0.742 0.866 41089 43242 45442 

TiO2-NM102 45720 53840 63800 0.665 0.793 0.957 63553 67879 72137 

TiO2-NM103 22540 25860 29620 0.273 0.317 0.372 75056 81523 87941 

TiO2-NM104 11570 14000 17100 0.341 0.419 0.529 30192 33366 38539 

TiO2-NM105 25920 29510 33880 0.549 0.635 0.745 43915 46481 48978 

SiO2-NM200 24610 30150 37510 0.502 0.627 0.808 44095 48069 51832 

SiO2-NM204 6493 9395 14640 0.453 0.687 1.141 11839 13674 15563 

CeO2<10nm 9889 13600 18540 0.217 0.297 0.428 37150 45660 54022 

CeO2<25nm 17560 21210 26060 0.414 0.513 0.647 37695 41349 44957 
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4. Discussion  

The uptake and elimination profiles of the 12 tested NMs have been obtained by dosing the 

metal concentration in the exposed daphnids during the 24h uptake phase and the 120h 

elimination phase. Most of the tested NMs presented a rapid uptake during the first hours of 

exposure, ingestion was identified as the main influx route to the organisms and along the strong 

external NMs adsorption to the carapace, they constitute the primary source of the detected total 

body burden concentration. This is corroborated by studies as (Wray and Klaine, 2015). The 

mass balance of the water concentration loss compared to the uptake concentration found in the 

daphnids at the end of the uptake phase, shows that between 55% to 100% is found in the 

organisms, therefore due to the ingestion and attachment. No differentiation of the NMs from 

ingestion and from attachment is made for this study as they are considered as the whole NMs 

quantity that the organisms take from their environment. The rest may be lost due to i) loosely 

attached NMs to the carapace that were missing during rising time, and ii) precipitation of big 

NMs agglomerates that became not available for the water sampling. 

The fast loss of NMs during the first hours of the elimination phase can be due mainly to 

excretion; since the gut retention time of daphnids has been proven to be between 2 and 55 

minutes (Rigler, 1961) (Schindler, 1968) (Mcmahon, 1970) (Gliwicz, 1986) (Cauchie et al., 

2000). This process can be also stimulated by the food provided during this phase. Previous 

studies have found that the presence of food during the elimination phase increased the NMs 

depuration from the organisms (Petersen et al., 2009) (Zhu et al., 2010) (Skjolding et al., 2014). 

It has also been showed that the excretion of contaminated content inside the daphnids guts can 

take longer (3-6 hours) than non-contaminated food (15-30 min) (Barata et al., 2002). The NMs 

elimination behavior observed in our work is also in accordance with other studies as the one 

of (Gillis et al., 2005); where a significant drop in gut fullness occurs from 56% immediately 

after exposure to contaminated sediment to 17% after 4 h of gut-clearance. The observed 
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elimination behavior corresponds to a rapid initial clearance that likely represents elimination 

of the unabsorbed fraction (Wray and Klaine, 2015), followed by a much slower elimination 

phase that likely represents elimination of internalized material (Feswick et al., 2013). During 

the uptake phase it seemed that no excretion has been occurred and the guts of daphnids filled 

increasingly with NMs; and according to (Gophen and Gold, 1981), starved daphnids can retain 

feces in the mid-gut indefinitely.  

Concerning the special profile cases, there was no detected uptake of the SiO2-NM202, that has 

the smallest size of agglomerates in the ISO media. It is important to note that daphnids, as 

many other filter-feeding organisms, chose the size of their ingested food (Hessen, 1985).  A 

study with TiO2 NMs of different sizes (due to aging) showed that the preferable size of 

particles ingested by D. magna is around 500 nm (Seitz et al., 2015), because their filtering 

apparatus have a mesh size range of 240 - 640 nm (Geller and Müller, 1981). This could explain 

the lack of uptake, being the agglomerates size of SiO2-NM202 smaller (178nm) than the 

preferable food size for these organisms. Accordingly, the tested NMs that had the 

hydrodynamic sizes between that branch of sizes were indeed the ones that showed an important 

uptake. The peculiar profile of the ZnO-NM110 can be explained by an uptake in the nano form 

during the first hours and a later ionic accumulation into the daphnids bodies, based on the high 

percentage of Zn dissolution measured for these experimental conditions. NMs of ZnO are 

known to be easily dissolved in aqueous media and there is evidence showing an ionic uptake 

of these NMs (Ma et al., 2013) along with the toxic effects attributable to the ionic form (Xia 

et al., 2008) (Heinlaan et al., 2008). In the present work, the uptake of ZnO-NM110 in the 

daphnids is very low compared to the other tested NMs. This can be explained by the natural 

process of zinc regulation that organisms can implement when an internal high concentration 

of zinc is detected (Adam et al., 2015). Studies that reported little or no measurable uptake of 

ZnO NMs as (Johnston et al., 2010) in zebrafish,  attributed it to particle aggregation that 



16 
 

reduces their bioavailability. Nonetheless, it seems to not be the case for our experiment, since 

the water samples showed similar concentrations in the exposure media at T0 and T24, meaning 

that there was no lack of exposure due to NMs sedimentation, even with the large size of 

agglomerates (~2µm).  

The model applied to the set of data is a toxicokinetic (TK) model, that considers uptake and 

elimination in one compartment. In particular, this model has a unified inference method that 

estimates parameters for both accumulation and depuration phases simultaneously and this 

innovative inference process makes it possible to incorporate the TK part into a complete TKTD 

model (Ratier et al., 2019). This model was found to be suitable to be used in the present study 

results of NMs uptake and elimination behavior, because the obtained curves of the model fitted 

very accurately with the raw measures and all the goodness criteria were fulfilled. These kinds 

of models are recommended to be used in time-dependent exposure conditions (Ockleford et 

al., 2018). Nevertheless, they should be used with care when derived dynamically in time 

resolved experiments; because accumulation, depuration, metabolization and excretion 

(ADME) processes related to the fate of nanomaterials in organisms may not always be resolved 

completely (Brink et al., 2019). Nonetheless, it must be mentioned that the chosen BCF for the 

present work is the kinetic bioaccumulation factor and not the BCF at steady state. The authors 

are aware of the limits of these kind of models and encourage a careful interpretation of the 

modelling data. In the case of the present study, the found kuw, kee and BCFk are intended to be 

used as comparison values that can inform about the differences in the uptake or elimination 

behavior of the tested NMs.  

Having clarified this point, it is interesting to note that, if related the values of kuw and kee to the 

BCFk values, it is found that there is an extended distribution of the kuw related to the BCFk, 

meaning that the uptake is the driving process that generate the main differences between the 

tested NMs. This can be related once again to the ingestion behavior of the NMs by the 
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daphnids. The obtained rates allowed to lump together some NMs by their similar uptake or 

elimination rate values. Since most of the authors that had published values of BCF are those 

calculated at the steady state, with a variety of different experimental conditions, comparison 

with our data is difficult, even when the same taxa and same type of NMs were tested. 

Additionally, the age of the organisms has a very important role in this kind of studies because 

of the different body morphometrics along their life cycle, which can impact the amount of 

NMs that can be retained in their guts (Petersen et al., 2019). Nonetheless, it is interesting to 

note that the values of some studies are close anyway, for example, the BCFs for the NMs “S2” 

from (Fan et al., 2016) equal to 79000 L/Kg, is similar to the BCFk = 81523 from the TiO2-

NM103 that has similar characteristics. The results of (Zhu et al., 2010) are also in concordance 

with the obtained data in the present work. These authors worked with a TiO2 NM (Degussa 

P25) that has similar characteristics as our TiO2-NM105. Where their maximal body burden 

found was nearly 60 g/Kg and the body burden for the TiO2-NM105 was 57.8 g/Kg. But the 

BCF found by these authors is much higher than the BCFk found in our studies (118063 L/Kg 

and 46481 respectively). 

Finally, in order to deepen into the understanding of the nano-bio interaction of the 

differentiated NMs uptake and elimination behaviors, new analytical techniques can be applied. 

A recent study combined single particle inductively coupled mass spectrometry (spICP-MS) 

and dynamic secondary ion mass spectrometry (dynamic SIMS) to be able to determine the 

number, size and biodistribution of NMs inside C. elegans (Johnson et al., 2021). Also, some 

complementary studies of their toxic effects can be made in the future. Subcellular and 

individual effects should be analyzed. And nowadays, there are many emerging methods that 

may help determine this interaction, as it has been showed by (Karatzas et al., 2020) that used 

Deep Learning applied to microscopic images of NMs exposed daphnids to detect possible 

malformations, to even recognize uncommon lipid concentrations and lipid deposit shapes. 
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5. Conclusion 

The present study aimed at determining the differences between the uptake and elimination of 

a set of 12 different NMs on the model organism D.magna. An uptake phase of 24h and an 

elimination phase of 120h allowed to obtain the uptake and elimination profiles. Based on those 

results, it can be concluded that, most of the tested NMs are capable of undergo  uptake  and 

elimination processes by the daphnids at different rates and quantities, except for the SiO2-

NM202 that showed no uptake. A fast uptake as well as a fast elimination behavior can be 

noticed during the first hours of exposure and the first hours of elimination phases respectively. 

The presence of food during the elimination phase, plays an important role for this rapid NMs 

elimination. Nonetheless, between 0.2% to 14.7% of the accumulated NMs still remain in the 

organisms after 120h of elimination. 

The toxicokinetic model of MOSAICBioacc was found to be suitable to model the NMs uptake 

and elimination behaviors. The resulting values of Kuw, Kee and BCFk helped to compare the 

NMs and found that TiO2-NM102 is the one that has the fastest uptake and elimination on 

daphnids, also that SiO2-NM204 has the slowest influx and CeO2<10nm has the slowest 

elimination. It was also found that the uptake is the determining process of the NMs 

bioaccumulation, which can be driven by some of the nano-bio interaction characteristics as the 

NMs agglomerates size in relationship with the daphnids preference for ingestion size. It can 

also depend on the NMs physic-chemical properties, as the NMs ionic dissolution which may 

be the process behind the intake, the loss and the anew intake of Zn from the ZnO-NM110 

profile. The uptake and elimination rates allowed to cluster together some of the NMs by their 

similar behaviors. These similarities and differences based on the nano-bio interaction can 

enrich the understanding of the NMs hazard characteristics on the environmental risk 

assessment. Finally, we believe that the combination between the modelling uptake and 

elimination data, with innovative techniques as the “omics” studies for subcellular effects, can 
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help to establish the links between exposure, intake and toxic effects of NMs in aquatic 

environments for future regulation. 
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