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Abstract. The recent technological developments and the increased interest for public information 

lead to a fast-growing use of microsensors for air quality monitoring. Measurement campaigns are 

conducted to assess the potential of these low-cost instruments by deploying fixed sensors (e.g. on 

top of buildings, street lights or reference stations) and/or mobile sensors (e.g. on top of cars, bikes, 

or carried by citizens). These experiments allow to measure pollutant concentrations at high 

resolution in space and time. The large amount of collected information offers new opportunities of 

developments in air quality modelling and mapping. This work aims to take the best of these sensors 

despite the related measurement uncertainty to produce urban air pollution maps at fine spatial and 

temporal resolution. A geostatistical methodology (data fusion) is presented, which uses sensor 

observations as well as dispersion model outputs. It is applied to PM10 data in the French city of 

Nantes. It involves new challenges such as the consideration of the quick change of the sensor 

location if it is mobile, the temporal variability of the measurements, the analysis of numerous and 

heterogeneous data, the spatial representativeness of the measurements and the measurement 

uncertainties. Also, efforts still need to be done on the sampling design to ensure appropriate spatial 

coverage of the considered domain and get more accurate estimates. 
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1 Introduction 

 
Air quality monitoring is conventionally based on a network of stations which allows a continuous 

report of pollutant concentrations. The related measurement uncertainty is constrained by the European 

existing legislation [1, 2] ensuring observation accuracy. Nevertheless, the installation and maintenance 

of such a network are expensive and so the number of stations in each region is limited. The use of 

numerical modelling on various scales (regional, urban, local) has thus increased during the last 15 

years to supplement station observations and support air quality assessment.  

In parallel, the technological progress allowed the development of miniaturized and low-cost 

instruments to measure pollutant concentrations [3]. Many projects of crowdsourcing and citizen 

science are emerging. In addition, field measurement campaigns are conducted to assess the potential of 

these low-cost devices by deploying fixed sensors (on top of buildings, street lights, reference stations) 

and/or mobile sensors (on top of cars, bikes, or carried by citizens) offering higher spatial coverage than 



reference stations. Because microsensors suffer from metrological weaknesses, a calibration is generally 

applied to the raw data [4, 5].  

The large amount of collected information offers new opportunities of development in air quality 

modelling and mapping at urban scale that are the scope of recent studies. Statistical methodologies are 

broadly used to derive air quality maps from sensor data, in particular the Land Use Regression models 

(LUR), but they generally do not take spatial dependence into account. Geostatistical approaches have 

been less frequently applied to such type of data but provide significant advantages to combine sensor 

measurements and auxiliary information such as dispersion model outputs [6]. 

 

In this paper, data collected from fixed and mobile micro-sensors are used together with urban-scale 

modelling data to map PM10 in the city of Nantes (France).  

 

2 PM10 data 
 

PM10 sensor data were provided by AtmoTrack (https://atmotrack.fr), a French company created in 2015 

in Nantes. PM10 data measured at reference monitoring stations (quarter-hourly mean concentrations) 

and simulation data (ADMS-Urban model) on the city of Nantes were provided by the French air 

quality monitoring association Air Pays de la Loire (http://www.airpl.org/).  

 

2.1 Sampling routes and frequency of measurements 

 
In November 2018, PM10 sensor measurements were collected in Nantes. During this sampling period, 

the company deployed 16 fixed sensors including 3 sensors at the Victor Hugo station (reference station 

for traffic typology) and 3 other sensors at the Bouteillerie station (reference station for urban 

background typology). In addition, 19 mobile sensors were installed on-board of driving school cars to 

measure PM10 concentrations over numerous routes each day of the sampling period. The vehicles 

routes ensure a satisfactory spatial coverage over the entire urban area even if they are totally dependent 

on the driving school car itineraries and on the lesson time (only daytime). 

 

2.2 Measurement accuracy  

 
Considering the measurement uncertainty, the three available datasets (data from the reference stations, 

the fixed sensors and the mobile sensors) can be related to three monitoring networks of respectively 

low (up to 25%), medium (up to 50%) and high (up to 125%) uncertainty (Figure 1).  

 

 
Figure 1: Comparison of the three networks (fixed sensors in blue, mobile sensors in orange and 

reference station in black) at Victor Hugo station for November 2018. Example of PM10. 

 

Microsensors offer a unique spatial and temporal coverage of pollutant concentrations. However, the 

accuracy of the measurements and their meaning, in case of mobile sensors, are real challenges to 

include them in air quality maps. In the following sections, a methodology of data fusion is detailed and 

a first test using fixed and mobile sensor data in Nantes (France) is presented. 

https://atmotrack.fr/
http://www.airpl.org/


3 Data fusion 

 
Kriging [7] involves deriving linear combination of the data which ensures minimal estimation variance 

under a non-bias condition. Its strength is to give an information about the uncertainty of the estimated 

map.  

Among the kriging methods, the universal or external drift kriging makes it possible to consider 

auxiliary information to increase the estimation accuracy. The main hypothesis is that the global mean 

is not constant through the domain and relies on explanatory variables, entailing an additional condition 

on the kriging weights. This approach has long been applied to air quality mapping [8, 9, 10, 11] and 

was used in this work to perform data fusion between:  

- the hourly average concentrations measured by the fixed and mobile microsensors (after bias 

correction) as main variable; 

- the 2016 annual average concentrations of the pollutant simulated by the ADMS-Urban dispersion 

model (https://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html) as drift of the 

mean. 

 

In addition, the measurement uncertainty of the sensors was taken into account by defining the variance 

of measurement errors (hereafter VME) as an input of the calculation.  

 

4 Results 

 

4.1 Estimation of PM10 concentration fields 

 
Data fusion was performed for 27/11/2018, the day for which the amount of data was the largest. At 

every measurement position, the hourly mean of the observations is calculated, and external drift 

kriging is applied. The mobile and fixed sensor observations at 5pm and the annual modelled 

concentration field are presented for PM10 in figure 2a). Figure 2b) presents the VME for the same 

sampling routes. In this case, the measurement uncertainty is set to 25%, i.e. to the maximum 

uncertainty of the reference station observations. The uncertainty definition is totally arbitrary here and 

could be considered between 25% to 125%. Note that the fixed station measurements are not included 

in this estimation because they were used to correct and prepare the sensor data before kriging.  
 

 
Figure 2: Data fusion of the sensor data on 27/11/2018 at 5pm: the 2016 annual average concentrations 

simulated by ADMS-Urban and the hourly-averaged sensor data (a), the variance of the measurement 

errors (b), the fused map with 25% uncertainty on measurements (c), and the fused map with 75% 

uncertainty on measurements (d). 
  
As shown by the fused maps (Figure 2c and 2d), the modelled annual average allows to define the 

general patterns of the pollutant fields. Then the sensor observations which are associated with higher 

concentrations (by a factor of two) increase the concentration levels in the estimation domain, with 

some PM10 hotspots where data were collected (Figure 2c). When data fusion is performed with higher 

VME (75%, figure 2d), the hotspots are not represented anymore and the local effects of the sensor data 

is minimized. 

https://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html


 

5 Conclusion 

 
The recent technological developments for miniaturizing the instruments that measure outdoor ambient 

air offer new possibilities for air quality modelling and mapping. The new portable and low-cost 

devices could provide observations of pollutants with higher spatial coverage than the reference 

monitoring networks. As long as several challenges can be dealt with (measurement uncertainty, 

representativeness of the sampling…), they could help to produce more accurate pollution maps. In this 

work, we investigate the potential added value of these data for air quality mapping by applying a data 

fusion technique. The dataset refers to PM pollution in the French city of Nantes. Hourly averaged 

sensor data and the annual mean concentration field simulated by ADMS-Urban model are combined by 

external drift kriging to estimate hourly PM10 concentrations, taking the variance of the measurement 

error into account. Those calculations were performed for one day but the next step of this work will be 

to consider each hour of the whole sampling period (November 2018). Further investigations will be 

carried out to estimate the influence of the amount of data, their position and their related uncertainties 

on the interpolation results. In addition, several ways of improvement have been identified such as the 

consideration of the spatial anisotropy in kriging and the application of spatiotemporal kriging. Besides 

geostatistical methods, machine learning techniques will be tested allowing to learn about historical data 

to improve the current estimate.  
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