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Abstract 

Adsorption efficiency, measured as the surfactant concentration at which the surface tension of the 

aqueous solution decreases by 20 mN/m, characterizes their affinity for surfaces and interfaces, which 

is crucial for a cost-effective use of surfactants. In this article, the first Quantitative Structure Property 

Relationship models to predict this efficiency were proposed based on a dataset of 82 diverse sugar-

based surfactants and using different types of molecular descriptors. Finally, an easy-to-use model was 

evidenced with good predictivity assessed on an external validation set. Moreover, it is based on a series 

of fragment descriptors accounting for the different structural trends affecting the efficiency of sugar-

based surfactants. Due to its predictive capabilities and to the structure-property trends it involves, this 

model open perspectives to help the design of new sugar-based surfactants, notably to substitute 

petroleum-based ones. 

Keywords: QSPR; sugar-based surfactants; efficiency; bio-based compounds  
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1 Introduction 

In the context of development and use of more environmentally-friendly products, efforts are nowadays 

in progress towards the design of new surfactants issued from renewable resources to substitute 

petroleum-based surfactants that constitute most part of the market. Among them, sugar-based 

surfactants are an important subfamily of bio-based surfactants (contributing up to 40% of biosurfactant 

consumption (Anbu, 2017)), characterized by their polar head constituted by carbohydrates such as 

glucose, maltose or sucrose, and their derivatives. For this reason, sugar-based surfactants can be 

obtained from renewable resources such as starch (Kjellin & Johansson, 2010), and are often 

biocompatible and easily biodegradable (Matsumura, Imai, Yoshikawa, Kawada, & Uchibor, 1990). So, 

they are commonly considered among the most promising alternatives to conventional petroleum-based 

non-ionic surfactants (Hill & LeHen-Ferrenbach, 2009), particularly regarding soft detergents or 

personal care products, cosmetics and pharmaceutical formulations (Rojas, Stubenrauch, Lucia, & 

Habibi, 2009). 

The main performance characteristics of surfactants that are used to select surfactants in application 

formulations relate to their effectiveness and their efficiency. The target effectiveness, i.e. the maximum 

performance to reach, is the maximum lowering of the surface tension in aqueous solution. This 

maximum is almost reached when the concentration in surfactants favors their aggregation to form 

micelles in the solution. This concentration is the critical micelle concentration (CMC). So, effectiveness 

is characterized by measuring the surface tension at CMC, denoted  γCMC (Rosen, 1976).  

Efficiency (Rosen, 1974) represents the amount of surfactant needed to reach a given performance. In 

surfactant solutions, two phenomena are in competition, adsorption at solvent/air interface and 

aggregation into micelles. While CMC is more related to aggregation, adsorption efficiency (commonly 

simply named efficiency) is measured as the quantity of surfactants needed to decrease the surface 

tension of the aqueous solution by 20 mN/m, in negative logarithmic unit by convention (-log C20, 

denoted pC20) (Rosen & Kunjappu, 2012). This level of reduction of surface tension is expected as 

generally sufficient to characterize a quasi-saturated interface (Rosen, 1974). 
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In applications, a high efficiency enables to reduce the amount of surfactant used (Fisher, Zeringue, & 

Feuge, 1977; Rosen, 1974). Indeed, using efficient surfactants allows to limit the amount of surfactant 

in formulation for a same target application and, as a consequence, limit their cost and, in some cases, 

avoid their possible toxicity.  

If CMC and pC20 characterize different aspects of the behavior of surfactants in solution (aggregation 

for CMC and adsorption for pC20), they are both related to the hydrophobic effect (Tanford, 1979), that 

minimizes the contact between solvent and alkyl chains. So, it is not surprising to note that some 

common trends have been highlighted between the molecular structure and both the CMC (in log) and 

the pC20 in the experimental literature (Rosen & Kunjappu, 2012). For instance, in general, pC20 was 

observed to increase with alkyl chain length (Rosen, 1974; Zhu, Rosen, Vinson, & Morrall, 1999), and 

to slightly decrease with polar head size, which also affects CMC (Crook, Fordyce, & Trebbi, 1963; 

Myers, 2006; Rosen & Kunjappu, 2012).  

The relationship between the molecular structure and pC20 was quantified by Rosen (Rosen, 1974) under 

a thermodynamic formalism by considering the free energies of transfer of the CHn groups and of the 

polar head from solvent to interface. This approach has notably been used to evidence structural trends 

of a series of conventional surfactants (without any sugar-based surfactants), like the increase of 

efficiency with the length of the alkyl chain or its decrease in the case of ionic surfactants.  

To reach predictive models, in particular for sugar-based surfactants, the quantitative structure-property 

relationship approach represents a relevant predictive method that already demonstrated success for 

physico-chemical properties (Katritzky et al., 2010; Nieto-Draghi et al., 2015) notably for surfactants 

(Creton, 2013; Hu, 2010) and, in particular, sugar-based ones (Gaudin, Rotureau, Pezron, & Fayet, 2016, 

2018). But up to now, none were dedicated to the adsorption efficiency of surfactants. 

In this study, a series of six QSPR models dedicated to the adsorption efficiency of sugar-based 

surfactants were developed based on different types of descriptors to access models accounting at best 

for the different structural trends influencing the adsorption efficiency of sugar-based surfactants. The 

inclusion of quantum chemical descriptors allows to access to physically meaningful description of 
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molecular structures, notably in terms of charge distributions, whereas topological and, furthermore, 

constitutional descriptors are easier to calculate. Moreover, fragment-based descriptors were introduced. 

Computed separately for the polar head and the alkyl chain of the surfactant, they are particularly 

representative of the specificity of the surfactants’ structure and may allow to distinguish the specific 

impacts of polar heads and alkyl chains on their efficiency.  

2 Computational details 

2.1 Experimental dataset 

The experimental data used in this paper were issued from a large data collection on the properties of 

sugar-based surfactants (Gaudin, 2016). More than 2500 data on different amphiphilic properties 

(including, notably, critical micelle concentrations (CMC), surface tensions at CMC, Krafft points and 

adsorption efficiencies) for more than 600 different sugar-based surfactants were extracted from 

literature constituting the largest database for this family of compounds, to the best of our knowledge. 

The 172 gathered data related to efficiency were analyzed in detail to select only the most reliable ones 

for the development and the validation of QSPR models. Indeed, the performances of QSPR models are 

critically dependent on the number and quality of the data employed for its development. For this reason, 

all the selected data were obtained using a robust protocol and under homogeneous conditions. Indeed, 

all selected pC20 were measured near room temperature (i.e. between 20°C and 25°C), since temperature 

can strongly influence pC20 values (Mahmood & Al-Koofee, 2013).  

Moreover, all pC20 values collected in the dataset (cf. Table 1) were measured by tensiometry (using, e. 

g. the Wilhelmy plate method (Le Neindre, 1993) or the Du Noüy Ring (du Noüy, 1925)) upon the 

following general principle. Aqueous solutions at various concentrations of surfactants are prepared and 

the measured surface tension are plotted versus concentration in logarithmic scale. This curve enables 

the determination of various properties, like the CMC, γCMC, and the efficiency. In the case of efficiency, 

the concentration at which the surface tension has decreased by 20 mN/m with respect to the pure water 

is extracted, and then, adsorption efficiency is calculated as the negative logarithmic transformation of 

this concentration, pC20. 
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<< TABLE 1 >> 

The collected data allow to figure out the experimental variance that can be found in literature for a 

single molecule by different experimentalists. As shown in Table 2, this variance reaches 0.7 (log unit) 

for 1-O-octanoyl-D,L-xylitol.  

<< TABLE 2 >> 

After data curation, the final dataset (in Table 1) was constituted of 82 pC20 of diverse sugar-based 

surfactants, with various polar heads (cyclic, acyclic and even mixed), with linear, branched and/or 

unsaturated alkyl chains, and with various linkages (ether, thioether, ester, amide and methylamide). 

The distribution of pC20 data is relatively homogeneous, with data ranging between 1.70 and 6.46 (log 

unit) and a maximum between 3 and 3.5 (log unit), as shown in Figure 1. 

<< FIGURE 1 >> 

To perform an external validation of the model (to evaluate its predictive power), the dataset was divided 

into two parts taking care of their similarity in terms of property distribution and chemical diversity to 

ensure that the validation set is at best representative of the applicability domain of the model. The 

partition was performed by a property-ranged approach to ensure similar distributions of efficiency 

values in both sets. Surfactants were classified by increasing order of pC20 and the molecules of the 

validation set were selected regularly to obtain a 1:3 partition, i.e. by selecting the 2nd, 5th, 8th molecule, 

etc. Hence, a training set of 55 surfactants was selected for the development of the model and a validation 

set of 27 surfactants was kept apart for the external validation. The similarity between both sets in terms 

of chemical diversity was also checked based on a principal component analysis on all computed 

descriptors. The molecules of both sets revealed well-distributed in the global chemical space of the 

investigated surfactants, as shown in Figure 2. 

<< FIGURE 2 >> 

2.2 Molecular descriptors 
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The molecular structures of the 82 studied sugar-based surfactants of the dataset were optimized from 

Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level with Gaussian 09 software (Frisch et 

al., 2009) after preliminary conformation analyses to identify the most stable conformation (Gaudin, 

Rotureau, Pezron, & Fayet, 2017). Frequency calculations were performed at same level to ensure they 

correspond to local minima, i.e. presenting no imaginary frequency. This level of calculation was found 

relevant for sugar-based surfactants to evidence the influence of their molecular structure on a series of 

molecular descriptors in a previous work (Gaudin et al., 2017) and it was successfully used in previous 

QSPR study targeting their CMC (Gaudin et al., 2016). 

The structures of the 35 polar heads and 18 alkyl chains constituting these 82 surfactants were also 

computed on the same scheme. These fragments were separated before the first heteroatom and each 

fragment was saturated in hydrogen, as illustrated in Figure 3.  

<< FIGURE 3 >> 

Based on these structures, i.e. for each surfactant and each fragment, more than 300 descriptors were 

computed using CODESSA software . These descriptors are of four types:  

- constitutional descriptors, related to the number of specific types of atoms, functional groups 

and bonds (e.g. number of carbon, of single bonds); 

- topological descriptors, that characterize the atomic connectivity including information about 

the size, composition and degree of branching (e.g. Wiener index); 

- geometrical descriptors, related to the 3D molecular structure (e.g. molecular volume, bond 

length);  

- quantum-chemical descriptors, including atomic charges, electronic and binding information. 

Within the investigated dataset, some sugar-based surfactants were enantiomeric mixtures (Savelli et 

al., 1999), for D and L sugar alcohol polar heads, or anomeric (Boyère, Broze, Blecker, Jérôme, & 

Debuigne, 2013) mixtures, for polar heads containing a free anomeric alcohol. In these cases, the 

different isomers were considered as conformations of the same compound. The different isomers 



7 

 

(possibly in different conformations) were calculated at B3LYP/6-31+G(d,p) level and the most stable 

one was used to compute the molecular descriptors.  

2.3 Model development and validation 

In this study, multi-linear regressions (MLR) were developed to favor a simpler use for predictions and 

an easier interpretation of the role of each descriptor in the predictive power of the model from both a 

statistical and phenomenological point of view. 

The selection of the descriptors included into the models was performed using the Best MultiLinear 

Regression (BMLR) approach, as implemented in CODESSA software . This algorithm was described 

in details and successfully used in previous works (Fayet, Rotureau, Joubert, & Adamo, 2010a, 2010b)  

notably for the CMC of sugar-based surfactants (Gaudin et al., 2016). The final model was chosen as 

the best compromise between correlation and number of descriptors to avoid against any over-

parameterization.  

To evaluate the performances of models, a series of internal and external validations were performed. 

The goodness of fit was measured by the determination coefficient (R²), the mean absolute error (MAE) 

and the root mean square error (RMSE) between predicted and experimental values for the training set. 

Moreover, Student’s t-test at a confidence level of 95% was performed to check the relevance of each 

descriptor into the regression. 

The robustness of the models was assessed by using leave-one-out (LOO) and leave-many-out (LMO) 

cross-validations. The Q²LOO, Q²3CV, Q²7CV and Q²10CV coefficients issued at various levels of partition 

(for LOO, 3-fold, 7-fold and 10-fold cross-validations, respectively) were checked to be as close as 

possible to R² and close one to each other. 

A Y-scrambling test was performed to ensure that models were not issued from chance correlations. 500 

random permutations of experimental property values were performed. New models were refitted 

(Lindgren, Hansen, Karcher, Sjöström, & Eriksson, 1996) at each permutation and the average (R²YS) 

and standard deviation (SDYS) in the R² of the new models were calculated. In absence of chance 
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correlation, low values of R²YS are expected. As proposed by Rücker (Rücker, Rücker, & Meringer, 

2007), R²YS should be superior to 2.3 SDYS for a model to be considered as not issued from chance 

correlations with a 99% confidence level. 

Then, an external validation was performed to evaluate the predictive power of the selected models, on 

the validation set of 27 surfactants. The coefficient of determination R²EXT, the mean absolute error 

MAEEXT and the root mean square error RMSEEXT were calculated between experimental and predicted 

values of efficiency. A series of additional external validation metrics were also used (listed in Table 3), 

for which thresholds values have been proposed by Chirico et al. (Chirico & Gramatica, 2012) to 

estimate that a QSPR model is reliable.  

<< TABLE 3 >> 

In a last step, the applicability domain (AD), i.e. the domain in which a prediction is valid, was defined. 

As a QSPR model is issued from a similarity principle, it is expected to be reliable for molecules similar 

to those used to fit it. So, the AD of each model has been defined by the range of values of the calculated 

descriptors and of the experimental property in the training set. To evidence the actual performances of 

the model inside its AD, all external validation criteria were calculated again considering only the 

molecules of the validation set belonging to the applicability domain (R²IN, MAEIN, RMSEIN, Q²F1,IN, 

Q²F2,IN, Q²F3,IN, CCCIN, INmr² , , Δr²m,IN). 

3 Results 

As explained in the previous sections, different types of descriptors were developed from the simplest 

constitutional counts to quantum chemical descriptors. Moreover, some descriptors were calculated 

from the whole molecular structure whereas others were related to the alkyl chain or to the polar head. 

Finally, six new QSPR models were developed in this study for pC20. Three models were based on 

integral descriptors: 1) based on all types of descriptors, 2) limited to topological and constitutional 

descriptors or 3) focused on constitutional descriptors to favor simpler models. On the same scheme, 

three other models were based on fragment descriptors.  



9 

 

3.1 Models based on integral descriptors 

3.1.1 Model with all descriptors 

From the 326 integral descriptors calculated for the whole surfactant molecule, a four-parameter model 

(Eq. 1) was found as the best compromise between correlation and number of descriptors among the 17 

equations sorted out by the BMLR method: 

pC20 = 1.952 2ACIC – 77.58 HACA2,TMSA – 113.8 NO,avg – 0.302 nrings + 2.80  (1) 

with 2ACIC the Average Complementary Information Content of order 2, 2,TMSAHACA  the 

area-weighted surface charge of hydrogen bonding acceptor atoms divided by the total molecular surface 

area, based on the Mulliken partial charges (Mulliken, 1955), ,O avgN  the average nucleophilic reactivity 

index for a O atom and ringsn the number of rings in the molecule. 

The model is characterized by good fitting (R² = 0.90, RMSE = 0.37 (log unit)) and robustness 

(Q²CV = 0.88, Q²10CV = 0.87, Q²7CV = 0.87, Q²3CV = 0.86). From the Y-scrambling test, the criterion of 

Rücker (Rücker et al., 2007) revealed satisfied: R² - R²YS = 0.81 > 2.3 SDYS = 0.12. So, the model was 

not issued from a chance correlation. 

When tested in external validation, a good predictivity was obtained for this model with RMSEIN = 0.49. 

In particular, it fulfilled all the criteria of Chirico et al. (R²IN = 0.83 > 0.70, Q²F1,IN = 0.82 > 0.70, 

Q²F2,IN = 0.82 > 0.70, Q²F3,IN = 0.83 > 0.70, CCCIN = 0.89 > 0.85, mr² IN = 0.70 > 0.65, Δrm²IN  = 0.16 < 

0.20) in its applicability domain.  

It has to be noticed that the only surfactant of the validation set that felt out of AD was octyl glycol 

(Figure 4) due to a slightly too low HACA2,TMSA (with 9.36·10-3 whereas the AD ranged between 

1.19·10-2  and 4.04·10-2) and a too high value of NO,avg (2.97·10-2 vs. an AD between 1.95·10-6  and 

2.01·10-2). This molecule has the smallest polar head of the dataset (notably when compared to octyl--

D-glucoside in Figure 3), with only two hydroxyl groups, which explains its finding at the limits of the 
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AD. However, the predicted pC20 for this surfactant presented a deviation of 0.39 (log unit), i.e. within 

the standard error in the validation set (RMSEIN = 0.49 (log unit)).           

<< FIGURE 4 >> 

3.1.2 Models with topological and constitutional descriptors 

The use of the only 74 constitutional and topological descriptors led to a five-parameter model (Eq. 2) 

as best compromise between correlation and number of descriptors among the 7 equations sorted out by 

the BMLR method: 

pC20 = 1.093 nS – 9.64 2ASIC + 0.224 1χv – 0.796 nrings + 42.89 nC,rel – 4.10   (2) 

with nS the number of S atoms, 2ASIC the Average Structural Information Content of order 2, 1χv the 

Kier & Hall index of order 1, nrings the number of rings, and nC,rel the relative number of C atoms.  

The model was well fitted for the training molecules (R² = 0.92, RMSE = 0.34 (log unit)) and revealed 

robust from LOO and LMO cross-validations with Q²nCV = 0.87-0.90. The Y-scrambling demonstrated 

that it did not originate from a chance correlation according to Rücker’s criteria: 

R² - R²YS = 0.83 > 2.3 SDYS = 0.12. 

The predictivity of Eq. 2 was found better to that of Eq. 1 with RMSEIN = 0.41 (log unit) and better 

external validation metrics (R²IN = 0.88, Q²F1,IN = Q²F2,IN = 0.86, Q²F3,IN = 0.88, CCCIN = 0.93, mr² IN = 

0.83 Δrm²IN = 0.01), for the 25 molecules of the validation set that belong to AD.  

Two molecules were found out of AD. For the S-butyl-1-thio-D,L-xylitol, the relative number of carbon 

nC,rel was 0.265 for an AD between 0.270 and 0.313 and the error in prediction for this molecule (0.52) 

was only slightly higher than RMSEIN. For the octyl glycol, 1χv = 5.1 is lower than the range of the AD 

at [5.3;20.0] and predicted pC20 was overestimated by 0.80, as shown in Table 1.  

3.1.3 Model with constitutional descriptors 



11 

 

The five-parameter model in Eq. 3 was chosen among the six equations sorted out by the BMLR method 

when focusing on the only 36 constitutional descriptors of the entire surfactants: 

pC20 = 46.45 nC,rel – 0.802 Mw,rel + 8.52∙10-2 nH + 1.452 nS – 0.534 nrings – 7.68   (3) 

with nrel,C the relative number of C atoms, Mw,rel the relative molecular weight, nH
 the number of H atoms, 

nS the number of S atoms and nrings the number of rings. 

If the goodness of fit of this model is slightly lower than Eqs. 1 and 2 with R² = 0.88 and RMSE = 0.41 

(log unit), it proved robust (Q²nCV = 0.83-0.85). The Y-scrambling ensured that the model was not issued 

from a chance correlation with low values of R² for the models obtained after randomization (R²YS = 

0.09; SDYS = 0.05). 

Once again, the predictive power revealed slightly lower than Eqs. 1 and 2 with RMSEIN = 0.45 (log 

unit). However, all criteria of Chirico are satisfied (R²IN = 0.84, Q²F1 = 0.83, Q²F2 = 0.83, Q²F3 = 0.86, 

CCC = 0.91, mr² = 0.77 and Δrm² = 0.12). The two molecules out of AD are the same than for Eq. 2, 

based on the same criteria (S-butyl-1-thio-D,L-xylitol due to nC,rel = 0.265 vs. [0.270;0.313] and octyl 

glycol due to Mw,rel = 5.13 vs. [5.38;6.96]) and for both of them pC20 the overestimation was of 0.69 and 

0.55, respectively. 

3.2 Models focused on fragment-based descriptors 

3.2.1 Model with all types of descriptors 

A total of 627 fragment-based descriptors were calculated when considering the descriptors of the polar 

head and of the alkyl chain. From this large set of descriptors, the five-parameter model in Eq. 4 was 

selected as giving the best compromise between correlation and number of descriptors among the 13 

equations sorted out by the BMLR method: 
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pC20 = -4.97 FHBSAh + 1.60∙10-2 2CICc – 1.616 RNCSc – 6.31∙10-2 0SICh   (4) 

– 2.95 2ASICc + 10.22    

with FHBSAh the fractional H-bonding surface area of the polar head based on Mulliken partial charges 

(Mulliken, 1955), 
2

cCIC  the complementary information content of order 2 of the alkyl chain, RNCSc 

is the relative negatively charged surface area of the alkyl chain based on Zefirov partial charges 

(Zefirov, Palyulin, Oliferenko, Ivanova, & Ivanov, 2001), 
0

hSIC is the structural information content 

of order 0 of the polar head and 
2

cASIC  is the average structural information content of order 2 for the 

alkyl chain. 

An excellent fitting was obtained with the training set data with a coefficient of determination R² = 0.95 

and a low error (RMSE = 0.28 (log unit)), the model appears to be robust (Q²CV = Q²10CV = Q²3CV = 0.93, 

Q²7CV = 0.92) and not issued from chance correlation as evidenced by Y-scrambling (R²YS = 0.09 and 

SDYS = 0.05). 

This model demonstrated a good predictive power satisfying all criteria of Chirico with R²IN = 0.87, 

Q²F1,IN = 0.85, Q²F2,IN = 0.85, Q²F3,IN = 0.86, CCCIN = 0.91, mr² IN = 0.70, Δrm²IN = 0.15 and an error of 

RMSEIN = 0.44 (log unit) in its applicability domain. 

5 surfactants of the validation set were found out of AD of this model. S-Hexyl, S-Octyl and S-Decyl 5-

Thio-D-Xylonolactone were found nearly on the threshold of the AD in terms of FHBSAh with 0.7276 

for these 3 surfactants for an AD between 0.7283 and 0.9929. So, it is not surprising to note that these 

molecules were correctly predicted with deviations between experimental and predicted efficiencies of 

0.05 to 0.42 (i.e. within the RMSEIN level at 0.44 (log unit)). Once again, octyl glycol is found out of 

AD due to its value of 0SICh (4.1 vs. AD = [5.2;22.8]) but the predicted value of pC20 was finally close 

to experiment (3.51 (log unit) vs. pC20,exp = 3.19 (Shinoda, Yamanaka, & Kinoshita, 1959)). At last, a 

pC20 of 1.67 (log unit) was predicted for 1-O-hexanoyl-D,L-xylitol, i.e. minor to the AD (1.70 to 6.46 

(log unit)) but this prediction remains within the expected uncertainty of the model, when compared to 

the experimental value of pC20 at 2.10 (log unit) (Savelli et al., 1999). 
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3.2.2 Topological/Constitutional descriptors 

To avoid quantum chemical calculations, the second fragment-based model focused on the 150 

constitutional and topological descriptors. A four-parameter model (Eq. 5) was finally selected. 

pC20 = 1.129 nS,h + 0.753 2χc  – 6.78 2ABICc – 3.26∙10-2 1SICh + 4.74   (5) 

with nS,h the number of S atoms in the polar head, 2χc the Randic index of order 2 in the alkyl chain, 

2ABICc the Average Bonding Information Content of order 2 in the alkyl chain and 1SICh the Structural 

Information Content of order 1 in the polar head. 

Based on four parameters, this model presents good correlation (R² = 0.92, RMSE = 0.33 (log unit)) and 

robustness (Q²CV = 0.91, Q²10CV = Q²7CV = 0.90, Q²3CV = 0.89). The Y-scrambling test ensures that the 

model was not obtained by chance correlation considering the Rücker criterion at a 99% confidence 

level: R² - R²YS = 0.85 > 2.3SDYS = 0.11. 

This model exhibits also good predictivity in its applicability domain, in which all the molecules of the 

validation set were included. Once again it fulfilled Chirico criteria (R²IN = 0.87, RMSEIN = 0.42 (log 

unit), Q²F1 = Q²F2 = Q²F3 =0.87, CCC = 0.92, mr² = 0.75, Δrm² = 0.13). The predictivity of this model 

including constitutional and topological descriptors is similar to the quantum chemical model (RMSEIN 

= 0.42 vs. 0.44 (log unit) for Eq. 4). 

3.2.3 Model based on constitutional descriptors 

At last, focusing on the 72 fragment-based constitutional descriptors, a four-parameter model (Eq. 6) 

was found to be the best compromise between correlation and number of descriptors among the 8 

equations proposed by the BMLR method. 

pC20 = 26.36 nS,rel,h + 2.70∙10-2 Mw,c – 0.199 nrings,h + 58.77 nsingle,rel,c – 58.71  (6) 

with nrel,S,h the relative number of S atoms in the polar head, Mw,c the molecular weight of the alkyl chain, 

nrings,h the number of rings in the polar head and nrel,single,c the relative number of single bonds in the alkyl 

chain. 
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This model is well-fitted with the training set surfactants (R² = 0.91, RMSE = 0.35 (log unit)), and 

presents a good robustness (Q²CV = 0.89, Q²10CV = Q²7CV = Q²3CV = 0.88). The Y-scrambling confirms 

that it is not issued from chance correlation: R²YS = 0.08 and SDYS = 0.11. 

At last, Eq. 6 demonstrates similar predictive performances than more complex fragment-based models 

(Eqs. 4-5). As shown in Figure 5, the errors observed for the molecules of the validation set within AD 

are low (RMSEIN = 0.43 (log unit)) and all validation metrics fit with the Chirico criteria (R²IN = 0.85, 

Q²F1,IN = Q²F2,IN = 0.84, Q²F3,IN = 0.87, CCCIN = 0.91, mr² IN = 0.73, Δrm²IN = 0.15) within its 

applicability domain. 

<< FIGURE 5 >> 

Only one surfactant of the validation set revealed out of AD, N-octadecyl-N-methyl lactobionamide, 

which presents the longest saturated alkyl chain of the dataset (containing 18 C atoms) leading to a 

predicted pC20 slightly higher than the AD range (6.74 (log unit) > 6.46 (log unit)). However, the 

observed error in prediction for this molecule, 0.40 (log unit), is in line with the error obtained in the 

validation set (RMSEIN = 0.43 (log unit)). 

Finally, this model is particularly appealing since it is based on very simple descriptors and remains 

reliable enough for good-quality and fast estimation of pC20 of sugar-based surfactants in the perspective 

of molecular screening or discovery, notably for formulation specialists. 

4 Discussion 

A summary of the six models developed in this study is proposed in table 4 and the applicability domain 

associated to the descriptors they used are provided in Table 5. These models present good predictive 

powers with standard errors between 0.41 and 0.49 for the validation set, which is reasonable compared 

to experimental deviations observed in literature for a single surfactant in Table 2 and, as indicated in 

previous section, they fulfilled all the Chirico criteria. 

<< TABLE 4 >> 



15 

 

<< TABLE 5 >> 

When looking at the descriptors included in the models, they are related to four main structural trends: 

the alkyl chain length, the size of the polar head, the presence of a S linkage and the presence of a double 

bond in the alkyl chain. 

In addition to the molecular weight of the alkyl chain (in Eq. 6), two other descriptors are related to the 

length of the alkyl chain. The Randic index of order 2 in the alkyl chain 2χc and the information content 

descriptors 2CICc are two topological descriptors of the alkyl chain that relate to the size of this fragment. 

Besides, 2χc has been also evidenced to increase with alkyl chain length in previous work (Gaudin et al., 

2016). In all cases, these descriptors present the largest t-test. This is in agreement with experimental 

knowledge, since increasing alkyl chain length has been identified as the main factor increasing the 

efficiency of surfactants due to a higher affinity of the surfactant for interfaces (Rosen, 1974). 

Four of the QSPR models include descriptors related to the polar head size. The first ones are the number 

of rings in the whole molecule, and in the polar head only, nrings,h. In practice, they correspond to a unique 

descriptor since none of the alkyl chains of the investigated surfactants contain rings. This descriptor is 

directly linked to the number of sugar residues. Indeed, in the data set, surfactants with more than one 

sugar residue contain at least one ring in its polar head and all acyclic molecules only contain one sugar 

residue. So, no ring in the polar heads is equivalent to a small polar head, and the more the number of 

rings is large, the more the polar head is large. The second ones are Structural Information Content 

descriptors, 0SICh and 1SICh, two topological indices that also increase with polar head size, as shown in 

Figure 6. In all cases, the regression coefficients associated to these descriptors are negative, which 

means that the size of the polar head decreases the efficiency of sugar-based surfactants. This trend is 

again meaningful: because of the low affinity of alkyl chains with water (the so-called hydrophobic 

effect (Tanford, 1979)), the more alkyl chains are adsorbed at the surface, the more the surface tension 

decreases (Rosen, 1974). At equal chain length and with bigger polar heads, a lower amount of alkyl 

chains per unit surface is adsorbed at saturation due to sterical hindrance between polar heads. Thus, at 

a given concentration, the associated decrease of energy per unit surface (or surface tension decrease) is 
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expected to be lower with bigger polar heads, which implies a higher concentration of molecules to 

achieve a 20 mN/m surface tension decrease, i. e. a lower pC20.   

<< FIGURE 6 >> 

Then, the (relative) number of S atoms (nS and nS,rel) appears in four of the developed models. In the 

dataset, the sulfur is always found in the linkage. Sulfur linkage has been evidenced to add an 

hydrophobic contribution in surfactants (in addition to the carbon chain) either based on theoretical 

calculations, in a previous study (Gaudin et al., 2016), and by experimentalists (Marchant, Anderson, & 

Zhu, 2005). In these new models, these descriptors always positively contribute to the calculated 

efficiency, which is in line with the mentioned experiments and calculations suggesting that sulfur 

linkage increases efficiency.   

The last trend encountered into the models is the presence of a double-bond in the alkyl chain. Indeed, 

, ,single rel cn  is lower (minor to 1) for surfactants containing one double-bond in the alkyl chain. In Eq. 6, 

, ,single rel cn has a positive regression coefficient which is relevant. Indeed, as experimentally observed 

(Myers, 2006; Rosen & Kunjappu, 2012), surfactants with unsaturated alkyl chains have lower 

efficiency due to the increased hydrophilicity of their chain. 

Finally, it can be noticed that the physical factors reflected by the descriptors included in these models 

for pC20 are the same than those found for CMC in previous work (Gaudin et al., 2016). This is in 

accordance with the observed correlation between pC20 and CMC as evidenced for the 24 common 

molecules of both validation sets of the present article and the previous one for CMC (in Figure 7). 

When comparing the different models developed in this study, it is interesting to note that simple models 

only based on constitutional descriptors performed as well as, and even slightly better, than models 

including quantum-chemical descriptors, with RMSEIN of 0.45 vs. 0.49 (log unit) for integral descriptors 

and 0.43 vs. 0.44 (log unit) for fragment descriptors. Thus, the only 2D structure of sugar-based 

surfactants seems sufficient to access reliable pC20 estimates. 
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Finally, among the developed models, the simple fragment-based constitutional model (Eq. 6) represents 

the most relevant one. Its performances are very high with an error of only 0.43 (log unit) (in terms of 

RMSEIN), which is reasonable compared to the observed deviations in experimental data found in 

literature (see Table 2). Moreover, it is very easy to use, requiring knowledge of the only 2D-structure 

of surfactants. 

This model even demonstrated similar deviations in prediction than the relationship between pC20 and 

CMC, as expressed in Eq. 7, according to the Abbott criterion (Abbott, 2016) considering that the 

concentration to decrease the surface tension of water by 20mN/m (i.e. C20) is ten times lower than 

CMC, which was highlighted as relevant for sugar-based surfactants as illustrated in Figure 7. 

pC20 = – log CMC + 1         (7) 

<< FIGURE 7 >> 

Indeed, when applied to the validation set molecules, Eq. 7 did not offer more reliable estimates than 

the new QSPR model with a mean absolute error of 0.30 (log unit) vs. 0.31 (log unit) for the QSPR 

model (as shown in Table 6). This enforces the interest of the new QSPR model that can be applied 

without knowledge of any experimental data and can then be applied in an in-silico design or screening 

strategy before any experimental characterization and even synthesis. 

<< TABLE 6 >> 

5 Conclusion 

This paper presents the first QSPR models dedicated to the prediction of efficiency of surfactants. Based 

on different types of descriptors, a series of new QSPR models were developed and validated focusing 

on sugar-based surfactants in the perspective of their use to guide the design of bio-based formulations 

in substitution to petroleum-based surfactants. The final proposed model is very simple, based only on 

constitutional descriptors of the polar head and of the alkyl chain of surfactants. A good predictive power 

was highlighted with a RMSEIN of 0.43 (log unit) evaluated on an external validation set. This simple 

fragment-based approach is very easy to use based on the only knowledge of the 2D structure of the 
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surfactants and represents a powerful alternative to the systematic experimental campaigns in particular 

at early R&D stages as they allow to access to efficiency estimates of new surfactants even before 

synthesis. This enables to identify the surfactants that could be used for target applications at the lowest 

concentrations. To the end, the structure-efficiency trends encountered in these models can guide the 

design of new high potential surfactant’s structures. Indeed, a similarity was found between the 

molecular factors that affect the critical micelle concentration and efficiency. Specifically, our analyses 

suggest that, beyond bearing long alkyl chains, sugar-based surfactants with small polar heads, saturated 

alkyl chains and sulfur linkages are expected to have higher efficiencies.  
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Table 1. Experimental and calculated pC20 values from and the new QSPR models 

surfactant exp pC20 T (°C) ref 
predicted pC20 

eq. 1 eq. 2 eq. 3 eq. 4 eq. 5 eq. 6 

TRAINING SET 

Octanoyl-β-D-Glucosylamine 1.70 25 (Plusquellec et al., 1994)a 2.35 2.20 2.55 2.18 2.63 2.57 

1-O-Pentanoyl-D,L-Xylitol 1.90 25 (Savelli et al., 1999) 1.81 1.57 1.68 1.53 1.63 1.63 

Octanoyl-β-D-Galactosylamine 2.00 25 (Plusquellec et al., 1994)a 2.32 2.20 2.55 2.58 2.63 2.57 

S-Pentyl-1-Thio-D,L-Xylitol 2.20 25 (Savelli et al., 1999) 2.95 2.79 3.02 2.24 3.03 3.21 

Hexyl-D-Maltonamide 2.50 25 (Zhang & Marchant, 1996) 1.86 2.18 2.19 2.10 1.94 2.19 

1-O-Octanoyl-D,L-Xylitol 2.80 25 (Savelli et al., 1999) 2.98 3.01 3.00 2.93 2.73 2.77 

1-O-Heptyl-D,L-Xylitol 2.90 25 (Savelli et al., 1999) 2.96 2.87 2.83 2.42 2.86 2.77 

3,7-Dimethyloctyl-β-D-Maltotrioside 3.00 25 (Minamikawa & Hato, 2005)a 3.39 3.36 3.32 3.20 3.13 3.31 

N-Decanoyl-N-Methyl Lactitolamine 3.06 25 (Wilk et al., 2001) 3.85 3.67 3.86 3.11 3.21 3.33 

Octyl-D-Maltonamide 3.10 25 (Zhang & Marchant, 1996) 2.58 2.90 2.91 2.72 2.84 2.95 

Octyl-D,L-Glycerol 3.19 25 (Shinoda et al., 1959)a 3.10 3.52 3.52 3.37 3.39 3.15 

1-O-Heptanoyl-D,L-Xylitol 3.20 25 (Savelli et al., 1999) 2.54 2.52 2.61 3.12 2.27 2.39 

S-Hexyl 1-Thio-D-Lyxitol 3.25 20 (Lalot, Stasik, Demailly, Beaupère, & Godé, 2004) 3.45 3.37 3.53 3.65 3.46 3.59 

N-Decyl-N-Hydroxymethyl Gluconamide 3.30 22 (Piasecki & Pilakowska-Pietras, 2007)a 4.18 3.95 3.93 3.81 3.86 3.91 

Nonyl-β-D-Glucoside 3.30 20 (Ericsson, Söderman, Garamus, Bergström, & Ulvenlund, 2004)a 3.44 3.23 3.18 3.35 3.65 3.33 

3,7-Dimethyloctyl-β-D-Maltoside 3.31 25 (Minamikawa & Hato, 2005)a 3.17 3.06 3.28 3.45 3.35 3.51 

S-Hexyl 5-Thio-D-Arabinonolactone 3.36 20 (Lalot et al., 2004) 3.50 3.46 3.62 3.79 3.44 3.66 

6-O-Dodecanoylstachyose 3.40 20 (Söderberg, Drummond, Neil Furlong, Godkin, & Matthews, 1995)a 3.88 4.01 3.76 3.47 3.60 3.49 

N-Octyl Glucoheptonamide 3.40 25 (Syper, Wilk, Sokołowski, & Burczyk, 1998)a 2.80 2.91 2.86 2.95 3.08 3.15 

1-O-Nonyl-D,L-Xylitol 3.40 25 (Savelli et al., 1999) 3.81 3.85 3.61 3.42 3.72 3.53 

N-Decyl-N-Hydroxymethyl Glucoheptonamide 3.50 22 (Piasecki & Pilakowska-Pietras, 2007)a 3.69 4.05 3.93 3.73 3.82 3.91 

Decyl-D-Maltonamide 3.60 25 (Zhang & Marchant, 1996) 3.21 3.59 3.55 3.59 3.66 3.71 

6-O-Dodecanoylraffinose 3.60 20 (Söderberg et al., 1995)a 3.78 3.85 3.66 3.69 3.75 3.69 

S-Hexyl 1-Thio-L-Xylitol 3.66 20 (Lalot et al., 2004) 3.44 3.37 3.53 3.69 3.46 3.59 

Decyl-β-D-Maltoside 3.70 25 (Aveyard, Binks, Chen, Esquena, & Fletcher, 1998)a 3.89 3.60 3.28 3.78 3.81 3.51 

Decyl-D-Lactobionamide 3.73 25 (Syper et al., 1998)a 3.70 3.59 3.55 3.57 3.66 3.71 
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Undecanoyl-N-Methylglucamine 3.82 25 (Zhu et al., 1999) 4.13 4.07 4.24 4.17 3.89 3.91 

1-O-Decanoyl-D,L-Xylitol 3.90 25 (Savelli et al., 1999) 3.79 3.94 3.71 3.92 3.59 3.53 

1-O-Decyl-D,L-Xylitol 4.00 25 (Savelli et al., 1999) 4.19 4.30 3.96 4.10 4.12 3.91 

Dodecyl-D-Lactobionamide 4.20 25 (Syper et al., 1998)a 4.29 4.24 4.14 4.35 4.42 4.47 

6-O-Dodecanoylsucrose 4.30 20 (Söderberg et al., 1995)a 3.82 3.82 3.67 4.27 4.05 3.89 

6-O-Dodecanoylglucose 4.40 20 (Söderberg et al., 1995)a 4.28 4.19 3.93 4.70 4.32 4.09 

Dodecanoyl-N-Methylglucamine 4.40 25 (Zhu et al., 1999) 4.51 4.46 4.55 4.35 4.28 4.29 

Dodecanoyl-N-Methylxylamine 4.43 25 (Zhu et al., 1999) 4.35 4.41 4.60 4.43 4.32 4.29 

N-Dodecyl-N-Methyl Lactobionamide 4.45 20 (Burczyk, Wilk, Sokołowski, & Syper, 2001) 4.50 4.35 4.44 4.42 4.39 4.47 

Dodecanoyl-N-Methylglyceramine 4.70 25 (Zhu et al., 1999) 4.38 4.61 4.81 4.63 4.43 4.29 

Dodecyl-β-D-Maltoside 4.70 22 (Persson, Kjellin, & Eriksson, 2003)a 4.46 4.20 3.87 4.56 4.57 4.27 

N-Dodecyl-N-Methyl Gluconamide 4.78 20 (Burczyk et al., 2001) 4.85 4.60 4.55 4.71 4.67 4.67 

[N-(Oleoyl)-2 -Ethylamino]-β-D-Maltoside 4.80 25 (Milkereit, Garamus, Veermans, Willumeit, & Vill, 2005)a 5.04 5.04 5.57 4.98 4.82 4.92 

N-Dodecyl-N-Methyl Glucoheptonamide 4.90 25 (Syper et al., 1998)a 4.89 4.66 4.54 4.66 4.63 4.67 

Tridecanoyl-N-Methylglucamine 5.00 25 (Zhu et al., 1999) 4.85 4.83 4.85 4.95 5.01 5.05 

S-Octyl 1-Thio-D-Lyxitol 5.15 20 (Lalot et al., 2004) 4.41 4.46 4.41 4.28 4.36 4.35 

N-Oleyl-N-Methyl Gluconamide 5.37 20 (Burczyk et al., 2001) 5.79 5.82 6.30 5.48 5.56 5.78 

S-Decyl 5-Thio-D-Arabinonolactone 5.40 20 (Lalot et al., 2004) 5.35 5.46 5.08 5.28 5.16 5.18 

S-Decyl 1-Thio-L-Xylitol 5.40 20 (Lalot et al., 2004) 5.23 5.41 5.17 5.17 5.19 5.11 

N-Tetradecyl-N-Methyl Lactobionamide 5.40 20 (Burczyk et al., 2001) 5.02 4.97 5.01 5.16 5.11 5.23 

Oleyl-β-D-Maltoside 5.40 25 (Milkereit et al., 2005)a 5.37 5.17 5.48 5.32 5.45 5.38 

N-Hexadecanoyl-N-Methyl Lactitolamine 5.46 25 (Wilk et al., 2001) 5.41 5.43 5.51 5.52 5.43 5.61 

N-Tetradecyl-N-Methyl Gluconamide 5.55 20 (Burczyk et al., 2001) 5.55 5.33 5.15 5.45 5.39 5.43 

Oleyl-β-D-Maltotrioside 5.70 25 (Milkereit et al., 2005)a 5.11 5.12 5.37 5.07 5.22 5.18 

N-Octadecanoyl-N-Methyl Lactitolamine 5.95 25 (Wilk et al., 2001) 5.92 5.96 6.01 6.24 6.09 6.36 

N-Hexadecyl-N-Methyl Gluconamide 6.11 20 (Burczyk et al., 2001) 6.15 6.00 5.70 6.01 6.06 6.18 

6-O-[(Tetradecyl-3-Propylsulfide)ethanoyl]-D-Mannose 6.13 25 (Boyère et al., 2013)a 6.01 6.46 6.27 6.16 6.41 6.03 

6-O-[(Hexyloctyl)-3-Propylsulfide)ethanoyl]-D-Mannose 6.36 25 (Boyère et al., 2013)a 5.56 6.14 6.27 6.16 6.41 6.03 

N-Octadecyl-N-Methyl Gluconamide 6.46 20 (Burczyk et al., 2001) 6.83 6.59 6.19 6.73 6.72 6.94 

VALIDATION SET 

S-Butyl-1-Thio-D,L-Xylitol 1.80 25 (Savelli et al., 1999) 2.60 2.32b 2.49b 2.09 2.82 2.83 
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1-O-Hexanoyl-D,L-Xylitol 2.10 25 (Savelli et al., 1999) 2.14 1.99 2.15 1.68b 1.84 2.01 

2-Amino-2-Deoxy-Octyl-β-D-Glucoside 2.70 25 (Boullanger & Chevalier, 1996)a 3.10 2.15 2.77 3.31 3.14 2.95 

Octyl-β-D-Glucoside 3.00 25 (Matsumura et al., 1990)a 3.03 2.80 2.85 3.17 3.23 2.95 

Octyl-α-D-Glucoside 3.10 25 (Matsumura et al., 1990)a 2.83 2.80 2.85 3.19 3.23 2.95 

Octyl Glycol 3.19 25 (Shinoda et al., 1959)a 2.80b 3.99b 3.74b 3.52b 3.46 3.15 

N-Decyl-N-Methyl Lactobionamide 3.29 20 (Burczyk et al., 2001) 3.93 3.72 3.86 3.63 3.63 3.71 

1-O-Nonanoyl-D,L-Xylitol 3.30 25 (Savelli et al., 1999) 3.40 3.50 3.39 3.75 3.17 3.15 

S-Hexyl 5-Thio-D-Xylonolactone 3.38 20 (Lalot et al., 2004) 3.56 3.46 3.62 3.80b 3.44 3.66 

1-O-Octyl-D,L-Xylitol 3.40 25 (Savelli et al., 1999) 3.37 3.38 3.24 3.24 3.30 3.15 

3,7-Dimethyloctyl-β-D-Glucoside 3.50 25 (Minamikawa & Hato, 2005)a 2.77 2.88 3.51 3.71 3.60 3.71 

N-Decyl-N-Methyl Gluconamide 3.60 25 (Burczyk et al., 2001) 4.16 3.79 3.93 3.93 3.91 3.91 

S-Hexyl 1-Thio-L-Ribitol 3.70 20 (Lalot et al., 2004) 3.27 3.37 3.53 3.67 3.46 3.59 

Decyl-β-D-Glucoside 3.90 25 (Aveyard et al., 1998)a 3.81 3.65 3.51 4.03 4.06 3.71 

N-Dodecanoyl-N-Methyl Lactitolamine 4.02 25 (Wilk et al., 2001) 4.33 4.28 4.44 3.98 4.00 4.09 

S-Octyl 5-Thio-D-Xylonolactone 4.37 20 (Lalot et al., 2004) 4.51 4.53 4.41 4.42b 4.33 4.42 

Dodecyl-D-Maltonamide 4.40 25 (Zhang & Marchant, 1996) 3.81 4.24 4.14 4.37 4.42 4.47 

1-O-Undecyl-D,L-Xylitol 4.50 25 (Savelli et al., 1999) 4.56 4.70 4.27 4.28 4.51 4.29 

S-Octyl 5-Thio-D-Arabinonolactone 4.74 20 (Lalot et al., 2004) 4.46 4.53 4.41 4.41 4.33 4.42 

N-Tetradecanoyl-N-Methyl Lactitolamine 4.87 25 (Wilk et al., 2001) 4.71 4.89 5.01 4.77 4.73 4.85 

N-Oleyl-N-Methyl Lactobionamide 5.09 20 (Burczyk et al., 2001) 5.13 5.42 6.04 5.18 5.27 5.58 

S-Decyl 5-Thio-D-Xylonolactone 5.40 20 (Lalot et al., 2004) 5.41 5.46 5.08 5.28b 5.16 5.18 

S-Octyl 1-Thio-L-Xylitol 5.40 20 (Lalot et al., 2004) 4.35 4.46 4.41 4.31 4.36 4.35 

Tetradecanoyl-N-Methylglucamine 5.40 25 (Zhu et al., 1999) 5.18 5.19 5.15 5.14 5.36 5.43 

S-Octyl 1-Thio-L-Ribitol 5.60 20 (Lalot et al., 2004) 4.23 4.46 4.41 4.29 4.36 4.35 

N-Hexadecyl-N-Methyl Lactobionamide 6.01 20 (Burczyk et al., 2001) 5.51 5.52 5.51 5.72 5.78 5.99 

N-Octadecyl-N-Methyl Lactobionamide 6.34 20 (Burczyk et al., 2001) 5.98 6.05 6.01 6.44 6.44 6.74b 

a data extracted from graphs; b out of the applicability domain of the model 
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Table 2. Experimental values of pC20 gathered from different sources. 

surfactant C20 (mM) pC20 (M) reference 

octyl-β-D-glucoside 

2.0* 2.7 
(Waltermo, Claesson, & 

Johansson, 1996) 

2.5* 2.6 (Shinoda et al., 1959) 

3.0 2.5 (Silva et al., 2008) 

N-dodecyl-N-methyl lactobionamide 
0.035 4.5 (Burczyk et al., 2001) 

0.049* 4.3 (Syper et al., 1998) 

6-O-dodecanoylsucrose 
0.032 4.5 (Ferrer et al., 2002) 

0.082* 4.1 (Söderberg et al., 1995) 

1-O-octanoyl-D,L-xylitol 
0.34* 3.5 

(Piao, Kishi, & Adachi, 

2006) 

1.6 2.8 (Savelli et al., 1999) 
*data extracted from graphs 
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Table 3. External validation metrics and thresholds according to Chirico et al. (Chirico & 

Gramatica, 2012) 

validation metric Ref. Chirico criteria 
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in  is the number of molecules; iy  and iŷ  are the experimental and calculated properties for the 

molecule i; y  is the average of experimental properties; ŷ  is the average of calculated properties; 
2

0R  

is the coefficient of determination forcing the origin for the axis; 
2

mr  and 
2'mr  are calculated by using 

experimental data on the ordinate axis and on the abscissa axis, respectively. 
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Table 4. Summary of the performances of the new QSPR models. 

model ndesc descriptors R² RMSE R²IN RMSEIN nout 

integral/all types (Eq. 1) 4 
2

2, ,, , ,TMSA O avg ringsACIC HACA N n  0.90 0.37 0.83 0.49 1 

integral/constitutional and 

topological (Eq. 2) 
5 nS, 

2ASIC, 1χv, nrings, nC,rel 0.92 0.34 0.88 0.41 2 

integral/constitutional (Eq. 3) 5 , ,, , , ,C rel w rel H S ringsn M n n n  0.88 0.41 0.84 0.45 2 

fragments/all types (Eq. 4) 5 
2 0 2, , , ,h c c h cFHBSA CIC RNCS SIC ASIC  0.95 0.28 0.87 0.44 5 

fragments/constitutional and 

topological (Eq. 5) 
4 nS,h, 

2χc, 
2BSICc,

 1SICh    0.92 0.33 0.87 0.42 0 

fragments/constitutional (Eq. 6) 4 , , , sin , ,, , ,S rel h w,c rings h gle rel cn M n n  0.91 0.35 0.85 0.43 1 

ndesc: number of descriptors; nout: number of molecules out of AD of the model; 
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Table 5 – Applicability domains for the molecular descriptors used in the different models. 

Descriptors AD 

Average Complementary Information Content (order 2) [1.1740;2.9871] 

HACA-2/TMSA [Quantum-Chemical PC] [1.19e-02;4.04e-02] 

Avg nucleoph. react. index for a O atom [1.948e-06;2.010e-02] 

Number of rings [0;4] 

Number of S  atoms [0;1] 

Average Structural Information content (order 2) [0.5314;0.7729] 

Kier&Hall index (order 1) [5.3316;20.01470] 

Relative number of C  atoms [0.2703;0.3125] 

Relative molecular weight [5.3765;6.9580] 

Number of H atoms [20;66] 

FHBSA Fractional HBSA (HBSA/TMSA) [Quantum-Chemical PC] of the polar head [0.7283;0.9929] 

Complementary Information content (order 2) of the alkyl chain [27.5098;232.8127] 

RNCS Relative negative charged SA (SAMNEG*RNCG) [Zefirov's PC] of the alkyl chain [0.3476;1.7553] 

Structural Information content (order 0) of the polar head [5.1987;22.7905] 

Average Structural Information content (order 2) of the alkyl chain [0.2841;0.5264] 

Number of S  atoms in the polar head [0;1] 

Randic index (order 2) in the alkyl chain [1.0000;5.9497] 

Average Bonding Information content (order 2) in the alkyl chain [0.2854;0.5313] 

Structural Information content (order 1) in the polar head [7.9277;38.7452] 

Relative number of S atoms in the polar head [0.0000;0.0556] 

Molecular weight of the alkyl chain [58.1230;254.4983] 

Relative number of single bonds in the alkyl chain [0.9800;1.0000] 

Number of rings in the polar head [0;4] 
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Table 6. Estimation of pC20 based on Abbott’s assumption (Eq. 7) 

Surfactant 

log CMC pC20 

ref 
exp 

QSPR 

(Eq. 6) 

Abbott 

(Eq. 7) 
exp 

S-Butyl-1-Thio-D,L-Xylitol -0.74 2.83 1.74 1.80 (Savelli et al., 1999) 

1-O-Hexanoyl-D,L-Xylitol -1.24 2.01 2.24 2.10 (Savelli et al., 1999) 

2-Amino-2-Deoxy-Octyl-β-D-Glucoside -1.64 2.95 2.64 2.70 (Boullanger & Chevalier, 1996)a 

Octyl-β-D-Glucoside -1.70 2.95 2.70 3.00 (Matsumura et al., 1990)a 

Octyl Glycol -2.31 3.15 3.31 3.20 (Shinoda et al., 1959)a 

N-Decyl-N-Methyl Lactobionamide -2.64 3.71 3.64 3.30 (Burczyk et al., 2001) 

1-O-Nonanoyl-D,L-Xylitol -2.36 3.15 3.36 3.30 (Savelli et al., 1999) 

S-Hexyl 5-Thio-D-Xylonolactone -2.30 3.66 3.30 3.40 (Lalot et al., 2004) 

1-O-Octyl-D,L-Xylitol -2.17 3.15 3.17 3.40 (Savelli et al., 1999) 

3,7-Dimethyloctyl-β-D-Glucoside -2.40 3.71 3.40 3.50 (Minamikawa & Hato, 2005)a 

N-Decyl-N-Methyl Gluconamide -2.89 3.91 3.89 3.60 (Burczyk et al., 2001) 

S-Hexyl 1-Thio-L-Ribitol -1.99 3.59 2.99 3.70 (Lalot et al., 2004) 

Decyl-β-D-Glucoside -2.68 3.71 3.68 3.90 (Aveyard et al., 1998)a 

N-Dodecanoyl-N-Methyl Lactitolamine -3.35 4.09 4.35 4.00 (Wilk et al., 2001) 

S-Octyl 5-Thio-D-Xylonolactone -3.28 4.42 4.28 4.20 (Lalot et al., 2004) 

Dodecyl-D-Maltonamide -3.50 4.47 4.50 4.40 (Zhang & Marchant, 1996) 

S-Octyl 5-Thio-D-Arabinonolactone -3.32 4.42 4.32 4.70 (Lalot et al., 2004) 

N-Tetradecanoyl-N-Methyl Lactitolamine -4.17 4.85 5.17 4.90 (Wilk et al., 2001) 

N-Oleyl-N-Methyl Lactobionamide -4.27 5.58 5.27 5.10 (Burczyk et al., 2001) 

S-Decyl 5-Thio-D-Xylonolactone -4.64 5.18 5.64 5.40 (Lalot et al., 2004) 

S-Octyl 1-Thio-L-Xylitol -2.92 4.35 3.92 5.40 (Lalot et al., 2004) 

S-Octyl 1-Thio-L-Ribitol -3.42 4.35 4.42 5.60 (Lalot et al., 2004) 

N-Hexadecyl-N-Methyl Lactobionamide -5.03 5.99 6.03 6.00 (Burczyk et al., 2001) 

N-Octadecyl-N-Methyl Lactobionamide -5.48 6.74 6.48 6.30 (Burczyk et al., 2001) 

 MAEb 0.31 0.30   
a data extracted from graphs; b MAE = Mean Absolute Error
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Figure 1. Distribution of pC20 values in the dataset. 
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Figure 2. Repartition of molecules of training and validation sets in the chemical space of the whole 

dataset as defined by Principal Component Analysis based on 952 molecular descriptors 

 

 

 

  



33 

 

Figure 3. Optimized structures of octyl-β-D-glucoside and its fragments (polar head and alkyl 

chain) at B3LYP/6-31+G(d,p) level. 
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Figure 4. Octyl glycol. 
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Figure 5. Experimental vs. calculated values for the constitutional fragment-based model (Eq. 6). 
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Figure 6. Correlation of Structural Information Content (orders 0 and 1) of the polar head with 

its molecular weight. 
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Figure 7. Correlation between log CMC and pC20 compared with Abbott criterion. 

 


