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Abstract: Developing population models is of great interest as these models enable to 

extrapolate toxicity observed at the molecular or individual levels to the population level, and 

thus improve environmental risk assessment of chemical substances. For this purpose, 

accounting for natural variations of environmental conditions and prey dynamics along with 

the chemical stress is needed. In this study, an individual-based model (IBM) coupled to a 

Dynamic Energy Budget (DEB) model was developed in order to predict three-spined 

stickleback population dynamics in semi-controlled stream experiments (in mesocosms). 

Datasets obtained in mesocosms offer the opportunity to develop and evaluate the model 

predictions. The most sensitive parameters of the DEB-IBM were identified by sensitivity 

analyses and were calibrated based on data from two independent mesocosm experiments. The 

predictive capacities of our model were subsequently evaluated using three independent 

mesocosm datasets under different environmental scenarios. Finally, our model was applied to 

a theoretical case of toxic effects to show an example of application of the model in a regulatory 

context. While the most uncertain population processes (in particular, competition for food in 

mesocosms) in our three-spined stickleback DEB-IBM could be modelled more accurately, our 

model can already serve to assess the impacts of toxicants at the population level by improving 

the analyses of mesocosm experiments, in decreasing the uncertainty of the experimental 

results. Therefore, in a second step, it could be used to predict the consequences on viability of 

a population exposed to a contaminant under various environmental and exposure scenarios. 

Key words Individual-based model, bioenergetics, three-spined stickleback, mesocosm, risk 

assessment 

1. Introduction 

In a regulatory context, predicting chronic exposure and effects of pollutants on aquatic 

ecosystem endpoints is of a great interest (Adams, 2002; Ruden et al., 2016). However, as 
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ecosystems are dynamic entities which exhibit a complex network of interactions among 

organisms and between organisms and their environment, current ecological risk assessment 

approaches often fail to predict toxicant effects accurately on population and ecosystem 

endpoints (Adams, 2002). Indeed, toxicant effects are mainly studied at an individual level and 

extrapolation towards a higher level of organization is often too simplistic (Forbes et al., 2017). 

Ecological risk assessment should be a comprehensive and integrated approach able to assess 

toxicant impacts in complex ecosystems. In particular, a focus should be made on the bottom-

up and top-down processes that occur in aquatic ecosystems and make risk assessment a 

challenge (Galic et al., 2010). 

For this purpose, ecological modeling has been suggested as a relevant tool to improve the 

understanding of ecosystem functioning and interactions between biocenosis and biotope. 

Indeed, the potential of models towards enhancing ecological realism in current risk assessment 

is increasingly recognized (Beaudouin et al., 2015; Forbes et al., 2011; Forbes et al., 2017; Galic 

et al., 2010; Grimm et al., 2017). Furthermore, individual-based modelling (IBM) has 

demonstrated its ability to predict population dynamics by modelling the interactions between 

individuals and their environment (Grimm and Railsback, 2005). Furthermore, including 

individual energy budgets in IBMs was suggested to be essential for realistic modelling of 

populations affected by food availability (Sibly et al., 2013). In particular, in risk assessment, 

among the different existing approaches for energy budgets, embedding a Dynamic Energy 

Budget (DEB) model (Kooijman, 2010) into an IBM is a convenient way of extrapolating 

impacts of toxicants from organism to population level (Beaudouin et al., 2012a; Beaudouin et 

al., 2015; Martin et al., 2013) thus providing considerable insight into the possible range of 

effects of chemicals (Galic et al., 2017).  

Although demand for DEB-IBMs in ecotoxicology is rising, special attention should be paid 

to their outcomes so that the models may be relevant tools for risk assessment and decision-

making. Indeed, the model should be able to accurately predict real-world ecosystem and the 

population properties, under a variety of environmental conditions (food availability and 

seasonal variations of the environment) without chemical stress. Unfortunately, the predictive 

capacities of DEB-IBMs are rarely evaluated, because there are rarely enough data to both 

calibrate and evaluate these models. Furthermore, detailed and accurate comparisons between 

simulations and observations often require a sound knowledge of the populations characteristics 

(size of the population, sex, length of the individuals, data on the state of maturity, etc.); these 



data are often scarce because multiple samplings in the same environment are costly, 

logistically difficult and time-consuming. 

Mesocosm experiments are of a great interest because they are a convenient tool to perform 

high tier ecotoxicological studies (i.e. studies performed at the population level or higher) 

(EFSA, 2013). Among species used for mesocosm studies, fish species are of a specific interest 

for assessing impacts of contaminants in the environment (van der Oost et al., 2003). 

Specifically, the teleost fish three-spined stickleback (Gasterosteus aculeatus) is one of the fish 

species that can be used in mesocosms (OECD, 2006). This species is native of the Northern 

Hemisphere and its ecology and biology have been well studied (Bell and Foster, 1994; 

Wootton, 1984). Moreover, effects of toxicants have been studied both in laboratory and 

mesocosms on stickleback individuals and populations (de Kermoysan et al., 2013a; Maunder 

et al., 2007; Naslund et al., 2017; Roussel et al., 2007). Mesocosm experiments have the 

advantage of mimicking the complexity of a natural ecosystem by exhibiting a high level of 

biological organization (Caquet, 2002; Caquet et al., 2000) and they can provide interesting 

datasets for developing ecological models. However, these studies are mostly performed using 

few replicates and exhibit an important variability of the results due to the natural variability 

inherent of high levels of biological organization (EFSA, 2013; Sanderson, 2002). 

Consequently, these experiments are characterized by a low statistical power when comparing 

the control and the chemical-exposed populations which could be improved by using IBMs 

(Beaudouin et al., 2012b). 

Consequently, developing an IBM to predict the stickleback population dynamics in 

mesocosm would help to analyze the ecotoxicological experiment, and offers the opportunity 

to evaluate an ecological model later applied to risk assessment. An IBM has recently been 

developed for sticklebacks in field conditions (Mintram et al., 2018) to predict endocrine 

disruption. However, this model does not integrate some ecological factors like photoperiod, 

water temperature, and food availability, nor a bioenergetic model which would describe 

physiological processes at the organism level. Hence, as suggested by the authors, a more 

mechanistical approach which would take into account interactions between the effect of a 

toxicant and ecological factors would help to improve the realism of the IBM predictions.  

In this paper, we developed a DEB-IBM to predict three-spined stickleback population 

dynamics in mesocosms. We used this model to analyze data from mesocosm experiments that 

included relevant information on the environmental conditions (food density, temperature and 

photoperiod). The predictive capacities of our model were assessed by calibrating and 



evaluating it on several independent datasets of mesocosm experiments. In this study, we 

showed how individual-based modeling can provide realistic simulated population dynamics in 

mesocosms. Furthermore, to illustrate usage in a risk assessment context, we used our model to 

assess the impacts of hypothetical toxicants on stickleback population dynamics in mesocosm 

experiments.  

2. Material and methods 

2.1. Mesocosm experiments. 

2.1.1. Experimental design.  

Five independent experiments from 2010 to 2014 with an identical protocol were performed 

using artificial streams of 20-m long and 1-m wide, located in the North of France (INERIS, 

Verneuil-en-Halatte, France). The two first mesocosm experiments (2010 and 2011) were 

conducted with 9 and 8 replicates of mesocosms respectively whereas experiments performed 

in 2012, 2013 and 2014 were conducted with 3 replicates. The same experimental design was 

used for each experiment. A detailed description is given in de Kermoysan et al. (2013a). 

Briefly, the same protocol of species introduction was used for each experiment. Each 

mesocosm was set up with sediments, macrophytes and macroinvertebrates between October 

and December. The experiments started in March when 15 females and 10 male sticklebacks 

with homogenous length (See Appendix Part I.1.2. Tables A.1 and A.2) were introduced (after 

called the founders). The sex identification of the founders was performed with the model 

developed by de Kermoysan et al. (2013b). Founders were individually marked with 1.2 mm x 

2.7 mm alphanumeric tags (VI Alpha Tags, Northwesr Marine Technology, Shaw Island, WA, 

USA). 

The different species as well as the physico-chemical parameters of the environment varied 

naturally throughout the experiments and the freshwater temperature and stickleback prey 

abundances were monitored over time. Water temperature was recorded every 10 minutes by 

two temperature sensors (HOBO0257, Prosensor, Amanvilliers, France) placed in the surface 

at 5 m from the inlet of water and at 15 m at a water depth of 70 cm. Macroinvertebrates were 

sampled every four weeks by specific sampling devices, i.e tubes, tiles or mesocosm walls. 

Zooplankton were also sampled every four weeks with a Perspex tube of 5 cm in diameter and 

0.8 m in height (See David et al. (2018) for more details on temperature measurements and prey 

samplings). 



Mesocosms were emptied in October and fish were killed by an overdose of MS-222 and 

stored in 4% formalin before being individually measured and weighed. Fish shorter than 26 

mm in length were assumed to be immature and thus classified as juveniles (de Kermoysan et 

al., 2013a). Sexes of fish longer than 26 mm were determined by visual observations. The ethics 

committee of the National Institute of Industrial Environment and Risks (INERIS) approved all 

the experiments performed and described in this manuscript. 

2.1.2. Descriptive variables of the stickleback populations.  

The descriptive variables of each fish population at the end of the experiments were the 

population abundance (N.tot), female and juvenile frequencies (F.F and F.J) and the mean 

lengths and coefficients of variation of the lengths of five categories of individuals, male and 

female founders (L.M.C00, L.F.C00, CV.M.C00, CV.F.C00) males and females born in the 

mesocosms (L.M.CXX, L.F.CXX, CV.M.CXX, CV.F.CXX), and juveniles (L.J, CV.J). 

Finally, observations of gonad maturity of males (immature vs mature) were also made and the 

frequency of mature males among the total number of males (F.M.m) was calculated as well as 

the mean length of mature males and the coefficient of variation of their lengths (L.M.m and 

CV.M.m). Observed endpoint values for each year can be found in Appendix Part I.1.3. Tables 

A.3 and A.4.  

2.2. DEB-IBM description.  

The DEB theory is based on a mathematical description of the energy fluxes within the 

organism. It describes the rates at which the organism assimilates energy from food and uses it 

for maintenance, growth and reproduction. Rates of ingestion and allocation depend on body 

size and temperature (Kooijman, 2010). Individual-based modelling simulates population 

dynamics by describing the interactions between individuals as well as with their environment 

(Grimm and Railsback, 2005). Our DEB-IBM description follows the ODD (Overview, Design 

concepts, Details) protocol (Grimm et al., 2010). The detailed description of the Design 

concepts, initialization, input data and submodels are provided in Appendix Part II.1. The model 

was implemented under Netlogo 6.0.2 and the script of the model is provided in Appendix Part 

IV. 

2.2.1. Purpose.  



The DEB-IBM was developed to predict three-spined stickleback population dynamics in 

mesocom experiments. To this end, the model includes relevant information about the 

environment (i.e. temperature, photoperiod and prey dynamics). The DEB model was 

previously developed with laboratory data on life history traits of three-spined sticklebacks 

(Leloutre et al., 2018) and validated for founder sticklebacks in mesocosms (David et al., 2018). 

The objective of the model is to help improve current risk assessment of chemicals, by 

improving the analyses of mesocosm experiments (Beaudouin et al., 2012b). 

2.2.2. Entities, state variables, and scales.  

The model is based on daily timesteps and the simulated mesocosm is a channel of 20 m² 

based on the mesocosm surface areas at INERIS); the depth is not taken into account. 

The model includes two entities, individuals and environment. Individuals are divided into 

three categories, juveniles, female and male adults. Individuals are characterized by variables 

describing their physiology in terms of sex, length, mass, energetic processes, maturity and 

reproductive states. The eggs and larvae are not explicitly modelled as individuals because they 

still use their energy from their yolk sac and thus do not assimilate food. However, they are 

taken into account in the reproduction processes: the eggs, larvae and nests are modelled as a 

whole entity and are represented as an attribute of males. 

The second entity in the model, environment, is defined by three main variables, 

temperature, photoperiod and mesocosm food density. These variables are updated daily from 

the data recorded during the experiments. Briefly, temperature and food scenarios were 

respectively defined daily from the freshwater temperature measurements (averaged per day 

and per location of the sensors) and the prey samplings (abundance data converted into energy) 

made in mesocosms using the same framework than in David et al. (2018). Daily photoperiod 

data were from the Astronomical Applications Department of the U.S. Naval Observatory 

(http://aa.usno.navy.mil/data/docs/Dur_OneYear.php). Figures A.1 and A.2 present the inputs 

for each of the five years and details are given in Appendix Part I.1.1. 
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2.2.3. Process overview and scheduling.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Conceptual diagram of the overall scheduling of events within one timestep in the 

DEB-IBM 

 

Full details of all processes and the associated equations (Eq. (A.1) to (A.16)) can be found 

in the ODD protocol provided in Appendix Part II.1.  Figure 1 presents the overall scheduling 

of events within one timestep. At each timestep, the environment global variables are updated 

(temperature, photoperiod and food density) followed by the fish variables (see Figure 1, 

“global environment” box). Individuals can move in their environment (Figure 1, “move”) and 

their growth, energy for maturity and reproduction dynamics are described by the individual 

DEB models (Figure 1, “DEB model”). To introduce inter-individual variability, the 

{�̇�𝐴𝑚}, 𝜑, 𝐸𝐻
𝑝 and 𝐸𝐻

𝑏 DEB parameters are individual-specific and are lognormally distributed 

as suggested by Kooijman et al. (1989) and explained in Appendix Part I.1.1.  



The amount of food foraged depends on the individual predation distance (R_ref and L_ref 

parameters), on the prey size an individual has access to (a_food, b_food, ratio_f), and on the 

boldness of males (Bold.M). Competition for food is modeled taking into account the total fish 

biomass and modulates the intake of energy from food (K_dens, a_Kdens) (see Table 1).  

When they reach 26 mm-long, juveniles are classified as males or females as in the 

experimentally collected data. Sexual maturity of the individuals is predicted by the DEB model 

(Figure 1, “puberty processes”). Furthermore, when males have mature gonads, they need to 

accumulate enough energy to support the reproduction processes. Then, reproduction processes 

are modelled for females based on the clutch sizes they can produce and the fraction of eggs 

they can spawn in a nest (Figure 1, “reproduction of the females”). The reproductive behavior 

of males is more complex (Figure 1, “reproduction of the males”) as they must defend a territory 

if enough space is available, build a nest, attract females, harvest eggs and take care of them 

until hatching (Wootton, 1984). Each nest has a daily probability to be destroyed. Males can 

make several nests until the end of the breeding period. Besides the season, the end of the 

reproduction processes for males also depends on the number of successful nests (Mori, 1993). 

At the end of the incubation period in the nest, the number of surviving larvae determines the 

number of newly created juveniles (Figure 1, “hatch”).  Individuals can die due to the 

temperature- and density-dependent stochastic mortality sub-model (Figure 1, “mortality”). 

Finally, inter-mesocosm variability is included on the mortality and the food density and inter-

annual variability is included on one parameter responsible for competition for food. The 

simulations run for the same length of time as the real mesocosm experiments and the DEB-

IBM simulation outputs are the endpoints monitored in the mesocosm experiments (see 2.1.2).  

 

 

 

 

 

 

 

Table 1: Parameter names, values, units and descriptions of the IBM.  



Parameter Description Value Unit Equation References 

Reproduction parameters           

Photop.Thr Minimum day duration for beginning of breeding period 11.305 h  de Kermoysan. 2013 
Breeding.Period Duration of the breeding period 117.23 d  Fitted on population data 

Adult.Thr Minimum length for fish sex determination 26 mm  de Kermoysan. 2013 

L0 Standard length of juveniles at hatching 5.72 mm  de Kermoysan. 2013 
L_mat_founder Standard length of mature fish for the equations 33.01 mm  de Kermoysan. 2013 

a_R.max Parameter for calculation of the clutch size depending on female length 5.37 1/mm A.10 Laboratory observations 

b_R.max Parameter for calculation of the clutch size depending on female length 16.8 - A.10 Laboratory observations 

P.OL Survival probability of eggs 0.936 -  
Poulin & FitzGerald. 1989; 

Mori. 1987; Santos. 2013; 

Kynard. 1978 
A.clutch.max Maximal duration females keep eggs  2 d  Wootton. 1984 

Proba.Stop Probability of stopping the reproduction processes for a male 0.09 -  Fitted on population data 

Part_Rmax Fraction of eggs laid by a female 0.703 -  de Kermoysan. 2013 

a_Nb.Egg 
Parameter in relationship between maximum number of eggs in a nest and 

male length 58.8 - A.11 Laboratory observations 

b_Nb.Egg 
Parameter in relationship between maximum number of eggs in a nest and 
the male length -437 - A.11 Laboratory observations 

Time_harvest_mean Harvest mean duration for males 12.7 %  Kraak et al 1999 

Time.Acc 
Length of time for male founder sticklebacks to acclimate to their new 

environment -7 degree/d  Laboratory observations 

Female_Select Number of females that can spawn in a given nest 4 -  Van Iersel 1953 ; Moodie. 

1972 ; Wootton 1984 
Time_Dvpt_Eggs Duration of egg development  6.9 degree/d  de Kermoysan. 2013 

R_min Minimal energy for males to support the reproduction processes 1586.56 J  Smith 1992 

R_diff Length of time between two breeding periods 11.14 degree/d  Fitted on population data 

A.territori.min Minimal territory size for a male 0.226 m²  
van den Assem 1967; 

Candolin & Voigt. 2001; 

Mori. 1987 
Gamma.Compete Competition parameter for getting a territory 0.15 -   Rowland. 1994 

Food parameters           

a_food Parameter in Length - Mouth size relationship 0.297 - A.4 Fitted on population data 

b_food Parameter in Length - Mouth size relationship -0.743 mm A.4 Fitted on population data 

ratio_f Ratio prey size/mouth size 0.6 - A.5 Gill & Hart. 1994 

K_dens Parameter of density dependence for the food 8702.2 mg/m² A.8 Fitted on population data 

a_Kdens Parameter of density dependence for the food 0.437 - A.8 Fitted on population data 

R_ref Reference radius in calculation of the radius of the water column 57.60 mm A.3 Fitted on population data 

L_ref Reference length in calculation of the radius of the water column 23.54 mm A.3 Fitted on population data 

Bold.M Percentage of boldness for males during foraging 0.17 -   Fitted on population data 

Survival parameters           

m_dens Parameter for density dependent mortality 0.0000086 - A.16 Fitted on population data 

mr Malus for the survival of males in reproduction 0.000856 -  Laboratory observations 
Mu Natural mortality rate at unit weight 0.00323 1/d A.15 Laboratory observations 

bN Allometric scaling factor - 0.0516 1/d A.15 Laboratory observations 

DP50_m 50% of the density dependence 4000 mg/m² A.13 Laboratory observations 
M.nn Daily mortality of the nests 0.0191 -  Laboratory observations 

a_t Parameter in mortality rate - temperature relationship 3.54 - A.14 Laboratory observations 

b_t Parameter in mortality rate - temperature relationship -90.8 - A.14 Laboratory observations 
P.Dest.nid Probability of a nest being destroyed after an attack 0.01 - A.12 Laboratory observations 

Variability parameters           

cv  Inter-individual variability 0.061 -  Fitted on population data 

CV.c_M Coefficient of variation of the mortality (inter-mesocosm variability) 23.92 %  Fitted on population data 

CV.c_F Coefficient of variation of the food (inter-mesocosm variability) 14.94 %   Fitted on population data 

Year-dependent parameters  

Inter-annual variability 

for K_dens 

Year 2010     Year 2011     Year 2012       Year 2013      Year 2014     

   0.974              1.026             0.759              0.628              0.724     

Laboratory observations mean that data are from observations or previous experiments made one sticklebacks in 

INERIS (See Appendix Part I.3. Figures A.3 to A.6). 

 

 

 

2.3. Sensitivity analysis.  



In order to highlight the parameters affecting the most the model outputs, and to prepare the 

calibration process, local and global sensitivity analyses of the IBM were conducted. A 

sensitivity analysis for the DEB model had already been performed in Leloutre et al. (2018). 

For the IBM, a local sensitivity analysis was first performed using 5 % variation on the 

parameters in order to assess the direct effects of the parameters on the model outputs according 

to the method described in Ginot et al. (2006). To account for the interactions between 

parameters, a sensitivity analysis using the Morris method was also performed (Morris, 1991). 

In case of complex models, this method allows to sort the factors according to their influence 

using a specific exploration process. This method is described in Beaudouin et al. (2015). 

Briefly, 80 trajectories were carried out using 30 replicates of each set of parameters (see 

Appendix Part II.2.2.). Finally, the variance-based Sobol method (Saltelli et al., 2010; Sobol’ 

et al., 2007) was used to obtain detailed information on the interactions between the most 

important parameters that had been identified previously using the local and Morris sensitivity 

analysis. The Sobol method was performed with 10 % variation on the parameter values. 

2.4. Model calibration.  

Calibration of the DEB model had already been performed with laboratory experiments in 

Leloutre et al. (2018) and the relevance of the model for predicting the physiological processes 

of founder sticklebacks was presented in David et al. (2018). Values and descriptions of the 

DEB parameters is given in Appendix Part II.3. Table A.6. Only one DEB parameter 

representing energy at puberty (J) was refitted to better predict the maturity of males in 

mesocosms. Calibration of the population model was an iterative process using a genetic 

algorithm available within the software BehaviorSearch (Grimm and Railsback, 2005). The 

distance to minimize was the weighted sum of least squares (WLS) between the predictions and 

the observations of the endpoints of the population (Eq. 1).  

𝑊𝐿𝑆 =  
1

𝑛
∑

(𝑆𝑖𝑚𝑖 − µ𝑜𝑏𝑠𝑖
)²

𝜎𝑜𝑏𝑠𝑖
²

𝑛

𝑖=1

 (Eq. 1) 

With 𝑛 the number of observed outputs, 𝑆𝑖𝑚𝑖 the value of the simulated outputs, µ𝑜𝑏𝑠 the 

mean of the observed outputs and 𝜎𝑜𝑏𝑠 the standard deviation of the observed outputs. 

Uncertainty range of the parameters to calibrate were specified based on the parameter 

values either from the literature (see Table 1) or from historical laboratory experiments on three-

spined sticklebacks performed at INERIS (De Kermoysan, 2013); they are provided in 



Appendix Part II.3. Table A.7. When necessary, ratios between parameters were introduced to 

cope with collinearity. The parameters for the generic algorithm were 0.01, 100, 0.7, 3 

respectively for the mutation rate, the population size, the crossover rate and the tournament 

size. The model was calibrated on two datasets obtained in control mesocosms (experiments 

2010 and 2011, 9 and 8 populations respectively) joined together, thus the final function to 

minimize was the sum of the WLS for both years. The parameters with the higher impacts on 

the outputs according to the sensitivity analyses were calibrated. Five independent calibrations 

were performed, final parameters values were kept when less than 5% of variations in parameter 

values between the independent calibrations was found. 

Finally, after the mean dynamics of the populations were calibrated, the inter-mesocosm 

variability was calibrated. To this purpose, the CV of the food scenarios and the mortality (see 

Table 1) were calibrated minimizing the weighted sum of least squares (WLS) between the 

predictions (CV of the outputs calculated on 100 simulations) and the observations of the CV 

of the outputs for both experiments. To assess the relevance of the calibration, the comparison 

of the predicted distributions of the descriptive variables of the stickleback population in 

mesocosms to the observed data for both years was made using a Kolmogorov–Smirnov test. 

A focus was made on the data used for the calibration. Indeed, when the mesocosms were 

emptied, the recovery rate of the fry was lower than for other fish size classes due to multiple 

factors such as small length and cannibalism after collection. However, they represent a small 

fraction of the population (2.2 and 8.0 % of the population monitored in 2010 and 2011 

respectively). We therefore excluded data relative to juveniles shorter than 15 mm to reduce the 

uncertainty linked to this specific class size during the calibration process. 

2.5. Model evaluation. 

The predictions of the model were assessed for three independent datasets (experiments 

2012, 2013 and 2014) by comparing the observed and predicted values of the descriptive 

variables of the stickleback populations at the end of the experiments. 1000 model simulations 

were run for each year of experiments and were compared to the observed endpoints in 

mesocosms (in three replicates). The parameter values were the same in each simulation; the 

distributions of the descriptive variables of the populations is a result of the stochasticity of the 

model. 



2.6. Model application to analyze mesocosm experiment  

In order to demonstrate added values of the DEB-IBM in a context of mesocosms and risk 

assessment, we simulated mesocosm experiments testing hypothetical stressors that impact the 

physiological processes of sticklebacks and used the model to simulate the control distributions 

of the population endpoints for these experiments.  

We tested the five DEBtox classical modes of action of toxicants (Billoir et al., 2008) but 

we chose the one with the strongest impacts on the model outputs: the so-called “synthesis cost 

impact” where reproduction and growth are both impacted by an increase of the cost of 

synthesis of a unit of structure [EG] (Eq. 2). We presented another hypothetical toxicant which 

impacts directly the basal mortality M.n (Eq. 3) to model effects on survival. 

 

 

 

With 𝐶𝑡 the toxicant concentration and 𝑠(𝐶𝑡) the stress level. 

These two modes of action were tested separately. The toxicant concentration 𝐶𝑡 at time 𝑡 

was modeled to lead to a stress level 𝑠(𝐶𝑡) which we integrated in the model. The tested values 

for the stress level 𝑠(𝐶𝑡) ranged from 0 to 0.9 with an increment of 0.1. Inputs of year 2013 

were used for the simulations. The stress levels of the toxicants during the simulation were 

modeled as constant. 

As the experimental mesocosm platform comprises 12 artificial streams, one control and 

three chemical concentrations can be tested with three replicates per condition. To be 

representative of this experimental design, we designed hypothetical 1000 mesocosm 

experiments by simulating the population endpoints with three replicates of population per dose 

and three doses were kept leading to a stress level of 0.2, 0.5 and 0.8. 

Then we compared two statistical methods to assess the toxicant effects on the population 

endpoints. First, the data in contaminated mesocosms was compared to the data in control 

conditions as usually made in mesocosm experiments (de Kermoysan et al., 2013a). This 

comparison was performed for each population endpoint at each concentration level with three 

replicates per condition using a Dunnett’s post hoc test (hereafter referred as the classical 

methodology). 

[E𝐺]𝑡 =
 [E𝐺]

(1−𝑠(𝐶𝑡))
 with 0 <  𝑠(𝐶𝑡)  < 1 (Eq. 2) 

M. n𝑡 =  
M.n

(1−𝑠(𝐶𝑡))
 with 0 <  𝑠(𝐶𝑡)  < 1 (Eq. 3) 



Secondly, the DEB-IBM was used to simulate the distribution of the control endpoints with 

1000 simulations. Then, each population endpoint at each concentration level (with three 

replicates) was compared to the estimated distribution of the endpoints in control conditions 

using a Kolmogorov–Smirnov test (hereafter referred to as the methodology based on the 

estimation of the control endpoint distributions). Thus, the data collected in the control 

conditions of the mesocosm experiment would therefore not be used in this comparison. 

We used both methodologies to determine the lowest observed effect concentrations 

(LOECs) for each endpoint. The level of significance for the tests was 5 %. 

3. Results 

3.1. Sensitivity analysis.  

The local sensitivity analysis showed that the parameters that influenced the most the 

endpoints at the end of experiments were a parameter related to the male reproduction processes 

(Breeding.Period), the optimal temperature for the individual bioenergetic processes (CTO) and 

parameters related to the food: parameters determining the foraged water column volume 

(L_ref, R_ref), the prey size according to the mouth size (a_food, b_food, ratio_f) and the 

impact of the population density on the food availability (Appendix Part II.2.1. Figure A.7).  

Based on the Morris sensitivity analysis (Appendix Part II.2.2. Figure A.8), we analyzed the 

importance of the different parameters on the outputs. Regarding population abundance, 

m_dens was clearly the most influential parameter. Regarding mean lengths and coefficients of 

variation, the parameters related to the food (R_ref, L_ref, a_food, b_food) and to a lesser 

degree K_dens, as well as parameters involved in male reproduction processes (R_diff, 

Proba.Stop) were the most influential parameters. Regarding the frequencies of females and 

juveniles, all parameters mentioned above were influent. These parameters presented both 

important means and standard deviations meaning that they have an overall strong influence on 

the outputs and present non-linear effects or strong interactions with other parameters.  

Based on the local and Morris sensitivity analyses, the ten most influent parameters were 

prioritized for calibration: the density-dependent mortality (m_dens), the time between two 

reproduction events, the breeding period and the probability of stopping the reproduction 

processes for males (R_diff, Breeding.Period and Proba.Stop) as well as the food parameters 

(R_ref, L_ref, a_food, b_food, K_dens and a_Kdens). We also added two other parameters in 

the calibration: the inter-individual variability because it was only calibrated for founder 



sticklebacks in mesocosms (David et al., 2018) and the parameter Bold.M responsible for the 

boldness of males in a foraging context as we had no information in literature. 

Figure 2: Results of the sensitivity analysis using the Sobol method. The graph on the left 

represents the first order and total index of the total abundance output and the graph on the right 

represents the first order and total index of the length outputs (averaged over each category of 

individuals). To avoid correlation between some parameters, a ratio between some parameters 

were used for the sensitivity analysis (ab_food for a_food/b_food and ab_Kdens for 

K_dens/a_Kdens corresponding respectively to the sensitivity analysis of a_food and a_Kdens). 

 

Results of the sensitivity analyses using the Sobol method on the twelve chosen parameters 

(Figures 2 and A.9) highlighted the fact that interactions between these parameters were very 

important, suggesting that the calibration should be performed keeping all the chosen 

parameters together. 

3.2. Model calibration. 



The five independent calibrations of the parameters including the calibrations of the CV of 

the outputs converged to the same values which can be found in Table 1 and A.7. Figure 3 

shows that the predictions of the population endpoints were consistent with the observations as 

all points were lined up on the identity line. The statistical analyses showed no significant 

differences (p-value > 0.05) between the observed and the simulated distributions of the 

descriptive variables of the population except for L.F.C00, L.F.CXX and CV.F.CXX of 2010. 

However, for these endpoints, the medians of the simulations were still included in the interval 

of confidence of the observed medians (see Appendix Part II.3.2. Figure A.10). Furthermore, if 

the 36 outputs for both years are considered to be independent binomial variates, 0 to 5 false 

positive results are expected (α = 0.05). Distributions of the length frequencies of all 

sticklebacks and of mature males were well predicted for both years as seen in Appendix Part 

II.3.2. Figures A.11 and A.12. 

 

Figure 3: Results of the calibration for 2010 (a) and 2011 (b). The colors represent the type of 

endpoints: the abundance is in black, the mean lengths in blue, the frequencies in green and the 

CV of lengths in red. Dotted lines represent the 1.5-fold and 3-fold changes. The full line 

represents the identity line. 

3.3. Model evaluation. 



Daily mean temperatures follow the same dynamics in the 2012, 2013, and 2014 mesocosm 

experiments (see Appendix Part I.1.1.2. Figure A.2a). The largest variation was observed in 

2013 when the most extreme temperatures were observed (4.3 and 21.3°C). Daylight data were 

the same every year (see Appendix Part I.1.1.2. Figure A.2b). Concerning data on food 

availability, zooplankton dynamics were similar in all three experiments (see Appendix Part 

I.1.1.2. Figure A.2c). A peak of zooplankton energy occurred during late spring and early 

summer every year, about 100 days after the beginning of the experiment. Energy from 

macroinvertebrates was lower in 2014 for both small (< 5 mm) and large (> 5 mm) 

macroinvertebrates. Finally, a peak was observed for both small and large macroinvertebrates 

during spring, 80-100 days after the beginning of the experiments, only in 2013.* 

Figure 4: Predicted and observed stickleback population endpoints for each year of 

experiments. Boxplots represent the 1000 simulations and the points represent the observations 

in the control mesocosms. 

 

The model gave overall good predictions of the population endpoints (Figures 4 and A.14). 

The model was able to reproduce differences in the population endpoints including inter-year 

variations between 2012, 2013 and 2014. Indeed, the observed endpoints were within the 



interval range of the predictions. However, mean lengths of the founders of 2012 were slightly 

overestimated and the frequency of mature males in 2013 were overestimated (Appendix Part 

II.6. Figure A.14). Furthermore, our DEB-IBM gave overall good predictions of the length 

distributions (Figure 5) as all observations were within the predicted interval and the medians 

followed the shape of the observed frequencies. In details, a shift of the juvenile frequency peak 

was however observed in 2014 (observed peak at 18 mm and simulated peak lower, at 22 mm) 

which could be explained by the last breeding events at the end of the breeding period occurring 

latter than predicted (Figure 5c). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Probabilistic distributions of the length frequency predicted by the model length 

compared to frequency distributions observed in the control mesocosms for 2012 (a), 2013 (b) 

and 2014 (c). Circles, crosses and triangles represent the length frequency distributions of the 

three observed populations. Red points correspond to the class size that were excluded from the 

calibration process (individuals with a length smaller than 15 mm). Full black lines represent 

the median length frequency distributions of the simulated populations. Color level represents 

the frequency of simulated populations (n = 1000) having a given percentage of individuals for 

a given class length. Frequency inferior to < 1e-04 are represented in white. 



3.4. Model application to analyze mesocosm experiment 

Figure 6: Effects of hypothetical toxicants with the two different tested modes of action and 

with 3 simulations. Red circles represent the simulations with the toxicant affecting the basal 

mortality and blue squares represent the simulations with the toxicant affecting the cost of 

synthesis of a unit of structure. Dashed grey lines represent the 95 % prediction interval of the 

median of the simulations in control conditions (1000 simulations) and dotted grey lines 

represent the 95 % prediction interval of the endpoints of the simulations in control conditions. 

Light red zone represents the 95 % prediction interval (1000 simulations) of the endpoints with 

the toxicant affecting the basal mortality and light blue zone represents the one from the toxicant 

affecting the cost of synthesis of a unit of structure. 

 

Figures 6 and A.15 show predictions in an example of mesocosm experimental design (three 

simulated population dynamics), where stickleback populations were exposed to a hypothetical 

toxicant with increasing stress levels, as well as the 95 % prediction interval computed on 1000 

model simulations in control conditions. Overall, the hypothetical toxicants impacted the 

population endpoints at stress levels greater than 60 %, the toxicant targeting the survival 

having greater impacts than the one targeting the cost of synthesis of a unit of structure (Figure 

6). Figure 7 presents the comparison of the LOEC for the total abundance endpoint using the 

data in the three control replicates or using the estimation of the distribution of the abundance 

in control conditions, in the case of a toxicant targeting basal mortality. The mean LOEC 



assessed using the methodology based on the estimation of the control endpoint distribution by 

the model was lower (0.72) than using the classical methodology (0.80). Furthermore, in 26 % 

of the cases, the classical methodology would have led us to conclude that there was no effect 

of the toxicant whereas there is one, whereas this occurred in 4.8 % of cases with the 

methodology presented here, based on the estimation of the control endpoint distributions. The 

results were the same for the other population endpoints (see Appendix Part III.2. Figures A.16 

and A.17). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparison of the LOEC distributions calculated for the total abundance endpoint 

having a toxicant stress impacting the basal mortality. In yellow, the control was constituted by 

the three replicates available with the mesocosm experiment design. In blue, the distribution of 

the control endpoint was estimated by the model simulations (1000 simulations). 

 

4. Discussion 

The objective of this study was to develop a relevant tool to analyze data from mesocosm 

experiments and show its potential to better understand effects of hypothetical toxicants on 

population endpoints. For this purpose, we developed a DEB-IBM which describes stickleback 



population dynamics in mesocosms based on the DEB model developed by Leloutre et al. 

(2018) and evaluated for founders in mesocosm (David et al. 2018). This original modelling 

approach integrates some ecological factors (photoperiod, water temperature, and food 

availability) and their interactions with the physiological processes at the organism level. 

Consequently, our model can help us explore the interactions between biotic, abiotic conditions 

as well as chemical exposure in mesocosm and improve the data analyze of these high tier 

ecotoxicological studies. 

4.1. Model calibration 

The DEB-IBM was calibrated on two independent datasets of population dynamics and was 

evaluated on three others. These datasets included data on stickleback population endpoints and 

the environmental conditions (climatic and physico-chemical conditions as well as data on the 

food webs communities) and were independent. Calibration of IBMs is not straightforward as 

they generally have many parameters with complex and interacting effects on outputs 

(Beaudouin et al., 2008; Grimm and Railsback, 2005) and using two datasets exhibiting 

different environmental conditions (high and low food level in 2010 and 2011 respectively, see 

Appendix Part I.1.1.1. Figure A.1) increases the difficulty of the calibration but avoids making 

the model too specific to some environmental conditions. To facilitate the calibration processes, 

we reduced the number of parameters to calibrate to twelve. The choice of parameters was 

based on the results of the sensitivity analyses and the level of knowledge of these parameters 

(Beaudouin et al., 2008; Grimm and Railsback, 2005). Thus, some parameters which appeared 

to be important in the sensitivity analyses were not recalibrated. For example, the optimal 

temperature was not refitted as it has been extensively studied and thus was well known (Hovel 

et al., 2015). Finally, the expected values of the endpoints of the calibration datasets were 

accurately predicted by our model. Furthermore, the inter-mesocosm variability of food density 

and mortality were calibrated and the overall variability of the endpoints resulting from inter-

individual and inter-mesocosm variability was found to be realistic. 

 

4.2. Density-dependent processes and inter-annual variability 

Density-dependent mortality and growth were widely recognized as key mechanisms for fish 

population dynamics and were extensively studied (Hazlerigg et al., 2012; Lorenzen and 

Enberg, 2002; Webster, 2004). In our model, density-dependent mortality was calculated based 



on the total number of individuals in the environment whereas effects of density-dependence 

on growth were dependent on the fish biomass as suggested by Lorenzen and Enberg (2002) 

and Hazlerigg et al. (2012). It is also well documented that in fish populations, competitive 

interactions between size classes produce complex dynamics (Claessen et al., 2000; Persson, 

1988; Persson et al., 2000; Webster, 2004). Especially, when attacking the same prey, power 

relationships are unequal between adult and juvenile sticklebacks (Gill and Hart, 1996) as they 

do not have the same foraging capacities, which explains why larger sticklebacks could be more 

dominant during competition for food. Furthermore, intense intra-cohort competition may 

occur for juveniles because of their high density in mesocosms compared to the adult cohorts 

(Claessen et al., 2000), as observed for length frequencies (Figures 5 and A.11). To take into 

account these characteristics, a stronger density-dependent effect on juvenile growth was 

introduced compared to adults for a given population biomass. 

In order to use the model in a regulatory context, robust validation is essential. However, by 

comparing data on stickleback populations over time, we observed that the mean lengths of the 

adult sticklebacks born in mesocosms decreased from 2010 to 2014 (see Appendix Part II.5. 

Figure A.13). This result could not be linked either to the food level, which was not particularly 

low in 2012, 2013 and 2014, or to the temperature scenarios, or to the founder lengths at the 

beginning of the experiment which were in the same range as 2011. To capture this process, as 

in several IBMs (Beaudouin et al., 2008; Cao et al., 2016; Kellner and Swihart, 2017), a year-

dependent variation was integrated on one parameter (K_dens, level of density-dependence for 

growth) and this strongly improved the predictions of the model for 2012 to 2014. Indeed, as 

seen in figure 5, the model successfully captured the length frequencies of these years, meaning 

that the different cohorts of sticklebacks were well predicted. This parameter re-adjusted for 

each year is representative of the level of density-dependence for growth and thus, is indirectly 

linked to the environmental and biological conditions in which the sticklebacks evolved. 

Another solution could have been to readjust the DEB parameters influencing growth. For 

example, increasing the energetic cost per unit of structure would decrease the individual 

growth (Billoir et al., 2008). However, we did not keep this solution as individual growth data 

in mesocosms would be required to recalibrate the DEB model and the observed decrease in 

length might be reversible if the environment changes. 

Another IBM for sticklebacks shows the same limits as our model regarding the difficulty 

of quantifying density-dependent growth for sticklebacks, as a readjustment of the IBM was 

required (Mintram et al., 2018). Several hypotheses could explain these inter-annual 



differences. First, the annual variability of the natural vegetation establishment or colonization 

of the preys (e.g. Chironomidae) and predators (e.g. Dytiscidae) in mesocosms probably 

resulted in inter-annual variability of the habitat complexity and heterogeneity as well as 

differences in the food availability. Secondly, as this decrease seems to be linear over time, 

another explanation could be an acclimatization of the reared stickleback strains used for the 

mesocosm experiments as sticklebacks are known to rapidly evolve depending on their 

environment (Barrett et al., 2011; Crivelli and Britton, 1987; Mori and Takamura, 2004; Spence 

et al., 2013).  

4.3. Model improvements 

Globally, the mechanisms that contribute to population regulation are still not fully 

integrated in our DEB-IBM and represent a source of uncertainty. To improve the modeling, it 

would be interesting to acquire more information on population dynamics with different density 

levels in mesocosms as well as on genetic selective changes that could occur in captivity even 

when there is a new introduction of wild organisms (Ford, 2002) and on the phenomena of 

phenotypic plasticity (Via and Lande, 1985). In three-spined sticklebacks, it has been shown 

that both phenotypic plasticity and standing genetic variation could interact with traits related 

to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related 

to locomotion are mainly plastic (Lucek et al., 2014). Mori and Takamura (2004) also showed 

changes in stickleback body size but did not conclude about whether these morphological 

changes were related to adaptive phenotypic plasticity or to genetic divergence. 

Other processes relative to food foraging and some reproduction processes could represent 

a source of uncertainty in the model. Indeed, the development of our model showed 

that modeling predation processes and stickleback foraging behavior was essential. As revealed 

by the sensitivity analyses, parameters related to food foraging had a strong influence on the 

outputs and exhibited strong interactions with other parameters. With increasing size, fish can 

become more explorative, exploiting different ecological niches and generally increase the 

mean size of prey that is eaten (Persson, 1988). Therefore, in our DEB-IBM, the size of the 

prey a stickleback can have access to varied linearly as a function of the mouth length of the 

stickleback as suggested by Gill and Hart (1994). Furthermore, as explained in David et al. 

(2018), we calculated the available food density each day and for each individual. Juveniles had 

a reduced predation distance as they tend to be hidden in the vegetation as a refuge from 



cannibalism and thus have a less bold and explorative behavior during foraging (Foster et al., 

1988). Inversely, males were considered to be slightly more bold than females as they show 

greater exploration of their environment in a foraging context (King et al., 2013). Accordingly, 

the adult male lengths results from two opposing processes: greater boldness of males leading 

to a faster growth of the young males (i.e. males born in mesocosms had slighter higher mean 

lengths than females in all experiments) and the parental cares leading to a lower growth for 

the active reproductive males (male founders in mesocosms). 

Concerning the reproduction processes, egg production of females was described by the 

DEB model and the size of the clutch was estimated as a linear function of the female length 

fitted on laboratory data (Appendix Part I.3.1. Figure A.3 and Eq. (A.10)). However, female 

sticklebacks can retain their eggs for a short time if they do not find a nest to spawn. Afterward, 

they can spawn the clutch even if a male is not present or, occasionally, develop overripe eggs 

(Lam et al., 2011; Sokołowska, 2006; Wootton, 1984). For more realism, this phenomenon was 

introduced in the model. However, uncertainties on the process are important as it is still poorly 

understood. In particular, the length of time a female can keep the eggs in the ovarian cavity is 

not well known. Nevertheless, the sensitivity analyses of our model revealed that the length of 

time during which females can keep eggs had a low impact on the model outputs. 

In comparison to females, stickleback males exhibit an important energy investment in 

reproductive behavior (Smith and Wootton, 1999; Van Iersel, 1953; Wootton, 1984). In our 

DEB-IBM, an approach to link the energy expenditure in reproductive behavior to the energy 

for reproduction predicted by the DEB model was developed. To do that, we extrapolated the 

amount of energy needed for the duration of one reproduction success based on the study of 

Smith and Wootton (1999) and Mori (1993) to use it as a threshold for males. Thus, males 

which do not have enough energy to accomplish one reproduction process would not acquire 

their reproductive behavior (i.e get a territory, build a nest, harvest and take care of the eggs). 

Furthermore, males in the field need to be at least 1 or 2 years old to start the reproduction 

processes (Baker, 1994; Dufresne et al., 1990). This was consistent with the absence of sexual 

dimorphism observed in our mesocosm between young adult female and male sticklebacks (i.e. 

adults born in mesocosm) due to the absence of reproductive behavior during the first year in 

young males. In our modeling of their reproductive behavior, males born in mesocosms do not 

start the reproduction processes during their first spring. In addition, another interest of using 

the energy for reproduction predicted by the DEB model for both males and females is that the 



reproduction performances would depend on environmental conditions as widely described in 

literature (Borg, 1982; Hopkins et al., 2010; Wootton, 1973, 1984). 

Although it has been shown that temperature and a photoperiod threshold seem to induce the 

beginning of the breeding period (Wootton, 1984), factors influencing the end of this period are 

still not well understood. As the breeding period typically takes place between late March and 

early August (Sokołowska, 2006; Wootton, 1984), the duration of the breeding period was 

introduced as a parameter in the model to control reproduction. However, the understanding of 

the environmental causes influencing the end of the reproduction should be increased, because, 

as seen in the sensitivity analyses, the parameter Breeding.Period had a strong influence on the 

model outputs. Another factor controlling the end of the reproduction is the number of 

successful nests (Mori, 1993). The number of successful nests predicted by the model, between 

one and four for the mesocosm experiments of 2010 and 2011, is consistent with the 

observations of Mori (1993) in field (i.e. between one and three successful nests during the 

breeding period). 

Finally, improving our DEB-IBM by modeling spatial variations of the environment in 

addition to the temporal variations of some variables would be highly interesting to account for 

specific interactions between individuals and their environment (nursery areas, refuge from 

predation, deferential exploitation of the food patches, etc.). Spatially-explicit bioenergetics 

IBMs have already been developed for fish populations (Boyd et al., 2018; Politikos et al., 

2015) and performed well in modelling the fish habitat as well as the movements towards 

favorable feeding areas. Furthermore, modelling fish distribution in response to an 

environmental change would be interesting in environmental management and risk assessment. 

4.4. Model application to analyze mesocosm experiment 

The predictions of our model in control conditions could represent a relevant baseline for 

determining magnitude and statistical significance of the effects in exposed populations and 

could help to better understand toxicant impacts on stickleback populations. Indeed, the small 

number of mesocosm replicates combined with the important variability due to the high levels 

of biological organization (EFSA, 2013; Sanderson, 2002) have been presented as a major 

drawback for detecting significant effects of chemicals in mesocosms as it is a source of false 

negative results (i.e. concluding a chemical has no effect when it really has) (Shaw et al., 1994; 

Beaudouin et al. 2008, EFSA, 2013).  



Here, we illustrated an application of our DEB-IBM to mesocosm experiments by integrating 

effects of hypothetical toxicants having different modes of action (Galic et al., 2017; Martin et 

al., 2013). Overall, a toxicant which would affect the basal mortality as well as the cost of 

synthesis of a unit of structure would have strong effects on the population structure. By 

comparing the classical methodology to the methodology based on the estimation of the control 

endpoint distributions, we showed that the LOECs calculated with the model simulations were 

lower than the ones calculated using the three replicates of the control. This highlights the 

interest of our approach which could improve environmental risk assessment by decreasing the 

risk of false negative results when analyzing data from mesocosms. Indeed, using IBMs to 

simulate the endpoint distributions of populations in mesocosms allows to estimate the 

descriptive variables of the populations (i.e. the shape, expectation and variance) compared to 

a simple estimation from the observed data from mesocosms (Beaudouin et al., 2012b). 

Furthermore, we assumed here only one type of effect by toxicants explaining why the 

populational effects have been mainly seen with a high stress level (Figure 5). However, 

toxicants could have multiple impacts (i.e. combined effects on survival and reproduction for 

example) which could increase the populational responses. 

Finally, although the ecological realism of mesocosm experiments is strongly improved 

compared to laboratory tests, theses aquatic model ecosystems are characterized by a reduction 

in size and complexity when compared to natural aquatic ecosystems (Caquet et al., 2000; 

EFSA, 2013) as they are designed to answer to a specific question. Consequently, other natural 

processes could occur in natural ecosystems, as for example competition between several fish 

species, which does not occur in our mesocosm experiments and thus, are not modelled in our 

IBM. 

5. Conclusions 

A model which accurately predicts population dynamics over time and takes into account 

relevant information on the environment, is of great interest for ecological management, long-

term decision making and risk assessment. Here, we developed a DEB-IBM for predicting 

stickleback population dynamics in mesocosms taking into account the main environmental 

factors. The model was successfully calibrated and the predictions of the population dynamics 

in control conditions were accurate. Hence, as seen with the case study of hypothetical 

toxicants, the model can help extrapolate from individual mechanistic responses to the 

population level. The DEB-IBM should then help us to have a closer understanding of toxicant 



effects on stickleback population dynamics and improve environmental risk assessment by 

lowering the uncertainty of the toxic thresholds.  
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