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Abstract 31 

We developed a nation-wide exposure model to NO2, PM10 and PM2.5 at a fine spatial and 32 

temporal resolution for France in order to study air pollutants exposure during pregnancy for the 33 

French Longitudinal Study of Children (ELFE).  34 

The exposure to air pollutants was estimated daily for years 2010 and 2011 by combining three 35 

simulation models at the national and regional scale (CHIMERE) and at the local urban scale 36 

(ADMS-Urban or SIRANE). The spatial resolution was 4 km for the national scale model, 3 to 4 37 

km for regional models and from 10 to 200 meters for urban-scale models. We developed a 38 

confidence index (from 0 to 10) based on the target plot to identify the best model to estimate 39 

exposure for a given address, year and pollutant. Air pollution exposure during pregnancy was 40 

then estimated using each modeling scale for the 17,427 women participating in the ELFE cohort. 41 

We described the exposure of the women during different time windows of pregnancy using each 42 

of the three models and using the most suitable model as estimated by the confidence index. 43 

The exposure estimates obtained from the three models were quite similar and highly correlated 44 

(spearman correlation between 0.64 and 0.96), especially for the national and regional models. 45 

For NO2 and PM10 predicted by the urban models, the minimum values were lower and the 46 

maximum values and the variability were higher, compared to the regional and national models. 47 

The averaged confidence indexes were comprised between 5.6 and 8 depending on the pollutant, 48 

year and exposure model considered. The best confidence index was observed for urban 49 

modeling (10) and the lowest for the regional modeling (0). In average during pregnancy, using 50 

the most suitable model, women were exposed to 21 µg/m3 for NO2, 16 µg/m3 for PM2.5 and 24 51 

µg/m3 for PM10. 52 

To our knowledge, this is the first study combining three modeling tools available at different 53 

scales to estimate NO2, PM10 and PM2.5 concentrations at a fine spatial and temporal resolution 54 

over a large geographical area. The confidence index provides guidance in the choice of the 55 

exposure model. These exposure estimates will be used to investigate potential effects of air 56 

pollutants on the pregnant woman health and on health of the fetus and development of the child.  57 

 58 
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1. Introduction 62 

A large body of literature has been published in the last 20 years about the relationship between 63 

maternal exposure to air pollutants and pregnancy outcomes, including pre-eclampsia, fetal 64 

growth, and gestational duration (Pedersen et al., 2013; 2014; Shah et al., 2011). The contribution 65 

of maternal exposure to air pollutants to child’s respiratory health (Korten et al., 2017), metabolic 66 

diseases (Lavigne et al., 2016), or neurodevelopmental disorders (Clifford et al., 2016; Xu et al., 67 

2016) is an area of growing interest. Yet, little is known about the lasting influences of in utero 68 

exposure to air pollutants on child health.  69 

Air quality monitoring stations provide a high temporal resolution, usually hourly or daily 70 

measures, but their spatial resolution is poor due to the low density of monitors for a usually large 71 

area of study. Thus using air quality monitors for exposure assessment is subject to measurement 72 

error. The last 10 years have seen a rapid development of air quality modeling (Oliveri Conti et 73 

al., 2017). Models with fine spatial resolution have been implemented including dispersion 74 

models or land-use regressions, the most used in epidemiological studies, sometimes combined 75 

with geostatistical techniques. Most often, these models are developed for a few cities and focus 76 

on the most urbanized areas (Eeftens et al., 2012; Sellier et al., 2014). Annual estimates are 77 

usually provided (Eeftens et al., 2012), although some models may produce sub-annual 78 

predictions (Sellier et al., 2014). 79 

As part of a study on the effects of early exposure to air pollutants on pregnancy outcomes and 80 

child’s health (the PATer project “Pollution Atmosphérique sur le territoire français: 81 

modélisation et effets sanitaires”) in the ELFE cohort (The French Longitudinal Study of 82 

Children) (Vandentorren et al., 2009), we aimed to develop a nation-wide exposure model to 83 

NO2, PM10 and PM2.5, with daily estimates in 2010 and 2011 (the time period covering the 84 

pregnancies of the ELFE cohort women) and a fine spatial resolution for France. We describe the 85 

development of air quality models at the national, regional and local scale, and the development 86 

of a confidence index based on the target plot (Thunis et al., 2013), which was used to identify 87 

the best model for a given address, year and pollutant. The exposure of the women participating 88 

in the ELFE cohort are described for each modeling scale and for the best model as estimated by 89 

the confidence index. A specific challenge of the project was to bring together about 25 90 

organizations able to produce air quality data from numerical simulations on a large number of 91 

urban areas of metropolitan France, but also at regional and national scale.  92 
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 93 

2. Methods 94 

2.1. Population studied 95 

The French Longitudinal Study of Children (ELFE, https://www.elfe-france.fr/en/) is a 96 

prospective birth cohort recruited in 2011 and designed to collect data on the health and 97 

development of children, their family, socio-cultural, nutritional and environmental factors from 98 

conception to 20 years of age. Women giving birth in one of the 344 randomly selected maternity 99 

wards (out of 540) in metropolitan France during the 4 enrollment periods (April 1st -4th; June 100 

27th-July 4th; September 27th-October 4th; November 28th-December 5th) were invited to 101 

participate. Multiple births of three children or more, very preterm births (before 33 weeks of 102 

gestation), mothers under age 18, mothers who did not read French, Arabic, Turkish or English, 103 

mothers unable to give informed consent, or who planned to move abroad within three years were 104 

not eligible. Finally, 18 329 children and their mothers were included. Home addresses of the 105 

women during pregnancy and of the children after birth were collected and geocoded, but for 902 106 

women,  geocoded address was not available. Therefore our analysis included 17 427 women for 107 

whom at least one geocoded address during pregnancy was available (Figure 1). All participating 108 

women gave informed consent to participate in the study. The ELFE study was approved by the 109 

relevant ethical committees (CNIL, Commission nationale de l’informatique et des libertés; 110 

CCTIRS, Comité Consultatif sur le traitement de l’Information en matière de Recherche dans le 111 

domaine de la Santé; CNIS, Conseil National de l'Information Statistique). 112 

 113 
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 114 

Figure 1: Home addresses of ELFE pregnant women at delivery and models covering the 115 

metropolitan France at different scales 116 

 117 

2.2. Study area 118 

We studied the metropolitan area of France (excluding Corsica island), which represents about 119 

551,695 km2 with a population of 65,058,000.  120 

 121 

2.3. Modeling strategy 122 

The characterization of exposure to air pollution is based on three simulation models at the 123 

national, regional and local scale (Figure 1). The national CHIMERE chemistry-transport model 124 

(Mailler et al., 2017; Menut et al., 2013; Valari et al., 2011) is used to estimate air pollution 125 

levels for the metropolitan France, with a resolution of 4 km x 4 km. This model has long been 126 

run and evaluated in France as the main component of the national air quality forecasting and 127 

monitoring system PREV’AIR (Honoré et al., 2008). It is also implemented across several 128 

regional areas with resolution of 3 km x 3 km or 4 km x 4 km, depending on the regional area. In 129 

urban areas, air pollution levels are estimated by urban-scale models which are currently 130 

implemented on most agglomerations >250,000 inhabitants (20 out of 24), but also in smaller 131 
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agglomerations (23 out of 31 agglomerations with more than 100,000 inhabitants), with a very 132 

high spatial resolution from ten to two hundred meters. The quasi-Gaussian Atmospheric 133 

Dispersion Modeling System (ADMS) Urban (Cambridge Environmental Research Consultants, 134 

Cambridge, United Kingdom (Carruthers et al., 2000a)) or the SIRANE model (Soulhac et al., 135 

2017; 2011; 2012b) are widely used in France as part of or to supplement the regulatory 136 

monitoring of air quality. The use of ADMS-urban and SIRANE is supported by validation 137 

studies ((Carruthers et al., 2000b; Stocker et al., 2012), for ADMS-Urban, 138 

https://www.cerc.co.uk/environmental-software/model-validation.html, Soulhac et al., 2017 for 139 

SIRANE) and comparison studies (inter-model and inter-laboratory comparisons) organized by 140 

the national reference laboratory (Wroblewski et al. 2009 ; Malherbe et al., 2010 ; Tognet et al., 141 

2016).  142 

 143 

2.3.1. Input data 144 

Three types of input data were used. National and local emission inventories came from the 145 

European Monitoring and Evaluation Program emission cadaster 146 

(http://www.emep.int/index.html) (Figure 2). The local inventories are mainly based on the 147 

national coordination pole guidebook to ensure methodological consistency across local 148 

inventories (Pôle national de coordination des inventaires territoriaux, 2012). Meteorological data 149 

were provided by the Integrated Forecast System (IFS) data re-analyzed for the national model, 150 

coupling with the MM5 model for the great north-west zone. For regional modeling tools, NCEP 151 

FNL Operational Global Analysis data were used with the WRF or MM5 model. For urban tools, 152 

observed data were provided by Meteo-France. Boundary conditions were collected from a 153 

European dataset provided by CHIMERE France – European scale for the national model and 154 

from the measurement network observations (background monitors) for urban-scale models. 155 
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 156 

Figure 2: Diagram of the modeling strategy 157 

 158 

2.3.2. Computations  159 

Simulation runs were performed on the national, regional and urban scales to predict 160 

concentrations of nitrogen dioxyde (NO2), particulate matter (PM10 and PM2.5), ozone (O3), sulfur 161 

dioxide (SO2) and benzene (C6H6) for years 2010 and 2011.  162 

On national and regional scales, hourly simulations were performed on regular grids of 3 to 4 km 163 

resolution. In a second stage, statistical or geostatistical approaches were applied to refine the 164 

modeling results and produce the most realistic concentration fields. On the national scale, model 165 

outputs and measurements from the permanent monitoring network were thus combined by 166 

external drift kriging (Malherbe 2009; Benmerad et al., 2017). In addition for NO2, NOx 167 

emission data from the national emission inventory were introduced as an auxiliary variable into 168 

the kriging to better account for concentration gradients in the vicinity of emission sources. An 169 

estimation grid mesh of 1 km was used for NO2 and PM10 pollutants (and by homogeneity PM2,5) 170 

considering the resolution of NOx emission data and the spatial density of measurements in some 171 

urban areas whereas the initial grid resolution of 4 km was kept for ozone due to its more 172 
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regional nature. Kriging-based or optimal interpolation methods were also applied on the regional 173 

scale to combine model outputs and observation data. In some regions, a mesh refinement 174 

technique was implemented to improve the accuracy of the modeling results and increase the 175 

resolution of the calculation efficiently. It interpolates the result of a pollutant concentration 176 

calculation on a finer mesh based on physical and physiographic principles governing the spatial 177 

differentiation of concentrations. This method makes it possible to highlight the concentration 178 

gradients near the sources of emissions. In concrete terms, the technique is based on the 179 

interpolation of a 3D field of a coarse mesh grid on a fine mesh grid, based on topology data and 180 

emissions (at a 1 x 1 km resolution).  181 

On the urban scale, because of the high volume of data and the high computation time that is 182 

needed for generating hourly predictions, two types of outputs were considered: the first one 183 

consisted in hourly predictions of pollutant concentrations at each of the 17,427 addresses of the 184 

ELFE cohort for the specific needs of the project; the second one consisted in annual average 185 

predictions of pollutants concentrations on a grid, allowing reuse of data for other 186 

epidemiological studies. Depending on the characteristics and configuration of the modeling 187 

tools, different simulation grids were defined: usually a regular grid for SIRANE and an irregular 188 

one, sparse in background areas and denser close to roads and emission sources for ADMS 189 

Urban. In that second case annual modeling results were interpolated on a fine regular grid using 190 

interpolation techniques (Beauchamp et al., 2014).  191 

The final spatial resolution of the concentration maps after post-processing is 1 to 4 km for the 192 

national scale model, 1 km for regional models and 10 to 200 meters for urban-scale models for 193 

annual concentrations. 194 

 195 

2.3.3. Validation and indicators of quality of the models 196 

Validation of the models was performed by comparing the predicted concentrations to the 197 

concentrations measured by the network of permanent air quality monitors using the Delta Tool 198 

methodology (Pernigotti et al., 2013; Thunis et al., 2013; Thunis and Cuvelier, 2016; Thunis et 199 

al., 2012). This method has been developed by the European Joint Research Center (JRC) within 200 

FAIRMODE (http://fairmode.jrc.ec.europa.eu) to perform diagnostics of air quality and 201 

meteorological model performances. Model performance assessment includes in particular the so-202 

called Target Plot (Figure 3). This diagram is a representation of the Modeling Quality Indicator 203 
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(MQI), a statistical indicator which describes the discrepancy between modeling results and 204 

measurements, taking the measurement uncertainty into account. The MQI combines different 205 

statistical scores: CRMSE – Centered Root Mean Square Error, R – Correlation coefficient, SD – 206 

Standard Deviation, NMB – Normalised Mean Bias (Figure 3). The modeling quality objective 207 

(MQO) is the quality criterion associated to the MQI. It is considered as fulfilled if the MQI is 208 

less than or equal to unity (points inside the circle of the Target Plot, Figure 3).  209 

In the present project, the target plots were calculated for each of the three modeling scales using 210 

daily averaged concentrations. Predicted concentrations of each model have been compared to all 211 

the measurements of permanent monitors included in the modeled area. For the national and 212 

regional models, which combine CHIMERE outputs with measurements from rural and urban 213 

background monitors (see previous section), the target plots for background stations were 214 

calculated using a leave-one-out cross validation approach so that the resulting estimates and the 215 

measurements were independent and could be compared. For traffic stations (which are not used 216 

in the kriging), the target plots were calculated by interpolating the model results at the 217 

monitoring points. Higher MQI was logically obtained at those sites since the national and 218 

regional models are not intended to finely reproduce traffic-related concentration levels. As for 219 

the urban models, the performance of the modeling could not be as precisely characterized than 220 

for the national and regional models since there is a lack of measurement stations in some urban 221 

areas, with only one or two monitors for each pollutant. It can be observed that the points 222 

representing the model performance at each station tend to be located on the left part of the 223 

diagram (i.e. CRMSE error dominated by correlation, figure 3), which could be explained by a 224 

very high dynamic of pollution levels not precisely taken into account by the emission inventory 225 

at the point of the station.  226 
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 227 

Figure 3: Example of target plots for urban models for different cities, years, and pollutants 228 

 229 

2.4. Pregnancy exposures 230 

We estimated air pollutants exposure of pregnant women according to each of the three models 231 

(national, regional and urban scale) for short- and long-term time windows during pregnancy 232 

including: whole pregnancy, each trimester of pregnancy, each month, each week and the 30 last 233 

days of pregnancy. Therefore, for each woman and each time-window, up to three different 234 

concentrations were available from the national, regional and urban-scale models. Exposure for 235 

time windows with more than 25% of missing values was not estimated.  236 

 237 

2.5. Confidence index 238 

In order to help the epidemiologists to choose the most relevant exposure model, we calculated a 239 

confidence index (C) based on the Model Quality Index (MQI). The MQI provides insight into 240 

the quality of the model average performances (Thunis and Cuvelier, 2016). The MQI varies on a 241 

scale from 0 to infinite, between the origin of the Target Plot (0, 0) and the position of the 242 

measuring station for which concentrations have been calculated with the model (Figure 3). The 243 

closer the station's position is to the origin, the lower the MQI and the better the modeling are 244 

(Figure 4). 245 



ACCEPTED MANUSCRIPT

 11 

 246 

Figure 4: Comparison between measurements from a station and predictions from  a model for a 247 

high and low Model Quality Index (MQI). 248 

 249 

For proper comparisons of the quality of the estimates from the three models, the statistics 250 

compared across models should be on the same scale. Therefore, we calculated a Confidence 251 

index (C), which converts the result of the MQI (from 0 to infinite) to a value between 0 and 10 252 

using the following equation: C = -6 x MQI + 10 (1) 253 

with 10 being the best C (reached when the MQI is 0) indicating a perfect modeling result. On 254 

the contrary, for a MQI of 1 the C will be 4. A C with a value of 0 (bad confidence) will be 255 

reached for a MQI of about 1.67. 256 

For the urban scale models, model performance was assumed to be homogeneous according to 257 

the type of location (i.e. background or traffic). The MQI was calculated for each measurement 258 

station and was then averaged separately for background and traffic stations, leading to two types 259 

of confidence index (C) depending on distance to traffic. A woman located close to traffic (i.e. in 260 

a 200 m buffer around motorway type roads, or in a 150 m buffer around a main link road, or in a 261 

100 m buffer around a regional link road) was assigned the average confidence index calculated 262 
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for near traffic monitors, whereas in other locations she was assigned the average confidence 263 

index calculated for background monitors. For the national and regional scale models, model 264 

performance was assumed to be more variable across the modeling domain. The MQI was 265 

calculated for each monitor as described in section 2.3.3. The MQI and the corresponding 266 

confidence index at each background (resp. near-traffic) address of the ELFE cohort women were  267 

then calculated by interpolating the MQI of all the available background (resp. traffic) 268 

measurement monitors using the inverse-distance weighting method between the address of the 269 

woman and the location of the monitors.  270 

 271 

Since the spatial coverage of monitors is limited (497 monitors for NO2 (297 background, 200 272 

traffic), 390 for PM10 (223 background, 167 traffic) and 106 for PM2.5 (64 background, 42 273 

traffic)), the Target Plot, MQI and C calculated do not account for the high spatial variability of 274 

air pollutants concentrations (especially for NO2) and therefore for the potential variability of 275 

model performances. This high spatial variability in concentrations captured by urban-scale 276 

models (Figure 5) is a major asset of these models when one is interested in the local variations 277 

of exposure.  This is illustrated in Supplemental Figure S1, which shows that smoothing 278 

concentrations on a kilometer grid obviously leads to a decrease in the accuracy of the 279 

concentrations near the main roads, better represented on a metric grid. Indeed, in the urban 280 

modeling tools, road emissions are precisely entered into the model while they are diluted on 281 

meshes of several square kilometers in the national and regional models. In our study, among the 282 

17,427 addresses, 33% were located close to traffic. The urban models allow to account for the 283 

variability of concentrations near traffic. They are implemented with final spatial resolutions 284 

ranging from 10 (near sources) to 200 meters and are more adapted to the complexity of air 285 

pollutants sources in the cities than the regional or national models. Therefore, if an urban model 286 

exists, this one will be favored compared to the other scales, irrespectively of the confidence 287 

index, to provide the value of exposure of the ELFE women during pregnancy.  288 



ACCEPTED MANUSCRIPT

 13 

 289 

P: Pregnancy, T1: trimester 1, T2: trimester 2, T3: trimester 3, M5: month 5, WBB3: 3rd week 290 

before birth , DBB: day before birth, N: National model, R: Regional model, U: Urban model, P: 291 

PATer estimate (i.e. the most suitable model: the urban model if there is one, the model which 292 

has the highest confidence index among the regional and national model).  293 

 294 

Figure 5: Distribution of exposures during pregnancy as estimated by each of the 3 models and 295 

by the final PATer most suitable estimate, for all women covered by the 3 models  296 

 297 

2.6. Statistical analyses 298 

Coverage of the study area was heterogeneous for O3, SO2 and C6H6. We therefore focused our 299 

analyses on NO2, PM2.5 and PM10. We described pregnant women’s exposures and their 300 

confidence index using each of the three models (national, regional and urban-scale) for the 301 

following time windows: pregnancy, each trimester of pregnancy, fifth month of pregnancy, third 302 

week before birth and day before birth. Then, for the sub-sample of women covered by the 3 303 



ACCEPTED MANUSCRIPT

 14 

models, we compared their exposures and confidence indexes as estimated by the 3 models and 304 

the final exposures as estimated by the most suitable model (i.e. the urban model if there is one, 305 

the model which has the highest confidence index among the regional and national model). For 306 

simplicity, this final exposure is hereinafter called the PATer (from the name of the project) 307 

estimate. Spearman correlation coefficients between the 3 models and the PATer estimates were 308 

calculated.  309 

 310 

3. Results 311 

3.1. Pregnancy exposures as estimated by each of the 3 models  312 

NO2 exposures during pregnancy as estimated by the national, regional and urban models are 313 

represented in figure 6. Depending on the exposure model used, women in the ELFE cohort were 314 

exposed on average during pregnancy between 20 and 26 µg/m3 for NO2, 16 and 17 for µg/m3 for 315 

PM2.5 and 24 and 25 µg/m3 for PM10 (Table 1). These average values were quite similar for 316 

exposure during the other time windows studied.  317 

 318 

Figure 6: Annual averaged NO2 concentrations in 2010 for the addresses of the ELFE population 319 

where a national, regional or urban model existed.  320 

 321 

  322 
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sd 

Percentiles 

5 25 50 75 95 5 25 50 75 95 5 25 50 75 95 

NO2                         

P  15909 20.2 9.0 7.7 12.9 19.0 26.5 36.6 12571 22.9 8.3 9.4 17.5 21.9 28.2 38.3 8942 26.2 12.6 9.2 17.4 24.4 32.8 50.1 

T1 15744 22.3 10.5 7.4 14.1 20.9 29.1 41.7 12467 25.1 9.3 9.9 18.9 24.5 31.5 41.6 8828 28.1 14.3 8.7 18.2 26.3 35.7 55.1 

T2 16173 19.1 10.6 5.6 10.8 16.9 25.5 40.0 12773 21.8 10.0 6.8 14.3 21.0 28.7 40.7 9156 24.9 13.6 7.6 15.0 22.7 31.8 51.1 

T3 16805 19.0 10.2 5.8 11.0 17.0 25.2 39.3 13263 21.6 9.5 7.0 15.0 20.1 27.9 39.8 9626 25.3 13.3 7.7 15.7 23.4 32.0 50.5 

M5 16260 19.1 11.3 5.3 10.2 16.6 25.5 42.0 12847 21.6 10.5 6.5 13.6 20.0 28.9 41.3 9228 24.7 14.3 7.1 14.4 22.0 31.9 52.5 

WBB3 17307 18.7 11.1 4.5 10.1 16.6 25.4 39.7 13667 21.0 10.4 5.3 13.0 20.0 27.8 39.6 9945 24.4 14.4 6.5 13.9 21.6 32.0 51.6 

DBB 17375 20.7 15.0 4.7 9.7 16.6 27.6 49.9 13720 23.7 14.6 5.6 14.0 20.5 30.1 52.3 10074 27.6 18.9 5.7 14.1 23.2 36.6 64.4 

PM2.5                         

P  15909 17.2 2.9 12.7 15.2 16.9 19.0 22.6 12978 15.8 4.6 9.0 12.2 15.8 18.7 23.3 8281 16.2 3.9 9.4 140 16.3 18.7 22.0 

T1 15744 18.9 5.6 10.9 14.6 18.1 22.4 29.2 12869 17.4 6.3 7.8 13.0 16.7 21.1 28.9 8298 18.0 5.9 9.5 13.9 17.6 21.7 28.3 

T2 16173 16.5 6.5 8.9 11.4 14.5 20.8 29.2 13183 15.0 7.0 5.9 9.3 14.1 19.0 28.0 8526 15.7 6.8 7.2 10.2 14.1 20.4 27.9 

T3 16805 16.1 5.8 9.5 12.0 14.5 19.2 28.0 13687 14.8 6.4 6.7 9.7 13.9 18.5 26.8 9017 15.3 6.2 7.3 10.6 14.2 18.9 27.1 

M5 16260 17.0 8.4 8.7 10.3 13.6 22.6 33.5 13257 15.1 8.0 6.1 8.5 13.2 19.5 31.3 8567 16.0 8.3 7.1 9.5 13.0 21.9 32.2 

WBB3 17307 16.4 9.9 6.7 8.3 11.8 23.0 35.2 14101 14.9 10.0 4.0 7.1 12.2 20.6 34.8 9399 15.0 8.9 5.6 7.8 11.6 21.4 31.9 

DBB 17375 15.3 7.0 6.5 10.1 14.2 19.4 28.4 14154 14.3 8.4 4.7 7.8 12.2 18.7 30.5 9571 14.9 7.7 5.1 8.8 13.6 19.4 28.8 

PM10                         

P  15909 24.5 3.4 19.3 21.9 24.1 26.8 30.5 12978 25.1 3.3 19.8 22.7 25.1 27.3 30.4 8878 25.0 5.6 15.5 21.7 24.8 28.3 34.1 

T1 15744 26.0 6.2 17.4 21.1 25.0 30.2 37.3 12869 26.6 6.0 17.3 21.9 26.2 30.9 37.2 8736 26.5 7.7 15.5 20.7 25.6 31.8 39.8 

T2 16173 23.6 6.9 15.0 18.3 22.0 27.9 37.0 13183 24.2 6.7 15.2 18.7 23.1 28.5 37.1 9079 24.2 8.0 13.6 18.5 22.7 29.2 39.0 

T3 16805 23.6 6.2 15.5 19.0 22.1 27.3 36.1 13687 24.2 6.1 15.8 19.7 23.2 27.9 36.3 9545 24.0 7.6 12.9 18.8 23.2 28.5 38.1 

M5 16260 23.9 8.8 14.1 17.5 20.8 29.1 41.6 13257 24.4 8.3 14.8 18.4 21.4 29.5 40.9 9148 24.4 9.4 12.3 17.8 21.8 30.0 42.9 

WBB3 17307 23.0 10.3 11.7 14.7 19.3 30.1 42.7 14101 23.5 10.2 12.5 15.0 19.5 31.3 42.6 9862 22.8 10.2 10.5 15.2 19.4 30.3 41.9 

DBB 17375 23.3 9.7 10.5 16.4 21.6 28.7 42.1 14154 23.7 10.3 10.2 16.6 21.2 29.4 43.8 9991 24.0 11.3 8.8 15.5 21.9 31.2 45.3 

P: Pregnancy, T1: trimester 1, T2: trimester 2, T3: trimester 3, M5: month 5, WBB3: 3rd week before birth , DBB: day before birth, n: 323 

sample size; p25, p50, p75, p95: percentiles 25, 50, 75, 95;  324 

Table 1: Averaged exposures during pregnancy as estimated for each of the 3 models  325 
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3.2. Confidence index of estimated exposures and comparison across the 3 models 326 

The confidence indexes were calculated for each address of the cohort, each pollutant and each 327 

year. The figure 7 presents the results of these calculations for NO2 in 2010 in the Strasbourg 328 

metropolitan area. 329 

 330 

Figure 7: NO2 estimated confidence indexes for women of the ELFE cohort living in the 331 

Strasbourg agglomeration area in 2010 332 

 333 

We compared the confidence indexes for women covered by the 3 models (Table 2). With the 334 

exception of PM2.5 and NO2 estimated by the regional models, the averaged confidence indexes 335 

were about 7.5 depending on the pollutant, year and exposure model considered (Table 2). For 336 

NO2 and PM2.5, the lowest C was observed for the regional modeling (0 for both pollutants) and 337 

the highest C was observed for the national modeling for NO2 (9.3) and for the urban modeling 338 

for PM2.5 (9.3). For PM10, the urban modeling showed the lowest (1.5) and highest C (10). 339 

Estimated confidence indexes were quite stable between 2010 and 2011. For NO2 confidence 340 

indexes, 10% of women had differences greater than 1 across the 3 models. For both PM2.5 and 341 

PM10 confidence indexes, 10% of women had differences greater than 1 for the national modeling 342 

compared to the regional modeling. As for the urban modeling, 30% of women for PM2.5 (20% 343 

for PM10) had differences in confidence indexes greater than 1 compared to the regional 344 

modeling. The PATer final exposure of the women was mostly estimated from the urban model 345 

for NO2 and PM10 and from the national model for PM2.5 (Figure 8). PM2.5 estimates from the 346 

regional model showed in average the lowest confidence indexes (Table 2) and the regional 347 

model was almost never chosen to represent the PATer final PM2.5 exposure estimate (Figure 8).   348 

 349 
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Pollutant Year n National modeling Regional modeling Urban modeling 
mean sd min max mean sd min max mean sd min max 

NO2 2010 7817 7.2 1.9 3.0 9.2 6.9 2 .0 0 9.2 7.2 0.9 4.2 8.8 
 2011 7725 7.3 1.9 3.1 9.3 7.0 1.9 0 9.1 7.3 1.0 3.7 8.6 
PM2.5 2010 23301 7.5 0.5 6.9 8.9 5.9 2.1 0 8.3 8.0 0.3 7.1 9.2 
 2011 25031 7.2 0.6 6.5 8.4 5.6 2.3 0 8.2 7.9 0.6 6.5 9.3 
PM10 2010 7402 7.7 1.1 5.1 9.1 7.4 1.0 5.1 9.1 7.6 1.1 3.9 10 
 2011 7616 7.7 0.9 5.0 9.1 7.4 1.0 4.1 8.8 7.8 0.9 1.5 10 
1 the number of observations is lower for PM2.5 compared to PM10 and NO2 because there were 350 

fewer monitoring stations measuring PM2.5 351 

Table 2: Averaged confidence index by pollutant, year and type of modeling for all women 352 

covered by the 3 models  353 

 354 

 355 

N: National model, R: Regional model, U: Urban model 356 

Figure 8: Sources of the PATer final exposure estimate by pollutant and year.  357 

 358 

  359 

3.3. Comparison of pregnancy exposure estimates across the 3 models and with the final 360 

PATer estimates 361 
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Depending on the exposure window, between 6,406 and 7,515 women were covered by the three 362 

exposure models and the final PATer estimates (Supplemental Table S1). Except PM2.5 363 

correlation during the whole pregnancy between the national and regional models, the three 364 

models were highly correlated (correlation coefficients from 0.71 to 0.96, Supplemental Table 365 

S2) for all pollutants and exposure windows. For the three pollutants, the exposure distributions 366 

of the urban model and the PATer estimates were very similar as shown by statistics in 367 

Supplemental Table S1 and by the very high correlation coefficients between exposures estimates 368 

from these 2 models (i.e. between 0.95 and 0.99, Supplemental Table S2); this result was 369 

expected because these statistics and correlation coefficients were calculated for women covered 370 

by the 3 models, which restricts the sample mainly to women living in urban areas, and the final 371 

PATer estimates gives priority to the urban model, which is therefore highly represented in this 372 

sub-sample.  373 

NO2 exposures (µg/m3) as estimated by the national and regional models were very close (p 5th, 374 

50th, 95th during pregnancy 13, 26, 40 and 13, 27, 40, respectively), while the urban and PATer 375 

estimates showed a higher variability (larger standard deviation) and a wider distribution (p 5th, 376 

50th, 95th during pregnancy 11, 25, 50 for both models) compared to the national and regional 377 

models (Figure 5 and Supplemental Table S1).  378 

As for PM2.5 (µg/m3), generally for the different time windows, the averages and standard 379 

deviations of exposures were slightly higher and the distributions were shifted to the right for the 380 

national model as compared to the regional, urban and PATer estimates. These results indicate 381 

that exposures from the national model were slightly higher (p 5th, 50th, 95th for pregnancy 14, 18, 382 

23) than those from the regional, urban and PATer estimates (p 5th, 50th, 95th for pregnancy 383 

10,17, 22 for the regional and 12, 17, 22 for the urban and PATer estimates). 384 

For PM10 (µg/m3), the exposure distribution of the women as estimated from the national and 385 

regional models were very close (p 5th, 50th, 95th for pregnancy 21, 26, 31, and 22, 26, 31 386 

respectively). As compared to the national and regional models, the urban model and PATer 387 

estimates showed slightly higher standard deviations and medians as well as slightly wider 388 

distributions for the different time windows investigated (p 5th, 50th, 95th for pregnancy 20, 26, 35 389 

for both models).  390 

Altogether, the urban and PATer estimates were finer and better captured the spatial variability 391 

compared to the national and regional models, especially for NO2 and PM10. As expected, for the 392 
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3 pollutants and the 4 models, larger distribution of exposure was observed for shorter exposure 393 

time windows compared to longer time windows.  394 

 395 

 396 

3.4. Pregnancy exposures as estimated by the final PATer most suitable estimate  397 

Exposures of the women as estimated by the urban model when there is one available or by the 398 

model with the highest confidence index from the regional and national models are described in 399 

table 3. In average during pregnancy, women were exposed to 21 µg/m3 for NO2, 16 µg/m3 for 400 

PM2.5 and 24 µg/m3 for PM10. As shown in table 3, 90% of the estimated exposures had a 401 

confidence index comprised between 5.2 and 8.7 for NO2, 6.8 and 9.0 for PM2.5, and 6.1 and 8.6 402 

for PM10.  403 

 404 

Pollutant Exposure window n mean sd percentile 
5 25 50 75 95 

NO2 Confidence index 17188 7.5 1.1 5.2 6.7 8.1 8.4 8.7 
 Pregnancy 17188 20.9 11.8 6.9 12.2 18.5 26.5 44.0 
 T1 15971 22.8 13.1 6.7 13.4 20.4 29.2 48.2 
 T2 16445 19.9 12.7 5.2 10.6 17.0 26.2 44.1 
 T3 16675 20.0 12.6 5.5 10.9 17.2 26.0 43.9 
 M5 16104 19.9 13.1 5.0 10.2 16.8 26.3 44.9 
 WBB3 16741 19.7 13.4 4.3 9.9 16.7 26.4 44.9 
 DBB 16793 21.7 17.1 4.3 9.7 17.1 28.4 55.5 
PM2.5 Confidence index 17203 7.9 0.7 6.8 7.5 7.8 8.3 9.0 
 Pregnancy 17203 16.2 3.7 10.4 14.0 16.1 18.5 22.3 
 T1 16005 18.0 5.6 10.2 13.9 17.5 21.6 27.9 
 T2 16469 15.6 6.3 8.0 10.5 14.0 19.9 27.3 
 T3 16683 15.2 5.6 8.4 11.1 13.9 18.3 26.5 
 M5 16124 16.0 7.9 7.9 9.9 13.1 21.1 31.6 
 WBB3 16749 15.3 9.3 6.1 7.9 11.2 21.4 32.9 
 DBB 16658 14.7 6.9 5.5 9.3 13.7 18.8 27.3 
PM10 Confidence index 17195 7.7 0.8 6.1 7.1 7.8 8.4 8.6 
 Pregnancy 17195 23.8 4.9 16.7 20.9 23.4 26.7 32.0 
 T1 15980 25.6 6.9 16.1 20.5 24.7 30.1 37.9 
 T2 16456 23.2 7.2 14.2 17.8 21.6 27.7 37.1 
 T3 16682 23.0 6.8 14.2 18.5 21.7 27.0 36.2 
 M5 16114 23.4 8.7 13.2 17.3 20.6 28.6 41.0 
 WBB3 16748 22.1 9.6 11.1 14.6 18.8 28.9 40.3 
 DBB 16814 23.0 10.1 9.5 15.7 21.3 28.7 42.8 
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T1: trimester 1, T2: trimester 2, T3: trimester 3, M5: month 5, WBB3: 3rd week before birth , 405 

DBB: day before birth  406 

Table 3 : Averaged exposures and confidence indexes during pregnancy as estimated by the most 407 

suitable model for pregnant women of the ELFE cohort 408 

 409 

4. Discussion 410 

To our knowledge, this is the first study combining three modeling tools available at different 411 

scales to estimate NO2, PM10 and PM2.5 concentrations at a fine spatial (down to 10 meters) and 412 

temporal (hourly) resolution over a large geographical area (the French metropolitan area). We 413 

further estimated a confidence index based on the target plot and Model Quality Indicator in 414 

order to provide guidance in the choice of the exposure model, when several models are 415 

available. Our results showed that the three models provided relatively similar exposure estimates 416 

for the women of the ELFE cohort, allowing a combination of the three models. The urban-scale 417 

model provides a finer spatial resolution compared to the national and regional models, which is 418 

relevant in urban and peri-urban areas that are more densely populated and where local emissions 419 

mainly originate from traffic and heating processes. We therefore chose to favor the urban-scale 420 

model first, and to then use the confidence index to choose between the regional- and national-421 

scale models for women who were not covered by the urban-scale model. We finally used the 422 

predicted concentrations of these models to evaluate the exposure during multiple time-windows 423 

of 17,427 pregnant women participating to the ELFE cohort.  424 

 425 

Two main modeling tools were used for the urban-scale model: ADMS Urban (Carruthers et al., 426 

2000a) and SIRANE (Soulhac et al., 2017; 2011; 2012a). ADMS Urban accounts for linear 427 

sources such as traffic, but also for many stationary sources like industrial or residential sources. 428 

It also includes an intelligent gridding option, which provides high spatial resolution in the 429 

vicinity of air pollution sources such as roads. SIRANE cannot include as many stationary 430 

sources as ADMS-urban and its spatial resolution is identical throughout the simulated 431 

geographical area. However, SIRANE works on a very high spatial resolution throughout the 432 

Rhône-Alpes region, which therefore benefits from a very fine assessment of concentrations, 433 

including in the interurban environment. 434 

 435 
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At the regional scale, a special feature of the modeling is the harmonized procedure used by all 436 

regional platforms. This common approach included accounting for sharp specificities within 437 

regions by using regional emission inventories (i.e. integration of spatialized and temporalized 438 

local data) that are more precise compared to the national emission inventories; the use of models 439 

in their configuration used in routine daily forecasting (CHIMERE, SIRANE, WRF or MM5) at 4 440 

x 4 km or 3 x 3 km resolution and then refined at 1 x 1 km resolution; the application of a daily 441 

or hourly kriging of the measurements over the whole 2010 and 2011 (rather than a yearly 442 

kriging). These improvements led to better representation of local processes that influence 443 

ambient pollutants concentrations. Comparing the confidence indexes between the national model 444 

and the regional models requires some considerations: the national model integrates unified input 445 

data as weather or emissions and operates a single configuration of model throughout the national 446 

territory. Similarly, geostatic post-treatments are applied according to the same methodology 447 

overall of this same territory. The regional model consists in an agglomeration of results from 448 

several regional platforms. Each of these platforms delivers representative and coherent results 449 

within its regional coverage, by managing its own modeling based on its knowledge and 450 

experience on the models used, emissions and meteorological datasets used for modeling, 451 

regional modeling calibration, local specificities, etc. The heterogeneity of the platforms used to 452 

fuel the regional scale modeling can explain, at least partly, the overall poor performances and 453 

lower confidence indexes of the regional model compared to the national (and urban) model, with 454 

some regional models performing better than others.   455 

 456 

The three models, national, regional and urban showed consistent distributions of exposure 457 

estimates. The national and regional models were very close in terms of exposure estimates. The 458 

urban models have a higher spatial resolution and showed a higher variability with a wider range 459 

of exposure estimates, which is consistent with the stronger exposure contrasts observed in urban 460 

and peri-urban areas compared to more rural areas. Further, the implementation of dedicated 461 

validation methods such as the Delta tool, the target plot, the model quality indicator and the 462 

confidence index substantiates the use of several exposure models. We showed that for the ELFE 463 

cohort, the exposure estimates from the three models were close enough to be combined in order 464 

to estimate air pollution exposure in this nation-wide population. The distributions of exposure to 465 

the different air pollutants were very close across the three models and highly correlated. The 466 
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variability of the exposures was increased for predictions of the urban models compared to those 467 

of the national and regional models; however, this is relevant as it reflects a real situation where 468 

exposures are more contrasted in urban and peri-urban areas that are more densely populated and 469 

where emissions due to traffic and heating are higher than in other areas. Since the ELFE cohort 470 

is a representative sample of the French pregnant women, there is a priori no reason for the 471 

combination of the three models to not be relevant for any other study. However, this would need 472 

some validation by comparing the distribution of exposure estimate from the three models. In 473 

ELFE, with the exception of NO2, pregnancy exposure estimates were higher than air quality 474 

values recommended by the WHO, respectively 40, 10 and 20 µg/m3 in annual average for NO2, 475 

PM2.5 and PM10. In France, the limit values (according to the environmental code Article R221-1 476 

Modified by the decree n°2010-1250 of October 21st, 2010-art.1) are 40, 25 and 40 µg/m3 477 

respectively for NO2, PM2.5 and PM10 (PM2.5 only from 2015) in annual averages. 478 

 479 

A previous national model for France developed for the GAZEL cohort, used the European 480 

Monitoring and Evaluation Program (EMEP) emissions at a 50 x 50 km resolution and focused 481 

on a 10 x 10 km CHIMERE grid with further improvements from specific recalculated data for 482 

traffic and main industrial sources. After simulation, the exposure data were then refined to a 2 x 483 

2 km resolution (Bentayeb et al., 2015). The “Pater model” represents a major improvement 484 

compared to this previous approach. However, we acknowledge some limits of our approach. 485 

One relates to the heterogeneity in the quality of predicted concentrations of the regional 486 

platforms (see above), which decreases the overall performances of the regional scale model. 487 

There was a restricted number (106) of PM2.5 monitors, which limited our ability to evaluate the 488 

performances of the three models using the target plot and corresponding MQI and C. The “Pater 489 

model” focus on years 2010 and 2011 in order to fit with the pregnancies of the women included 490 

in the ELFE cohort; this work needs to be expanded in order to estimate exposure of the ELFE 491 

children or to be used in other epidemiological studies that would have been conducted after 492 

2011. The air pollutants exposure estimated for the women do not take into account the time 493 

spent by pregnant women inside the buildings (housing, workplace) or during commuting. A 494 

previous study performed in Grenoble, France, compared the exposure levels calculated from a 495 

dispersion model with those accounting for indoor and commuting sources (Ouidir et al., 2015). 496 

For NO2 and PM2.5, exposure assessed from a personal air sampler was poorly correlated with 497 
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exposure estimated from a model based on outdoor concentrations, suggesting that outdoor levels 498 

do not reflect personal exposure. However, this result was based on a very small population (n=9) 499 

and did not investigate the impact of measurement error on the association with the health 500 

outcome.  501 

 502 

5. Conclusion  503 

This work is an important step towards the harmonization and combination of the different air 504 

quality modeling tools used at different scales in France in order to promote a consistent 505 

approach throughout the national territory. In the ELFE cohort, prenatal exposures to air 506 

pollutants will be used to investigate their potential effects on the pregnant woman health, on the 507 

fetal health, and on the child’s neurodevelopment and respiratory health. In a broader perspective, 508 

data from the PATer database can be used for other epidemiological studies as well as for health 509 

impact studies. The next step of this project is to maintain and update the database for year 2012 510 

and following years in order to estimate postnatal exposures to air pollutants for children of the 511 

ELFE cohort and to allow more epidemiological studies conducted in 2010 and after to use these 512 

exposure data.  513 

 514 
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Highlights 

- NO2, PM10 and PM2.5 exposure during pregnancy for the ELFE mother-child cohort 

- Fine spatial (10-200 meters at the urban scale) and temporal resolution for France 

- Combination of three dispersion models at the national, regional, and local scale 

- Confidence index to choose the best exposure model 

- Mean pregnancy exposure was 21 µg/m3 for NO2, 16 µg/m3 for PM2.5, 24 µg/m3 for PM10 


