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Highlights 

• A methodology rest on model-based machine learning is developed to simulate air 

quality at high resolution 

• The CHIMERE model is used to provide the numerical dataset, however the 

methodology can be applied to any CTM 

• The methodology allows to gain impressively CPU time compared to a normal high 

resolution CTM simulation 

• The methodology provides results as good as the CHIMERE CTM raw simulation 

• The method can be viewed as a first metamodel of CHIMERE 

Abstract 

A methodology rested on model-based machine learning using simple linear regressions and 

the parameterizations of the main physics and chemistry processes has been developed to 

perform highly-resolved air quality simulations. The training of the methodology is (i) completed 

over a 6-month period using the outputs of the chemical transport model CHIMERE, and (ii) 

then applied over the subsequent 6 months. Despite rough assumptions, this new 

methodology performs as well as the raw CHIMERE simulation for daily mean concentrations 

of the main criteria air pollutants (NO2, Ozone, PM10 and PM2.5) with correlations ranging 

from 0.75 to 0.83 for the particulate matter and up to 0.86 for the maximum ozone 

concentrations. Some improvements are investigated to expand this methodology to several 

other uses, but at this stage the method can be used for air quality forecasting, analysis of 

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S136481521830896X
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pollution episodes and mapping. This study also confirms that including a minimum set of 

selected physical parameterizations brings a high added value on machine learning processes. 
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1 Introduction 

Air pollution is the fourth leading fatal risk for human health globally, and in the latest estimates, 

more than 5 million pre-mature deaths are linked with air pollution (Forouzanfar et al., 2016). 

Air pollution does not just cause danger to human health but also to the environment, the 

economy and food security (e.g. crop yield losses). Chemistry transport models (CTMs) are 

useful tools to assess, predict and analyse environmental policies to improve air quality. Since 

a large fraction of the population live in urban areas, models must run up to the urban scale. 

The model outputs can feed integrated models to assess emission reduction strategies up to 

the local scale (Amann et al., 2017, Anil et al., 2018). 

In atmospheric sciences the race on high resolution simulations over large domains started 

few years ago for short term forecast or climate studies perspectives (Skamarock et al., 2014, 

Fuhrer et al., 2018). In a near future, meteorological 3D-fields will be commonly available over 

large domains at a few kilometers resolution. For air quality modelling, increasing the resolution 

is expected to provide better results. Even for remote background sites, increasing the 

resolution should improve the quality of simulations because the system is not fully linear 

mainly due to the use of non-linear chemistry schemes. The use of air quality models at high 

resolution is very computing time consuming mainly because of Courant–Friedrichs–Lewy 

(CFL) conditions. The CFL condition is a necessary condition for convergence while solving 

certain partial differential equations numerically by the method of finite differences. This 

condition imposes to adapt the time step. For the advection, it is proportional to the grid size 

for the horizontal transport involving a dramatic increase of simulation durations. Although a 

20 km to 50 km resolution is sufficient to be representative of rural background concentrations, 

the use of resolution between 1 and 10 km is essential to estimate urban background 

concentrations of pollutants for small to large cities. 

The notion of urban increment (or decrement for ozone due to the titration effect) has been 

introduced to estimate the impact of a city emissions to the urban background concentrations 

(Aman et al., 2007, Ortiz and Rainer, 2013). The calculation of this increment is expected to 

be influenced by local primary emission sources and meteorological parameters. The use of 

highly resolved bottom-up emission inventory usually provides better results (Timmermans et 

al., 2013) compared to top-town downscaled emission datasets. Air quality models benefit from 

a downscaling of emissions dataset as mentioned by Schaap et al. (2015), Terrenoire et al. 



4/26 
 

(2015) and Colette et al. (2014) by mainly reducing the bias over urbanized areas with 

sometimes lower correlations. However, for ozone an optimal resolution could be found as 

explained by Valari and Menut (2008) based on an analysis of the root mean square error. In 

a scenario perspective the concept of urban and even street increment was used in 

Kiesewetter et al. (2014, 2015) to estimate the impact of emission reductions strategies at a 

given site, up to traffic-influenced stations. 

In previous studies, the use of past observational air quality data crossed with predicted 

meteorological variables, traffic emission prediction was implemented in neural networks to 

propose statistical models able to perform air quality model predictions (Catalano and Galtioto, 

2017 and references therein). Usually, these models can only be used at a given site, but they 

offer robust performances. Recently, Mallet et al. (2018) proposed a first metamodel of a local 

air quality model to simulate NO2 and PM10 concentrations. 

In our study, the concept of “urban increment” is extended to “grid cell increment” to perform 

highly-resolved air quality simulations rested on model-based “machine learning” using low 

resolution CTM simulations. This method avoids running the CTM at high resolution and 

therefore allows an impressive gain of computing time. This technique is applied for the main 

criteria pollutants PM10, PM25, NO2, and O3 concentrations. The method is evaluated for daily 

or maximum concentrations (for ozone only). This paper will answer four main questions: Does 

this technique provide satisfactory results by-passing the costly high resolution air quality 

simulation? What is the expected gain on computing time? For which type of application this 

technique can be used? How this technique could be improved? 

 

2 Material and Methods 

2.1 Model set-up 

In this study, the CHIMERE model (Menut et al., 2013, Mailler et al., 2017) as improved in 

Couvidat et al. (2018) is used over two domains: (i) a domain (EU) encompassing Europe at 

0.5° x 0.25° regular resolution (LRE) over the 17°E – 40°W and 32°N – 70N window, and (ii) a 

nested domain (FR) centered over France at 0.09375° x 0.046875° regular resolution (HRE) 

over 5°E – 10°W and 41°N – 51.014625°N fed by the EU simulation (one-way nesting). The 

model configuration is summarized hereafter, but the reader can refer to the recent CHIMERE 

publications (Couvidat et al. 2018, Bessagnet et al., 2017, Mailler et al. 2017) for details on the 

corresponding model components and references as well as non-user-specific model 

characteristics. The particle size ranges from 10nm to 10µm over 9 bins according to these 

ranges from bin n°1 to bin n°9 which are respectively [10.00 nm - 22.01 nm], [2.20 nm - 48.43 
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nm], [48.43 nm - 106.7 nm], [106.7 nm - 234.7nm], [234.7 nm - 516.2 nm], [516.2 nm - 1.14µm], 

[1.14 µm - 2.50 µm], [2.5 mm - 5.0 µm], [5.0 µm - 10.0 µm]. In this study, the major PM species 

are considered: secondary inorganic aerosol (nitrate, sulfate and ammonium), secondary 

organic aerosols (anthropogenic and biogenic in origins), natural mineral dust, sea salt and 

Primary Particle Matter. 

Horizontal transport is solved with the second-order Van Leer scheme (van Leer, 1979). 

Subgrid scale convective fluxes are considered. Once the depth of the boundary layer is 

computed, vertical turbulent mixing can be applied following the k-diffusion framework after the 

parameterisation (without counter-gradient term) of Troen and Mahrt (1986) detailed in Menut 

et al. (2013). A minimal vertical eddy diffusion k is assumed with values of 0.01 m2 s-1 in the 

dry boundary layer and 1 m2 s-1 in the cloudy boundary layer. k is capped to a maximal value 

of 500 m2 s-1 to avoid unrealistic mixing. Above the boundary layer, a fixed value of 0.1 m2 s-1 

is used. The present setup also benefits from an improved representation of turbulent mixing 

in urban areas that yields lower horizontal wind and vertical mixing in order to better capture 

the difference between the urban canopy (where the first CHIMERE model level lies) and the 

top of the urban sublayer of which the lowermost meteorological model level is representative 

(Terrenoire et al. 2015). As an offline chemistry transport model, CHIMERE requires 

prescribed meteorological fields which were provided here by ECMWF with the Integrated 

Forecasting System (IFS) model at 0.125° resolution with data assimilation. Although the study 

is performed in a forecasting perspective, meteorological data are issued from reanalyzes. 

Emissions of the main pollutants are issued from EMEP (Cooperative programme for 

monitoring and evaluation of long range transmission of air pollutants in Europe) programme 

available at http://www.emep.int. Over France the spatialization of emissions is performed with 

a 1 km proxy based on the national bottom-up emission inventory (accessible at 

http://emissions-air.developpement-durable.gouv.fr/ ) that feeds the emission pre-processor of 

CHIMERE described in Mailler et al. (2017). 

 

2.2 Air quality simulations 

A complete CHIMERE simulation for the EU and FR domains is performed from 1st July 2010 

to 30 June 2011 (1 year) with a 10-day spin-up period in June 2010 for the initialization. As 

explained in Mailler et al. (2017), the CHIMERE simulation is divided in two main steps: 

- Step (1): A pre-processing to prepare intermediary files from raw data for meteorology, 

emissions, boundary conditions. This step consists in performing horizontal, vertical 

and time interpolations and calculation of diagnostic variables (e.g. the vertical mixing 

coefficient). So far, this step is computed in a sequential way using only one processor. 
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- Step (2): The core CHIMERE simulation, which uses the previous intermediary files, 

provides the main model outputs on an hourly frequency. This computing step is 

parallelized, but this step is the costliest and it can roughly represent 80 to 90% of the 

total computing time depending on the number of processors and the size and grid 

resolution of the domain. 

The increment methodology described hereafter is a two steps method with (i) a training part 

for a given version of the CHIMERE model on a given period (here 6 months in 2010) and (ii) 

an application part on another period of interest (here 6 months in 2011). All the programs are 

written in shell language using the NCO package (Zender et al., 2008) to efficiently handle 

output NETCDF files. The method is depicted in Figure 1 and fully explained in the next 

subsections. In this study, the two distinct periods are defined: 

- The “training period” from 1st July 2010 to 31 December 2010 where the “increment 

methodology” called FR_INC (applied over the FR domain) is trained to cover a large 

range of meteorological conditions: summer, winter and intermediate seasons. This 

“learning” process uses the CHIMERE simulation outputs and intermediary variables 

over the EU and FR domains (EU_LRE and FR_HRE simulations). 

- An “evaluation period” from 1st January 2011 to 30 June 2011, where the “increment 

technique” is evaluated against observations and compared with the high resolution 

CHIMERE simulation (FR_HRE). This period covers the full spring period with usual 

high PM concentrations in the western part of Europe. 

 

Figure 1: Synoptic scheme of the increment technique compared to the normal CHIMERE 
simulation over the EU and FR domains. All variables are explained in sections 2.3 and 2.4. 
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2.3 Principle of the increment methodology 

Based on atmospheric diffusion theory, potential determinants of urban increments and 

functional forms of their relationships have been hypothesized. Under neutral atmospheric 

conditions, the vertical diffusion of a non-reactive pollutant from a continuous point source can 

be described in general form through the following relationship (Amann et al., 2007, Seinfeld 

and Pandis, 1998): 

��� = 2���  Eq. 1 

with ��� (m2) indicating the variance of the vertical diffusion after a distance x from the source, 

k (m2 s-1) as the eddy diffusivity and u (m s-1) the wind speed. Considering this assumption, in 

Amann et al. (2011) the delta between urban and background concentrations ΔC of primary 

PM is given as: 

∆
 = √�√8�� � Eq. 2 

d is the characteristic length of the city, Q (µg m2 s-1) is the low level emissions of the city. This 

increment must be corrected to avoid emission double counting as explained in Amann et al. 

(2011). Based on Amann et al. (2011) and Amann et al. (2007), we consider in this study that 

a given fine cell can behave as a “city”. Then, the concentration delta (∆
) between a fine grid 

and a coarse grid simulation of a species concentration influenced by low level sources of 

primary pollutants can be extended with a revised predictor variable as: 

∆
 = � − 
 = � 1√�� ��√� − �√�� +  � 

d ∝ �����  D ∝ √�!�" 

Eq. 3 

- c and C (µg m-3) are respectively the concentrations at the fine grid point and 

interpolated from the coarse grid to the fine mesh, k is the vertical mixing coefficient 

(m2 s-1) at the fine grid, u is the 10m horizontal wind speed (m s-1) at the fine grid, δX, 

δY, δx, δy are respectively the coarse longitude, latitude and the fine longitude, latitude 

increments of the grids (°). In our study they are constant, but they can vary and for 

each fine grid cell an average value of the surrounding coarse grids can be used. 

- d and D are characteristic lengths respectively for the fine and coarse meshes, they 

correspond here to an average of the grid cells size 

- e and E (µg m-2 s-1) are respectively the low-level emission fluxes at the fine grid point 

and interpolated from the coarse grid. For the PM2.5 and PM10 concentrations, the 

sum of primary emissions is considered, for NO and NO2 the NOx emissions are 
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considered. In our methodology, the emissions of the two first level (sum of emissions 

approximatively below 30 m) of CHIMERE are taken into account.  

- α and β are coefficients integrating geographical, physical and chemical processes that 

are lost in the simplification process, they also account for unit changes. Note that β 

here has not the same meaning than in Amann et al. (2007, 2011), it is here residual 

value of the regression and would be expected to be close to 0. 

Differently to Amann et al. (2007) the vertical eddy diffusion k is not integrated in the α 

coefficient but included in the predictor 
#√$% ��√� − �√��, because this variable is calculated 

and stored during the CHIMERE preprocessing. Moreover, in our methodology E includes all 

low level emission sources in the coarse grid and can be eventually higher than e if the grid 

cell is in a remote areas surrounded by high emissions area. This change is to break the implicit 

assumption assumed in Amann et al. (2007, 2011) that background concentrations could be 

only influenced by the city emissions (here the high resolution grid cell). It is then noteworthy 

that in the case of a fine grid cell with low emissions compared to higher background 

concentrations the predictor could turn negative which makes intuitively sense while in Amann 

et al. (2007, 2011) the delta is always positive at it refers to a city implicitly influenced by lower 

background concentrations. 

The principle of our methodology is to calculate on a daily basis these two coefficients α and 

β for each fine grid cell on the “training” period where all the other variables are known. The 

previous formula (Eq. 3) is used for primary PM, NO and NO2 concentrations, the main 

assumption is to neglect chemistry processes that are partially included in α and β and also 

included in the low resolution CHIMERE outputs.  

2.4 Application of the methodology 

2.4.1 Treatment of PM2.5, PM10, NO2 and NO 

This “increment methodology” is then applied for PM2.5, PM10, NO2 and NO hourly ground 

concentrations over the “evaluation period” from 1st January to the 30 June 2011 with the α 

and β coefficients computed over the “training period” (Figure 1): 

�&,(∗ = 
&,( + ∆
&,( ∆
&,( = �&,( × ∆
+,,- +  �&,( 

∆
+,,- = 1��&,(�&,( ��&,(√� − �&,(√�� 

Eq. 4 

with c* the concentration on the fine mesh determined by the increment technique, C the 

interpolated coarse grid concentration on the fine mesh, i and j referring to the coordinates 

indexes of a given fine mesh grid cell. ∆
.  is the predictor variable and ∆
 the increment value 
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applied to the background concentration value C as discussed in the previous section. The 

other variables were previously defined, e, E, k and u are computed during the first step of the 

CHIMERE preprocessing as depicted in Figure 1. 

2.4.2 Special treatment for Ozone 

For a secondary pollutant like ozone involved in a non linear chemistry scheme, the previous 

formulas (Eq. 3 and Eq. 4) based on delta of concentrations are not suited. During et al. (2011) 

proposed a simplified stationary model to estimate ozone and NO2 concentrations influenced 

by low level sources like traffic emissions. The main two equations of the ozone chemistry 

involving NOx and Ozone are: 

/0 + 01    $2   3445 /0� + 0� 

/0�    6   345 /0 + 01 

with J (s−1) the photolytic frequency of NO2, kr (ppb−1 s−1) the kinetic rate. The differential 

equations describing the reactions of NO2, NO, and O3 with a diffusion term due to transport 

and mixing gives: 

�[01]�9 = −�:[/0] ∙ [01] + < ∙ [/0�] + [01]= − [01]>  Eq. 5 

The first two terms on the right side describe the chemical transformation by thermal and 

photochemical reactions. The last term describes the mixing as a function of concentration 

differences between a background concentration (index B) and the point at which the 

concentration should be calculated (here on the fine mesh). In a stationary regime assumption 

with �[01] �9⁄ = 0 the equation gives for ozone concentration the approximation �̃ : 

�̃[BC] = D>�[EBF] + 
[BC]G1 + >�:�[EB]  

> = H�����8��  

D = 1.47 × 10LMNOP� − 4.84 × 10LQNOP�� �: = 3.9 × 10LT UUV L#NL# 

Eq. 6 

 


[BC]G is the interpolated concentration over the fine grid of the low resolution concentrations 

(EU_LRE), �[EBF] and �[EB] are the concentrations over the fine mesh (FR). > is defined in 

Amann et al. (2007) as a simplification of diffusion for a box model as previously discussed, ����� is an average characteristic length of the grid cell. We considered here j as a polynomial 



10/26 
 

function of the short wave radiation swrd (W m-2) as reported in Trebs et al. (2009) for low 

altitude sites considering an albedo equal to zero. Here we assumed the kinetic rate kr to be 

constant. A statistical method similarly to primary pollutants is implemented, two coefficients α 

and β are computed over the training period: 

�[WC] = � × �̃[BC] + � Eq. 7 

Over the training period �[WC] is known and �̃[BC] can be calculated each hour then α and β are 

calculated using a simple linear regression for each grid points on a daily basis. This technique 

suppresses systematic biases and accounts for missing processes due to the simplifications. 

Afterwards, over the evaluation period α and β are applied over hourly concentrations for each 

grid cell (i,j), then the final ozone concentration c* is simply computed as: 

�[BC]X,Y∗ = �&,( × �̃[BC]X,Y + �&,( Eq. 8 

 

2.4.3 Regression coefficients 

To avoid any overshoots when applying the methodology on hourly values, concentrations and 

delta of concentrations are capped according values reported in Table 1. 

 ΔC Limit inf ΔC Limit sup c* limit inf Unit 

NO2 -5 +50 0.1 ppb 

NO -5 +75 0.01 ppb 

PM10 -5 +50 1.0 µg m-3 

PM2.5 -5 +40 0.75 µg m-3 

O3 - - 0.1 ppb 

Table 1: Limits of concentrations to avoid overshoots when applying the increment technique 
on hourly values 

In the supplementary material Figure S1, the α (slope), β (intercept) coefficients and the 

Pearson correlation of the linear regression calculated over the “training” period are reported 

for all pollutants. For each grid cell the coefficients are calculated using 184 daily values (6 

months). The median correlations over the FR domain are 0.31, 0.33, 0.35 and 0.98 

respectively for PM2.5, PM10, NO2 and O3 with generally higher values over urban areas. The 

low correlations result from the averaging process over the whole domain where low absolute 

values in remote areas deteriorate the statistic errors. The correlation is the highest for ozone 

since the linear regression is based on the absolute concentrations mainly driven by the 

background values and not a delta of concentrations as for primary pollutants. The α coefficient 

is generally below 1 confirming the tendency that the high resolution simulation produces lower 

concentrations compared to the low resolution run. 
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3 Results and discussion 

3.1 Evaluation of the increment methodology 

For the European domain (EU), background PM2.5, PM10, NO2 and O3 observational data are 

retrieved thanks to the EMEP-EBAS database (Tørset et al., 2012). The increment 

methodology can be evaluated against the raw CHIMERE simulation and observations over 

the FR domain for the 1st January – 30 June 2011. The French GEOD’AIR database provides 

hourly concentrations for all stations over France (available online at https://www.geodair.fr/). 

All background observations are used on a daily basis for the main pollutants: Ozone, NO2, 

PM2.5 and PM10. Urban, periurban and rural stations are considered, daily maximum 

concentrations are only considered for Ozone. In this paper, periurban and rural are lumped 

into the category “rural” to better isolate the “urban” signal. Only the French data are 

considered for the evaluation over the FR domain as we benefit from the most accurate 

emission data only in France since a bottom-up emission proxy is used over this country. 

 

Figure 2 : Maps of mean PM10, PM2.5, NO2 and O3 concentrations over the 1st January – 30 
June 2011 period for the CHIMERE low resolution simulation at the European scale (EU_LRE). 
Filled circles represent the rural background observation sites issued from the EBAS database. 

At the European scale (Figure 2), CHIMERE is able to retrieve the main patterns of air pollution 

with the highest concentrations of PM over the Benelux, south of Poland and the north of Italy. 

The agreement with observations is rather good for PM2.5 concentrations over Spain and UK 

with a clear underestimation over Benelux. The underestimation of PM is commonly observed 
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in air quality modelling due to the underestimation of emissions (wood burning issue in winter) 

and weaknesses of models to represent high concentrations of ammonium nitrate during the 

early spring period (Bessagnet et al., 2016). For O3 and NO2 concentrations the model 

reproduces quite well the observations. Ozone concentrations are usually lower nearby 

emission areas and the highest over the sea due to accumulation effects and weak deposition 

over water bodies (confirmed by observations in Malta, Cyprus and Crete), and altitude sites 

(Massif Central in France and Alps) due to transport of ozone from the free troposphere. 

 

 

Figure 3: Maps of mean PM10 and PM2.5 concentrations over the 1st January – 30 June 2011 
period for the increment methodology FR_INC (right column) and the CHIMERE high 
resolution simulation FR_HRE (left column). On the left side: circles and squares filled symbol 
refer to observations respectively for urban and rural sites. On the right side: bold “triangle up” 
and “plus” symbols are plotted respectively for rural and urban sites when the increment 
methodology provides a better Root Mean Square Error compared to the CHIMERE high 
resolution, bold “triangle down” and “minus” symbols are plotted respectively for rural and 
urban sites when the increment methodology provides a worse Root Mean Square Error 
compared to the CHIMERE high resolution. 
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Figure 3 and Figure 4 show the added value on air quality simulations when using a higher 

horizontal resolution. Clearly, the regional patterns computed at low resolution are important 

drivers of the fine resolution outputs for PM and Ozone, however a urban signal is clearly 

identified for the major cities and in some Alpine valleys mainly due to the effect of stagnant 

conditions. 

Table 2 reports global error statistics of pollutant concentrations for the three models at urban 

and rural sites over the 1st January – 30 June 2011, (i) the increment methodology applied 

over the FR domain (FR_INC), (ii) the CHIMERE high resolution simulation (FR_HRE) and (iii) 

the CHIMERE low resolution simulation (EU_LRE). The Pearson correlations are rather good 

for the raw CHIMERE simulations generally in the range 0.7 to 0.8 for most of pollutants. 

However, the highest PM concentrations in winter and early spring are underestimated (Figure 

5). For NO2, differences are clearly identified over the cities and along the major road lines, 

the root mean square error is systematically improved for this species using a higher resolution 

(Table 2) mainly due to a reduction of the bias. Ozone concentrations are on average lower 

using a higher resolution, this is a usual behavior due to the non-linearities in chemistry 

processes (2nd order kinetic reactions involving ozone). 

For all pollutants the increment methodology provides very similar results compared to the high 

resolution simulation, the patterns of mean values over the evaluation period are very close 

and the average timeseries for all stations in France (Figure 5) confirm this statement all along 

the period particularly for PM. For NO2 concentrations, the increment methodology provides 

higher NO2 concentrations over urban areas particularly in winter with coherent lower ozone 

concentrations due to the titration effect with NO2. For all pollutants, the bias is improved by 

the increment methodology with a slight improvement of the Root Mean Square Error while the 

correlation is sometimes slightly impaired or improved. These results are very satisfactory and 

could be surprising taking into consideration the simplicity and rough assumptions of this 

methodology. For PM, the method produces better root mean square errors over the Paris 

region. The number of data used (e.g. up to 39 520 daily values for NO2) for the evaluation and 

the diversity of site locations in France is large enough to consider these results statistically 

representative, a deficiency of the method should have appeared in the error statistics. In the 

supplementary material, the Quantile-Quantile plots show these good performances 

particularly for the highest values (Figure S2 in supplementary material). The main 

discrepancies of this technique occur for maximum ozone concentrations which become 

slightly underestimated however this behavior can be explained by the technique that is based 

on daily values and applied over hourly values with certainly a tendency to smooth the extreme 

values. However, this smoothing effect is not as large as expected and could be suppressed 

in the future by some improvements of the methodology. Moreover, for the extreme values, 



14/26 
 

the increment technique provides better performances with values closer to the observations 

at rural and urban stations compared to the FR_HRE CHIMERE simulation (Figure S3 in 

supplementary material). This smoothing effect certainly helps the model to avoid some 

overshoots due to the extreme sensitivity of this type of air quality model like CHIMERE to the 

parameterization of the vertical diffusion coefficient which can be set to an arbitrary minimum 

value inducing unrealistic stagnant conditions. 

 

Figure 4: Maps of mean NO2 and O3 concentrations over the 1st January – 30 June 2011 period 
for the increment methodology FR_INC (right column) and the CHIMERE high resolution 
simulation FR_HRE (left column). On the left side: circles and squares filled symbol refer to 
observations respectively for urban and rural sites. On the right side: bold “triangle up” and 
“plus” symbols are plotted when the increment methodology provides a better Root Mean 
Square Error compared to the CHIMERE high resolution, bold “triangle down” and “minus” 
symbols are plotted when the increment methodology provides a worse Root Mean Square 
Error compared to the CHIMERE high resolution. 

In Figure S4 of the supplementary material additional information regarding a comparison of 

the delta of concentration between the increment methodology and the reference high 
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resolution simulation (respectively INC – LRE versus HRE – LRE) is provided. The overall 

statistic parameters are satisfactory with a slope close to 1 and a correlation coefficient 

between 0.69 for O3 to 0.84 for NO2. As anticipated and expected, the intercept is low close to 

0. The delta on absolute values represents in the model values from 8 (for O3) to 12 % (for 

PM) of the total concentration on average. However, for NO2 concentrations it represents up 

to 72% in our increment methodology on average compared to 54% in the HRE simulation. 
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Figure 5: Timeseries of daily mean PM10, PM2.5, NO2 and O3 concentrations for the increment 
methodology FR_INC, the CHIMERE high resolution simulation FR_HRE and the CHIMERE 
low resolution simulation EU_LRE mediated at all urban and rural sites over the 1st January – 
30 June 2011 period. 



17/26 
 

 

   Obs.* Pred.* Bias* RMSE* Cor. Numb.  

Species Method Typology   

PM10 

FR_INC 

rur 25.73 
15.87 -9.85 13.78 0.77 

10 233 FR_HRE 15.16 -10.56 14.23 0.78 
EU_LRE 15.64 -10.09 13.69 0.80 
FR_INC 

urb. 27.85 
16.84 -11.01 15.06 0.75 

29 987 FR_HRE 15.93 -11.92 15.69 0.75 
EU_LRE 15.44 -12.41 15.76 0.78 

PM25 

FR_INC 

rur. 17.69 
12.55 -5.13 8.99 0.83 

1 565 FR_HRE 12.51 -5.18 9.18 0.82 
EU_LRE 13.86 -3.82 8.19 0.83 
FR_INC 

urb. 20.60 
16.52 -4.08 10.30 0.76 

10 987 FR_HRE 15.64 -4.95 10.54 0.77 
EU_LRE 15.09 -5.50 9.98 0.82 

NO2 

FR_INC 

rur. 9.65 
8.96 -0.69 5.57 0.68 

13 572 FR_HRE 7.92 -1.74 5.26 0.71 
EU_LRE 6.21 -3.45 6.47 0.61 
FR_INC 

urb. 13.04 
11.70 -1.33 7.47 0.63 

39 520 FR_HRE 10.13 -2.91 7.28 0.64 
EU_LRE 6.41 -6.62 8.86 0.64 

O3 

FR_INC 

rur. 29.92 
29.67 -0.24 7.30 0.81 

28 193 FR_HRE 30.39 0.47 7.24 0.80 
EU_LRE 31.56 1.65 7.54 0.79 
FR_INC 

urb. 26.93 
27.95 1.02 7.59 0.77 

34 977 FR_HRE 28.64 1.70 7.61 0.78 
EU_LRE 31.11 4.18 8.07 0.81 

O3
max 

FR_INC 

rur. 44.27 
40.52 -3.75 8.82 0.86 

28 618 FR_HRE 42.89 -1.38 8.07 0.85 
EU_LRE 43.60 -0.67 7.59 0.86 
FR_INC 

urb. 41.92 
39.54 -2.38 8.50 0.85 

35 412 FR_HRE 42.25 0.33 7.96 0.85 
EU_LRE 43.33 1.42 7.94 0.85 

* µg m-3 for PM and ppb for gases 

Table 2 : Global error statistics for pollutants concentrations (O3
max is the daily maximum) for 

the increment methodology (FR_INC), the CHIMERE high resolution simulation (FR_HRE) and 
the CHIMERE low resolution simulation (EU_LRE) at urban (urb.) and rural (rur.) sites over the 
1st January – 30 June 2011 period. Obs. and Pred. are the mean values. Biases, Root Mean 
Square Error (RMSE) and space and time correlation (Cor.) are based on daily mean values. 
Bold values are identified to highlight when FR_INC performs as good as or better than the 
CHIMERE simulation FR_HRE. Refer to Appendix 1 for the definition of error statistics 
indicators. 
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3.2 Possible improvement of the methodology 

This first version of the methodology already provides very good results. Such a technique 

based on first order linear regressions with some selected main physics and chemistry 

equations is sufficient to provide results as accurate as a usual simulation embedding much 

more detailed processes. Some improvements will be considered in the next version by 

investigating the following considerations: 

- The use of a 2nd order (or higher) linear regression could be tested for the incremental 

formula defined in section 2.4 such as: 

∆
&,( = �&,( + �&,( × ∆
+,,- + Z&,( × ∆
+,,-�
 Eq. 9 

with α, β and γ the regression coefficients for grid cell (i,j). 

- For ozone, an improvement of the technique depicted in section 2.4.2 could be 

performed by the use of a multi variable methodology involving at least two predictors 

(the terms between brackets in Eq. 10): 

�[BC]X,Y∗ = �&,( + �&,( × [ D>�[EBF]1 + >�:�[EB]\ + Z&,( × [ 
[BC]G1 + >�:�[EB]\ Eq. 10 

with α, β and γ the regression coefficients for grid cell (i,j). 

- The regression techniques could also be defined per quantile of concentrations to 

improve the results on extreme concentrations. 

- More meteorological variables could be implemented in the regression formulas to 

improve the robustness of the methodology. 

- Ozone and nitrogen oxides could be treated by a single methodology to better accounts 

for their chemical interactions. 

The methodology deserves to be tested on finer meshes up to 1 km resolution with an 

adequate bottom-up emission inventory to confirm these encouraging results and evaluate the 

linearity of scale dependency. One must keep in mind that the technique must remain simple 

to make it fast, robust, and the current results are already totally satisfactory for various uses. 

So far, as it is currently designed, the technique can be applied for short term forecasts, 

analysis of episodes, long term simulation of past years for mapping. For emission reduction 

analyses the method is expected to work only for primary PM because primary emissions of 

PM are taken into account in the methodology. For ozone and more generally secondary 

pollutants, it could be less straightforward since the change of chemical regime and the VOC 

(Volatile Organic Compound) chemistry will be not sufficiently considered in the increment 

technique even through the statistical corrections. However, the sensitivity to emissions and 
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meteorological changes is partially contained in the regression coefficients through the 

diversity of situations encountered over the “training” period. 

 

4 Conclusions 

A surrogate model of the CTM CHIMERE has been designed to downscale a low horizontal 

resolution simulation to a finer resolution. This first version of this methodology is based on a 

training process over a 6-months period and applied over the subsequent 6 months with an 

evaluation against the performances of the raw CHIMERE simulation at high resolution. 

Definitively, our methodology is able to capture the main patterns and evolution of daily 

concentrations for the main pollutants, and the gain in computing time is very important since 

the costliest step of the simulation process is by-passed. Performances based on an evaluation 

against observations are similar to those obtained by the raw model simulations with CHIMERE 

at high resolution. Performances are even sometimes better certainly due to smoothing effects 

that suppress some overshoots due to the sensitivity of the model to the parameterizations of 

the eddy diffusion. Indeed, the vertical diffusion is a very sensitive parameter in CTMs, this 

coefficient is so sensitive that it is caped in all models and this bounding already results from 

a kind of ‘learning’ process as it derives from the experience of the model developer during the 

calibration phase. 

In its current state, the methodology can work for short-term air quality forecasts, case studies 

and air quality concentration mapping. To extend its use to emission reduction assessment, 

the model could be improved (particularly for Ozone) by (i) implementing new variables 

available in the CHIMERE pre-processing, (ii) increasing the order of the linear regression or 

(ii) the use of multivariable regressions. However, this type of methodology mixing statistics, 

physics and chemistry is promising and could be run on mono-processor devices and gain a 

lot of computing time. While the core CHIMERE simulation (step 2) can last several days 

depending on the number of cores and resolution, only few minutes is sufficient to perform a 

high resolution simulation with the increment technique, therefore a minimum of 100 to 1000 

less computing times is expected for this step. The training process with NCO procedures lasts 

about 3 hours in our case to fit the regression parameters and this could be optimized with 

other programming languages. This could open rooms to new fields of research and 

operational uses in air quality modelling that was so far limited by computing time. These 

findings will also encourage the CHIMERE development team to parallelize the CHIMERE 

preprocessing (step 1) to fully take advantage of this technique. 
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Appendix 1 

Error statistics used to evaluate model performance (M and O refer respectively with Model 
and Observations data, and N is the number of observations) 

Bias ] _̂ − 0̀a  with _̂ = #E ∑ &̂E&c#  and 0̀ = #E ∑ 0&E&c#  

Root Mean 

Square Error 
d^e� = f1/ g] &̂ − 0&a�E

&c#  

Correlation 

Coefficient 
d = [g] &̂ − _̂a]0& − 0̀aE

&c# \ hifg] &̂ − _̂a�E
&c# × g]0& − 0̀a�E

&c# jkl  
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