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POLICY BRIEF

Effect-based methods are key. The European 
Collaborative Project SOLUTIONS recommends 
integrating effect-based methods for diagnosis 
and monitoring of water quality
Werner Brack1,2* , Selim Ait Aissa3, Thomas Backhaus4, Valeria Dulio3, Beate I. Escher1,5, Michael Faust6, 
Klara Hilscherova7, Juliane Hollender8, Henner Hollert2, Christin Müller1, John Munthe9, 
Leo Posthuma10,11, Thomas‑Benjamin Seiler2, Jaroslav Slobodnik12, Ivana Teodorovic13, Andrew J. Tindall14, 
Gisela de Aragão Umbuzeiro15, Xiaowei Zhang16 and Rolf Altenburger1,2

Abstract 

The present monitoring and assessment of the chemical status of water bodies fail to characterize the likelihood that 
complex mixtures of chemicals affect water quality. The European Collaborative Project SOLUTIONS suggests that this 
likelihood can be estimated with effect‑based methods (EBMs) complemented by chemical screening and/or impact 
modeling. These methods should be used to identify the causes of impacted water quality and to develop programs 
of measures to improve water quality. Along this line of reasoning, effect‑based methods are recommended for 
Water Framework Directive (WFD) monitoring to cover the major modes of action in the universe of environmentally 
relevant chemicals so as to evaluate improvements of water quality upon implementing the measures. To this end, 
a minimum battery of bioassays has been recommended including short‑term toxicity to algae, Daphnia and fish 
embryos complemented with in vitro and short‑term in vivo tests on mode‑of‑action specific effects as proxies for 
long‑term toxicity. The likelihood of adverse impacts can be established with effect‑based trigger values, which differ‑
entiate good from poor water quality in close alignment with Environmental Quality Standards for individual chemi‑
cals, while taking into account mixture toxicity. The use of EBMs is suggested in the WFD as one avenue to establish 
the likelihood of adverse effects due to chemical pollution in European water systems. The present paper has been 
written as one component of a series of policy briefs to support decisions on water quality monitoring and manage‑
ment under the WFD.
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Challenge
In line with the EU strategy for a non-toxic environ-
ment [1], the Organisation for Economic Co-operation 
and Development (OECD) Council Recommendation 
on Water [2] and the Sustainable Development Goals 
by the United Nations [3], protecting water resources 

from contamination with toxic substances is a major 
task of water quality assessment and management. 
Water quality assessment according to the European 
Water Framework Directive [4] is presently based on 
chemical analysis of 45 Priority Substances (PS) [5] 
to assess the chemical status together with different 
sets of River Basin-Specific Pollutants (RBSP) defined 
nationally, currently a total of approx. 300 in the dif-
ferent EU member states. It has been demonstrated 
that these substances reflect only a (site-specific and 
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typically unknown) fraction of the overall chemical 
risk [6] and mixture risks are not considered. Thus, the 
current approach is insufficient to estimate the like-
lihood that chemical contamination causes harm to 
human health or aquatic ecosystems, and to develop 
programs of measures to reduce chemical pollution 
impacts. In the WFD, chemical pollution is defined as 
any chemical or mixture that poses harm (Article 2).

European surface waters contain tens to hundreds of 
thousands of chemicals including pesticides, biocides, 
pharmaceuticals, surfactants, personal care products 
and many more together with numerous transforma-
tion products. These chemical cocktails may pose 
a risk to ecosystems and raise concerns for human 
health if water resources are used for drinking water 
production, fishing and recreation. The focus on PSs 
and RBSPs encourages reduction in their use, but 
replacement of these substances by alternatives that 
pose similar hazards is an unresolved problem. Chemi-
cal monitoring of a few selected individual chemicals 
is and will increasingly be less informative for identify-
ing the likelihood that chemical mixtures pose harm, 
whilst the probability of overlooking significant risks 
is high and increasing. As a result of the application 
of management measures, prioritized chemicals tend 
to be replaced by non-prioritized (non-regulated) ones 
that have often similar effects. This process increases 
the relative contribution of non-prioritized chemi-
cals to the overall risk. A strategy that would focus on 
monitoring the concentrations of all chemicals on the 
market would practically fail. The logical solution for 
taking into account missing, and potentially harmful, 
chemicals would be to use integrative methods to eval-
uate the likelihood of complex mixtures causing harm.

Thus, the challenge is to characterize chemical pol-
lution in a comprehensive way with limited resources, 
such that the impact of chemical pollution can be diag-
nosed, that risks to ecosystems and human health can 
be prevented, that resources for safe drinking water 
production can be protected with limited treatment 
costs, and that improvements through programs of 
measures can be monitored.

Recommendations

• Implement effect-based methods (EBM) techniques 
to improve the “Analysis of Impacts” (diagnosis) 
under WFD-Annex II to (a) support water manage-
ment with adequate information on the risks posed 
by the ‘universe of chemicals’ [7], and (b) enable 
monitoring of the success of programs of measures 
in improving water quality. EBMs are bioanalytical 
methods using the response of whole organisms (in 

vivo) or cellular bioassays (in vitro) to detect and 
quantify the effects of groups of chemicals on toxi-
cological endpoints of concern. EBMs are helpful

– For detecting the effects of mixtures of com-
pounds in water resources and demonstrating 
their potential to affect aquatic organisms and 
human health,

– For minimizing the risk of overlooking hazardous 
chemicals, transformation products and chemical 
mixtures,

– For detecting hot spots of contamination for inves-
tigative monitoring,

– For identifying risk drivers and prioritizing them 
for management measures,

– For linking chemical and ecological status.

• Use the guidance on available EBMs to integrate the 
EBMs into a solution-oriented water quality assess-
ment and monitoring strategy to support River Basin 
Management Planning

• Use a battery of bioassays covering major (eco)
toxicological endpoints, which can be achieved by 
employing

– Apical bioassays representing at least fish (96 h fish 
embryo acute toxicity), invertebrates (48 h daphnia 
immobilization) and algae (72 h inhibition of popu-
lation growth) considered as Biological Quality Ele-
ments (BQE) for pelagic communities under the 
WFD and

– In vitro assays addressing specific modes of action 
(MoA), such as specific assays addressing endo-
crine disruption, mutagenicity and activation of cel-
lular defense mechanisms.

• Apply sample enrichment before applying EBMs to 
separate organic micropollutants from other matrix 
components and to increase sensitivity of EBMs 
so that robust data based on concentration-effect 
models are derived and detection limits for hazard-
ous chemicals equivalent to Environmental Quality 
Standards (EQS) of PS and RBSP are achieved.

• Adopt regulatory frameworks supporting EBM appli-
cation for diagnosing whether or not complex mix-
tures are impacting water quality and for monitoring 
in a way that not only addresses currently estab-
lished effects but also allows for tackling endpoints of 
emerging concern. This is necessary since it may be 
expected that opening monitoring for EBMs will trig-
ger the development of new cost-efficient methods 
that will address MoAs that are not yet covered.
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• Use EBMs for identifying the need for abatement 
measures and assessing their efficiency. If EBMs indi-
cate unacceptable risks, decisions on measures can 
be taken without knowing the individual drivers of 
the risk. Examples are the observation of enhanced 
toxicity downstream of the discharge of effluents that 
may be abated with improved treatment technolo-
gies using advanced oxidation processes or activated 
carbon or toxicity abatement downstream of agricul-
tural areas by applying extended buffer strips along 
the stream. The comparative application of EBMs 
upstream and downstream the discharge indicates 
the success of the measure in a cost-efficient way 
without the identification of individual chemicals. 
Moreover, the WFD suggests combining Lines of Evi-
dence, whereby EBM results can be combined with 
other approaches such as emission inventories, pol-
lutant concentration measurements and ecological 
monitoring data.

• Use effect-directed analysis (EDA) if EBMs indicate 
unacceptable risks that are expected to be driven by 
site-specific chemicals for example from industrial 
processes that should be better avoided or treated at 
the source rather than with end-of-pipe treatment. 
A comprehensive overview on available EDA tools is 
available [8].

• Combine EBMs with chemical analytical screening at 
priority sites for the identification of important risk 
drivers at a larger scale, contamination trends, newly 
emerging chemicals and spills to prioritize chemicals 
for regulation and as integrated early warning tools 
for upcoming pollution problems.

Requirements
Integrating EBMs into both diagnosis (Annex II) and/or 
surveillance, operational and investigative monitoring for 
water quality management requires:

• Recognition that—given current concerns on water 
quality and adverse trends as well as the WFD defi-
nition of ‘pollution’ related to all chemicals—it is 
required to employ methods that enable the evalua-
tion of the hazards of the whole ‘universe of chemi-
cals’ where needed;

• Recognition that effect-based monitoring is one of 
the operationalized methods providing information 
along one of the lines of evidence mentioned in the 
WFD (Annex II) to evaluate the likelihood of harm of 
complex mixtures (diagnosis);

• Agreement on and the establishment of a coher-
ent battery of bioassays in order to cover modes of 

actions of all chemical groups considered to poten-
tially pose harm to ecosystems and human health. 
This is supported by the experience and expertise 
in SOLUTIONS and the NORMAN network on 
emerging substances;

• (Further) standardization of EBM-test systems with a 
focus on robust, small-volume and high-throughput 
assays to facilitate practices;

• Agreement on and use of effect-based trigger values 
to assist in interpretation of effect-based monitoring 
for all EBMs in relation to the need to characterize 
the likelihood of posing harm;

• Acknowledging and expanding the demonstration 
and evaluation of EBMs in practice-oriented case 
studies;

• The design of a roadmap to support the consistent 
and useful implementation, and interpretation of 
EBMs for the purposes of the WFD, covering both 
the use of EBMs to diagnose the impacts of com-
plex mixtures on current water quality as well as to 
improve surveillance, operational and investigative 
monitoring of complex mixtures in European water 
bodies.

Achievements
Compilation of a battery of bioassays
A wide range of EBMs has been applied successfully 
for both diagnostic and monitoring purposes to assess 
the likelihood of impacts of chemical pollution, most of 
them in a scientific development context for establishing 
robust and meaningful EBM-tools. These activities pro-
vided substantial progress towards the compilation of a 
useful battery of bioassays. First, a comprehensive analy-
sis of about 1000 typical water contaminants identified 
31 major MoA categories while for a substantial fraction 
(37%) of the compounds no information on MoAs was 
available [9]. Second, MoA-specific in vitro assays fit for 
the purpose of environmental diagnosis and monitoring 
are available for receptor-mediated endocrine effects, 
genotoxicity and mutagenicity, activation of metabolism, 
adaptive stress responses, photosynthesis inhibition and 
cell line-specific cytotoxic effects [10–12]. Thus, in vitro 
assays address well-described MoAs with known envi-
ronmental relevance as proxies for long-term effects, 
although not all potentially relevant effects are covered 
with present test systems. To also cover chemicals with 
unknown and non-specific MoAs as well as with MoAs 
that cannot be addressed with existing MoA-specific 
in  vitro assays and to detect specific impacts on the 
WFD-Biological Quality Elements, it is recommended 
to complement these assays with apical short-term tox-
icity bioassays representing at least fish (fish embryo 
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toxicity), invertebrates (immobilization of daphnia) and 
algae (inhibition of cell multiplication), which represent 
BQEs for pelagic communities in WFD (Fig. 1). Amongst 
the MoA-specific in  vitro assays, priority of application 
should be given to endocrine disruption and mutagenic-
ity. Dioxin-like effects should be analyzed particularly in 
sediments [13], biota [14] and equilibrium passive sam-
plers [15], since typical drivers of these effects are very 
hydrophobic and accumulate in these matrices.

Standardization and utility of test systems
In SOLUTIONS and the NORMAN network, we pro-
posed a test battery of in vitro and in vivo bioassays and 
published standard operating procedures [12, 16]. The 
utility of EBMs is found in both the diagnosis and assess-
ment of impacts on ecological status (cf. WFD Annex II) 
and the monitoring water quality status and trends (WFD 
Annex V).

Availability of robust enrichment tools
Solid-phase extraction (SPE) was found to be a suit-
able sample preparation method for environmental water 
samples that are to be tested in the aforementioned bioas-
says, with effect recovery by current SPE methods similar 
to recovery of individual chemicals by chemical analysis 
[17]. While sample enrichment is always restricted to an 
application domain with respect to the physicochemical 
properties of the chemicals, the “effect recovery” experi-
ments indicated that for the typically applied co-polymer 
sorbents this domain is sufficiently broad to extract a 
large share of the overall toxicity of organic chemicals 
in water [17]. Metals and other inorganic chemicals are 
not addressed and need to be monitored separately. A 
robust mobile large-volume SPE has been developed 
for the use in the field, which avoids the transportation 
of large water volumes to the laboratory for enrichment 
[18] and allows for time-integrated as well as event-based 

sampling. Equilibrium passive sampling may be useful 
to concentrate hydrophobic chemicals in a biomimetic 
manner for subsequent EBM application [15]. For screen-
ing purposes, samplers for more hydrophilic compounds 
can also be used [15, 19].

Demonstration and evaluation in case studies
In SOLUTIONS, EBMs were applied in a series of case 
studies, where it was possible to characterize the likeli-
hood that complex mixtures present in water systems 
pose specific (MoA-related) harm to the Biological Qual-
ity Elements, along a river stretch [20], around waste-
water treatment plants [21, 22] and close to inflows of 
untreated wastewater [23]. For the selected types of 
example sites, mutagenic, estrogenic, androgenic and 
anti-androgenic effects could be established as markers 
for the likelihood that treated and untreated wastewater 
affects aquatic life. In addition, the methods allowed the 
impact of wastewater effluents on surface water quality 
to be estimated and the overall effects of chemical pollu-
tion on aquatic life and thus water quality to be assessed. 
The methods helped identify damage and associated 
causes (diagnosis, Annex II) in support of water quality 
management. Examples are the detection of strong anti-
androgenic effects in the River Holtemme (Germany) and 
the identification of the fluorescence dye coumarin 47 as 
the cause of this effect [24], the detection of mutagenic-
ity in the Rivers Mulde and Rhine and the identification 
of diaminophenazines [22] and synergistic effects of aro-
matic amines with natural alkaloids [25] as mutagenicity 
drivers. These examples may also underline how moni-
toring (Annex V) with EBM’s can help evaluate status 
and trends.

Quality/performance criteria for the benchmarking 
of estrogenicity bioassays have been recently investi-
gated in an inter-laboratory comparison study [26]. In 
a Europe-wide demonstration program supported by 
SOLUTIONS, the NORMAN network, the Swiss Centre 
for Applied Ecotoxicology and the Joint Research Centre 
of the European Commission, the reliability of EBMs for 
screening of estrogenic compounds was analyzed to har-
monize monitoring and data interpretation methods, and 
to contribute to the current WFD review process. Sur-
face water and wastewater samples were collected across 
Europe and analyzed using chemical analyses and EBMs. 
The study demonstrated that the inclusion of effect-based 
screening methods into monitoring programs for estro-
gens in surface waterbodies is a valuable complement to 
chemical analysis because of the lower LODs of the EBMs 
in comparison to chemical analysis [27, 28]. Based on the 
results and achievements of SOLUTIONS and the NOR-
MAN network, such comprehensive case studies should 
also be performed for other modes of action.

Fig. 1 Recommended test battery of in vivo (orange) and in vitro 
(green) bioassays. ER estrogen receptor, AhR aryl hydrocarbon 
receptor
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Development of effect‑based trigger values (EBT)
Effect-based trigger values (EBT) have been developed 
for many EBMs. EBTs are expressed as bioanalytical 
equivalent concentrations (BEQ) and can be read across 
from existing EQS values for single chemicals. EBTs basi-
cally define an acceptable level of effect (translated into 
EBT-BEQ), in close alignment with the WFD protection 
goals and concentration-based Environmental Quality 
Standards (EQS), which proved to be useful for interpret-
ing EBM-results in relation to the likelihood to pose harm 
[28, 29]. Bioassay-specific EBTs were derived by translat-
ing individual annual average (AA)-EQS for single domi-
nant chemicals such as estrogens into EBT-BEQs [26, 
28, 29], by ecological considerations and application of 
species sensitivity distributions [30] or by reading across 
from all existing EQSs using a transparent algorithm that 
does not require any user assumptions or judgements 
about the data [29]. The latter EBT-derivation method 
targets undefined mixtures acting according to a specific 
MoA. In contrast to EQSs, EBTs consider all chemicals 
in a mixture contributing to measured effect. Thus, this 
approach does not require individual guideline values for 
all mixture components of a mixture. Bioassay-specific 
EBTs are key for the interpretation of results from water 
quality assessment, as effects below the corresponding 
EBT indicate a low likelihood that the chemical mixtures 
pose harm whilst exceedance implies increasingly clear 
indications for harm to aquatic life. Importantly, the pro-
posed approach can be applied to any bioassay provided 
there are sufficient effect data available.
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