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Non-alcoholic fatty liver disease (NAFLD) represents a wide spectrum of disease,
ranging from simple fatty liver through steatosis with inflammation and necrosis to
cirrhosis. One of the most challenging problems in biomedical research and within the
chemical industry is to understand the underlying mechanisms of complex disease, and
complex adverse outcome pathways (AOPs). Based on a set of 28 steatotic chemicals
with gene expression data measured on primary hepatocytes at three times (2, 8, and
24 h) and three doses (low, medium, and high), we identified genes and pathways,
defined as molecular initiating events (MIEs) and key events (KEs) of steatosis using
a combination of a time series and pathway analyses. Among the genes deregulated
by these compounds, the study highlighted OSBPL9, ALDH7A1, MYADM, SLC51B,
PRDX6, GPAT3, TMEM135, DLGDA5, BCO2, APO10LA, TSPAN6, NEURL1B, and
DUSP1. Furthermore, pathway analysis indicated deregulation of pathways related to
lipid accumulation, such as fat digestion and absorption, linoleic and linolenic acid
metabolism, calcium signaling pathway, fatty acid metabolism, peroxisome, retinol
metabolism, and steroid metabolic pathways in a time dependent manner. Such
transcription profile analysis can help in the understanding of the steatosis evolution
over time generated by chemical exposure.

Keywords: hepatic steatosis, gene expression, transcriptomics, time-series analysis, pathways analysis, drug
induced liver injury, DILI

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is diagnosed increasingly worldwide and is considered
to be the most common liver disorder in the West (Rector et al., 2008). NAFLD refers to a spectrum
of hepatic disorders, ranging from simple hepatic steatosis with no apparent specific symptoms
to hepatocellular carcinoma (Jozefczuk et al., 2012). Hepatic steatosis is caused by abnormal
accumulation of triglycerides (TG) in the liver due to chemical exposures other than excessive
alcohol consumption. This accumulation of TG in vesicles impairs hepatic function and makes
the liver highly susceptible to other injuries related to metabolic syndrome and systemic energy
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metabolism (Marchesini et al., 2003). Simultaneously, it affects
the local immune system and that may lead to more severe
autoimmune diseases (Antherieu et al., 2011). From a metabolic
point of view, steatosis occurs when the fatty acids (FAs) influx
or synthesis in the liver exceeds the capacity to clear them.
The metabolic pathways leading to the development of hepatic
steatosis are multiple, including enhanced non-esterified FA
release from adipose tissue (lipolysis), increased de novo FAs
(lipogenesis) and decreased β-oxidation (Fuchs et al., 2014).

Some toxicogenomics studies have been reported on drug-
induced steatosis (DIS) or steatohepatitis (DISH) (Lake et al.,
2011; Starmann et al., 2012; Hebels et al., 2014; Rabinowich
and Shibolet, 2015), however, the mechanisms of action
leading to steatosis are not fully understood. To support
toxicity evidence with mechanistic pathways and mode of
action for drug safety and risk assessment, the OECD has
recently developed the adverse outcome pathway (AOP) concept.
The AOP concept involves all the essential steps that take
place in the toxicity pathways, from the molecular initiating
event (MIE) at the protein or gene level, passing through
organelle effect, cellular, tissue, organ and finally population
effect. One key principle is that AOPs are chemical agnostic
pathways (Vinken, 2013). Steatosis is one of the AOPs highly
investigated and although AOPs are chemical agnostic pathways,
the activation of some specific molecules, which lead to the
over or under regulation of key events (KEs) with steatosis
as a final outcome has been reported on the OECD AOP
website1.

In this study, we decided to analyze transcriptomic data
on a set of 28 drugs tested in primary human hepatocytes
and suspected to cause steatosis. In order to obtain an overall
understanding of the disease, steatosis-producing chemicals were
compiled and analyzed together. An interesting feature is that
compounds have been studied at different times and doses,
so we were able to perform a time-series analysis at the gene
level but also at the pathway level. The distinction between
time points and concentrations can explain how the different
KEs affect one another, which will help in explaining complex
hepatotoxicity. The results of our analysis support previously
reported finding and provide new hypotheses that could be
investigated further.

MATERIALS AND METHODS

Chemicals
For the current analysis, 28 compounds were selected according
to their ability to induce steatosis in primary human hepatocytes
(PHH) and the availability of gene expression data in the TG-
GATEs (Toxicogenomics Project–Genomics-Assisted Toxicity
Evaluation System) database (Igarashi et al., 2015). Furthermore,
seven non-steatotic compounds available in TG-GATEs were also
included according to the study carried out by Sahini and Borlak
(2014) and Sahini et al. (2014) as negative controls. The negative
controls have been associated with other histopathological

1https://aopwiki.org/

observations in rat in vivo such as necrosis, cellular infiltration,
fibrosis and granuloma (Supplementary Table S1). The TG-
GATEs database contains data from PHH exposed to those
compounds and collected using Affymetrix HG U133 Plus
2.0 gene expression microarrays. Two replicates were tested
at three dose levels (low, medium, and high) and at three
time points (2, 8, and 24 h after initial dosing). For each
experiment, corresponding untreated controls are also tested.
The 35 chemicals used in the study are summarized in Table 1.
The specific dose and times can be found in Supplementary
Table S2.

Microarray Data Analysis
All data were analyzed using the robust multi-array average
(RMA) methodology in the Bioconductor R package for
background-adjusted, normalized, and log-transformed perfect
matched values of individual probes from the Affymetrix Human
Genome U133 Plus 2.0 array (Irizarry et al., 2003). 54,675 probes
corresponding to 19,945 uniquely annotated Gene Symbol IDs
define each microarray. There is a total of 225 experiments
according to concentration, time of exposure and compound
used for the treatment. These experiments where analyzed
in four steps: (1) all the experiments have been normalized
concertedly. Such global normalization highlights the most
important genes, which are those affected by the toxicity of
more than one compound, and most likely in more than one
time point and/or concentration (Krug et al., 2013). When
dealing with gene expression microarray data, results can be
affected by small differences in any number of non-biological
variables, i.e., reagents or different technicians. (2) The two
replicates per compound and condition were averaged. (3)
Batch effect was accounted in the design matrix, reducing the
bias effect on further steps of the analysis similarly to what
has been performed by Grimberg et al. (2014). Concretely,
for each gene a linear model following Eq. 1 (corresponding
to a t-test comparison between two groups) was performed
(Ritchie et al., 2015). (4) Subsequently, differentially expressed
genes (DEGs) were calculated by dividing the average signal
obtained from the chemical exposed group by the average
signal from control receiving the vehicle only. The Student
t-test was used to calculate the p value which was corrected
by Bonferroni multiple testing. Finally, DEGs were selected by
considering the p values less than 0.05 and fold-changes higher
than 1.5. Genes that met these criteria also in the negative
control set were removed from the deregulated gene’s list for
steatosis, assuming that these genes were not related to steatosis.

Yij = αj + xiβj + εij (1)

Time-Series Analysis
To characterize the deregulation of genes related to steatosis
over time, after drug administration, a time-series analysis was
performed on the 28 compounds using the package MasigPro
in R (Nueda et al., 2014). This analysis was performed for each
compound individually. With MasigPro, genes with significant
temporal expression changes were selected and their variance
at the different concentration (low, medium, and high) were
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TABLE 1 | Compounds used in the analysis.

Compound name Abbreviation Cas No. Sample Reference

Allyl Alcohol AA 107-18-6 Steatosis (Waterfield et al., 1993)

Amiodarone AM 1951-25-3 Steatosis (Antherieu et al., 2011)

Acetaminophen APAP 103-90-2 Steatosis (Fontana, 2008)

Acetamide AAA 60-35-5 Steatosis (Zhang et al., 2017)

Amitriptyline AMT 50-48-6 Steatosis (Xia et al., 2000)

Aspirin ASA 50-78-2 Steatosis (Shen et al., 2014)

Coumarin CMA 91-64-5 Steatosis (Sahini et al., 2014)

Colchicine COL 64-86-8 Steatosis (Seiliez et al., 2016)

Clomipramine CPM 303-49-1 Steatosis (Xia et al., 2000)

Cyclosporin A CSA 59865-13-3 Steatosis (Lopez-Riera et al., 2017)

Clozapine CZP 5786-21-0 Steatosis (Zhang et al., 2007)

Diltiazem DIL 42399-41-7 Steatosis (Dowman et al., 2010)

Disulfiram DSF 97-77-8 Steatosis (Balakirev and Zimmer, 2001)

Ethanol ETN 64-17-5 Steatosis (Donohue, 2007)

Ethinylestradiol EE 57-63-6 Steatosis (Morii et al., 2014)

Ethionamide ETH 536-33-4 Steatosis (Zhang et al., 2017)

Hydroxyzine HYZ 68-88-2 Steatosis (Sahini et al., 2014)

Imipramine IMI 50-49-7 Steatosis (Xia et al., 2000)

Lomustine LS 13010-47-4 Steatosis (King and Perry, 2001)

Methapyrilene MP 91-80-5 Steatosis (Craig et al., 2006)

Methyltestosterone MTS 58-18-4 Steatosis (Schoonen et al., 2007)

Phenylbutazone PhB 50-33-9 Steatosis (Bessone, 2010)

Rifampicin RIF 13292-46-1 Steatosis (Tostmann et al., 2008)

Terbinafine TBF 91161-71-6 Steatosis (Choudhary et al., 2014)

Tetracycline TC 60-54-8 Steatosis (Antherieu et al., 2011)

Vitamin A VA 68-26-8 Steatosis (Liu et al., 2016)

Valproic acid VPA 99-66-1 Steatosis (Vitins et al., 2014)

Pirinixic acid WY 50892-23-4 Steatosis (Cannon and Eacho, 1991)

Carbamazepine CBZ 298-46-4 Negative Control (Bessone, 2010)

Diclofenac DFNa 15307-86-5 Negative Control (Bessone, 2010)

Indomethacin IM 53-86-1 Negative Control (Dehpour et al., 1999)

Naproxen NP 22204-53-1 Negative Control (Bessone, 2010)

Nifedipine NIF 21829-25-4 Negative Control (Basile and Mascia, 1999)

Nimesulide NIM 51803-78-2 Negative Control (Bessone, 2010)

Sulindac SUL 103-90-2 Negative Control (Bessone, 2010)

The reference corresponds to the publication in which drug-induced hepatic steatosis or negative control has been reported.

analyzed. As a first step, a regression on time for each gene
taking all the variables present in the model, hence using all
the genes, was performed. A false discovery rate (FDR) method
was used to select genes with a value less than 0.05. Moreover,
for each gene the best regression model was selected using
stepwise regression. A backward method was used; therefore
all genes were used as variables to initialize the modeling (p-
value <0.05 were considered). In a final step, the R-squared
of the regression model was used as cut-off value in order to
reduce the amount of false positive findings (genes). R-squared
was set to 0.6 to allow flexibility to the regression model,
since we are working with all the compounds associated with
steatosis, as suggested by MasigPro. Overall, MasigPro provides
information on genes that change over time and in respect to the
control. Such analysis can be visualized, plotting DEG of every
single gene for each compound studied according to time and
dose.

Gene Set and Pathway Analysis
In addition to the DEG and the time-series analysis, a pathway
analysis was performed based on our gene expression analysis
for the 28 compounds. Compared with the individual
gene/molecule-based approach, pathway analysis is more
sensitive, consistent and informative on the outcomes studied
(Luo et al., 2009). In our study, the parametric statistical
analysis model (PAGE) was used (Kim and Volsky, 2005).
The method is based on a modified Gene Set Enrichment
Analysis (GSEA). A gene randomization test was applied to the
gene expression data, in which the significance of gene sets is
identified for pathways (computing permutations of gene labels
or a parametric distribution over genes). The database used
for the study of the pathways was KEGG, which is a database
resource that integrates genomic, chemical and systemic
functional information for a large set of pathways (Kanehisa
et al., 2012). In order to obtain a quantitative result of the
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compound’s effect over the pathways, a Gene Fold Enrichment
(GFE) score was calculated. This score divided the number of
genes deregulated by the total number of genes of the pathway
being analyzed and then multiply by the statistical mean for
the same pathway. Pathview, a tool set for pathway-based
data integration and visualization, was used within the GAGE
package in R for visualization of the genes deregulated in the
KEGG pathway (Luo and Brouwer, 2013). In our context, no
specific pathway has been developed for steatosis in KEGG or
other pathway databases. So, we have considered the NAFLD
pathway, which is the closest pathway to steatosis for the
visualization.

Clustering
Previous studies have shown that the use of gene expression
clustering can group samples in clusters that may lead to a good
prediction of the gene-outcome relationship (Alizadeh et al.,
2000; Handen and Ganapathiraju, 2015). Therefore, a pathway
analysis was also performed on the set of compounds after
clustering. Clustering was based on the logarithm base 2 of the
fold change of the gene expression at the different conditions. The
Euclidian distance implemented in Ward.D2 in R method was
used. The clustering method was performed in all compounds
containing information for at least 2 timepoints, hence excluding
clozapine (CZP) from the analysis, which has been studied only
for 1 timepoint. The clustering has been performed separately
for the different time points. The clustering shown in Figure 5
was performed on the compounds at 24 h. The determination of
the number of clusters was done by the elbow method. A range
of k values from 1 to 10, k value being the number of chemical
belonging to a cluster, were considered in our analysis. For each
k value the sum of squared errors (SERs) was calculated and the
selection of the number of cluster was based on a compromise
between the number of clusters and low SER. K = 4 was selected
as it showed a close to maximum separation of the samples and
low SER.

RESULTS

DEG Analysis
Firstly, we analyzed DEGs under all different conditions versus
control for the 28 compounds with a global normalization of
the 255 experiments (all together analysis). 742 genes are highly
deregulated in at least one condition, i.e., one compound at a
specific time and concentration (logFC ≥ 1.5 and with a FDR
Bonferroni-corrected value ≤0.05).

For the pathway analysis, we looked specifically at the NAFLD
pathway, a general pathway related to fatty liver, and for which
steatosis might be related for some genes. Through the pathway
enrichment analysis, many genes involved in the NAFLD are
deregulated (Figure 1). Mapping the genes deregulated by the set
of 28 compounds on the NAFLD pathway led to the observation
that some genes are up regulated, in red (INSR, adipR, or
PPARα), by a large set of compounds (AAA, PhB, CPM, and
HYZ), whereas another set of genes is more often down regulated,
in green (LXR, PI3K, FAS, CASP8, IKKB, and BAX) by others

compounds (VA, ASA, and APAP). There are several compounds
that show opposite effects by up/down-regulating the same genes.
This is the case of CYP2E, AMPK and other mitochondrial genes.
This supposes that there are different mechanisms of action that
can trigger steatosis.

Gene Ontology pathway enrichment was also performed with
the 742 genes in order to get an impression of the biological
processes that were affected (Figure 2). The enrichment in terms
of pathways based on GO terms was used in this study. At the
first level of the pathway hierarchy, the deregulated genes are
related to several pathways, including cellular process, metabolic
process, localization, developmental process and immune system
process. The two most significant are the cellular processes
and metabolic processes. Within metabolic processes, primary
metabolic processes are the most significant pathways targeted by
the deregulated genes. In primary metabolic processes, the two
most targeted pathways are nucleobase-containing compound
metabolic processes and lipid metabolic processes. The latest
contains steroid metabolic process, phospholipids metabolic
process and FA metabolic process. Looking into the specific
pathways, the most represented in the GO analysis are FA
β-oxidation and acetyl-CoA metabolic process. So, we can note
that many genes deregulated by the set of compounds affect lipids
and FAs and play a role in steatosis.

Time-Series Analysis
In the previous analysis, the outcomes were analyzed
independently of time and dose. To investigate the evolution
of the expression over time, a time-series analysis was carried
out using the R package MasigPro. After removing the genes
involved in cell cycle according to GO biological processes (see
Supplementary Table S3) (Barron and Li, 2016), MasigPro
detected 48 genes with significant temporal expression changes
(Table 2). These genes are mainly involved in metabolic and
immune system pathways. Among them, some genes have
previously been reported to play a hepatotoxic role such as
MYADM (Megger et al., 2014), SLC51B (Arab et al., 2017),
PRDX6 ((Newton et al., 2009; Pacifici et al., 2014), OSBPL9
(Hong and Tontonoz, 2014), GPAT3 (Khatun et al., 2016),
TMEM135 (Exil et al., 2010), DLGDA5 (Liao et al., 2013), BCO2
(Ip et al., 2015), IDH3G (Pan et al., 2014), NEURL1B (Lawan
et al., 2015), and TSPAN6 (Wang et al., 2012). An extensive work
done in rodents related to steatosis adverse outcome described
how OSBPL proteins promote the development of NAFLD in
mice (Stein et al., 2017). Finally, the role of GPTA proteins
has been reported to play a role in the development of hepatic
steatosis (Yu et al., 2018).

Our results confirm previous transcriptomics analysis in
rodents with deregulation of genes such as GPAT, KIF, CXCL, and
SLC family genes (Sahini et al., 2014) and OSBP family that alters
the lipid metabolism in mice (Béaslas et al., 2013).

An example of the visualization of the time-series analysis is
shown in Figure 3 for neutralized E3 ubiquitin protein ligase
1B (NEURL1B) after exposure to the 28 compounds. We can
observe that NEURL1B is regulated in positive direction over
time for many compounds. Other examples are presented in
supplementary information (Supplementary Figure S1).
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FIGURE 1 | Non-alcoholic fatty liver disease (NAFLD) pathway view. After a GAGE analysis of the gene expression data amongst the highest scored pathways
(p < 0.05). All the compounds suspected to produce steatosis at middle concentration and time 8 h are plotted. All the gene expressions have been normalized from
–1 to 1, centered at 0. Green boxes correspond to a down regulation of the genes by a chemical and red box an up-regulation of the genes.

From the gene list, other genes might play a role in steatosis
and could be investigated further. For example, ALDH7A1
is highly deregulated in a time/dose-dependent manner.
This gene is involved in oxidoreductase mechanisms and in
protection of cell against oxidative stress by metabolizing a
number of lipid peroxidation-derived aldehydes and could
lead to steatosis. For some compounds, i.e., AM, APAP, LS,
and MP, the de-regulation of ALDH7A1 is also dependent
on the treatment concentration. The deregulation of these
proteins will lead to a higher production of lipids, which
together with a reduction of beta-oxidation of lipids could
promote their accumulation in cells. Finally, a set of compounds
deregulated some genes differently, suggesting that they
trigger steatosis through another mechanism. This is the
case for example for DSF and EE, which showed a weak
deregulation of OSBL9 and a higher deregulation of the
ALDH7A1.

Some genes known to be commonly associated to steatosis
in human are not in this top list. This is the case for example

of PNPLA3, which does not appear as one of the highest
deregulated genes in our study. The genetic variation in PNPLA3
has been previously shown to play a role in the increase of FA
accumulation in liver leading to steatosis (Romeo et al., 2008).
So, the lack of the specific polymorphism related to susceptibility
to steatosis in the cells used could explain the non-deregulation
of this gene in our study.

Overall, this list of genes provides an insight into the
mechanistic pathways already related to steatosis, as well as
new hypotheses that can be analyzed further. Interestingly, the
expression for many genes vary a little from control as a function
of dose and the difference in the pattern of expression between
control and treatment is relatively low. This confirmed a previous
analysis showing that the doses differences between treatments
in rat primary hepatocytes explain less than 0.1% of variation
in all cases (Sutherland et al., 2016). One possible explanation
is primary hepatocytes rapidly dedifferentiate (Lauschke et al.,
2016) which could generate a gradual down regulation of
hepatocyte function over time in culture.

Frontiers in Genetics | www.frontiersin.org 5 September 2018 | Volume 9 | Article 396

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00396 September 14, 2018 Time: 9:14 # 6

Aguayo-Orozco et al. Chemical-Induced Hepatic Steatosis Analysis

FIGURE 2 | Gene Ontology pathway enrichment for in vitro human hepatocytes. (A) The two main blocks of pathways that are deregulated according to the genes
that have a log2FC above absolute value 1.5 and a q-value ≤0.05, are affecting the metabolic pathways as well as the cellular processes in general. (B) The
pathways affected within the metabolic pathways are shown here, and they affect mainly the primary metabolic process. (C) Pathways represented within primary
metabolic process.
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TABLE 2 | Deregulated genes over time and dose.

Entrez-ID Gene
symbol

Gene full name

91663 MYADM Myeloid associated differentiation marker

27286 SRPX2 Sushi repeat containing protein, X-linked 2

10491 CRTAP Cartilage associated protein

84803 GPAT3 Glycerol-3-phosphate acyltransferase 3

9787 DLGAP5 DLG associated protein 5

83875 BCO2 Beta-carotene oxygenase 2

3161 HMMR Hyaluronan mediated motility receptor

3421 IDH3G Isocitrate dehydrogenase 3 (NAD(+))
gamma

6790 AURKA Aurora kinase A

28998 MRPL13 Mitochondrial ribosomal protein L13

54492 NEURL1B Neuralized E3 Ubiquitin Protein Ligase 1B

2633 GBP1 Guanylate binding protein 1

10112 KIF20A Kinesin family member 20A

80114 BICC1 BicC family RNA binding protein 1

65084 TMEM135 Transmembrane protein 135

7105 TSPAN6 Tetraspanin 6

9615 GDA Guanine deaminase

9488 PIGB Phosphatidylinositol glycan anchor
biosynthesis class B

55771 PRR11 Proline rich 11

11167 FSTL1 Follistatin like 1

2519 FUCA2 Fucosidase, alpha-L-2, plasma

9588 PRDX6 Peroxiredoxin 6

79594 MUL1 Mitochondrial E3 ubiquitin protein ligase 1

51292 GMPR2 Guanosine monophosphate reductase 2

81610 FAM83D Family with sequence similarity 83 member
D

55872 PBK PDZ binding kinase

59 ACTA2 Actin, alpha 2, smooth muscle, aorta

7802 DNALI1 Dynein axonemal light intermediate chain 1

5445 PON2 Paraoxonase 2

3242 HPD 4-hydroxyphenylpyruvate dioxygenase

28998 MRPL13 Mitochondrial ribosomal protein L13

11004 KIF2C Kinesin family member 2C

1606 DGKA Diacylglycerol kinase alpha

10158 PDZK1IP1 PDZK1 interacting protein 1

9122 SLC16A4 Solute carrier family 16 member 4

23082 PPRC1 Peroxisome proliferator-activated receptor
gamma, coactivator-related 1

123264 SLC51B Solute carrier family 51 beta subunit

6372 CXCL6 C-X-C motif chemokine ligand 6

79053 ALG8 ALG8, alpha-1,3-glucosyltransferase

9928 KIF14 Kinesin family member 14

788 SLC25A20 Solute carrier family 25 member 20

114883 OSBPL9 Oxysterol binding protein like 9

55526 DHTKD1 Dehydrogenase E1 and transketolase
domain containing 1

56922 MCCC1 Methylcrotonyl-CoA carboxylase 1

10351 ABCA8 ATP binding cassette subfamily A member 8

501 ALDH7A1 Aldehyde dehydrogenase 7 family member
A1

516 ATP5G ATP Synthase Membrane Subunit C Locus 1

9488 PIGB Phosphatidylinositol glycan anchor
biosynthesis class B

Pathway Time-Series Analysis
Due to the broad pharmacological and physicochemical
characteristics of the compounds used for this study, we
developed a new type of time-series analysis at the pathway level.
For this purpose, all the compounds were analyzed to obtain
the most significantly deregulated pathways including their
corresponding GFE score (Figure 4).

At low concentration, pathways such as FA degradation and
oxidative phosphorylation start to get down regulated. The
deregulation of the oxidative phosphorylation is prominently
affecting the mitochondria, therefore reducing the activity within
this organelle, such as β-oxidation, which is the catabolic
process through which FAs are broken down. The PIK3-Akt
signaling pathway gets up regulated through the activation of
the AMPK signaling pathway or downstream, Mtor signaling
pathway, affecting the metabolism of the cell (Li et al., 2010).
At higher concentrations, other important pathways are affected.
The steroid biosynthesis is up-regulate at middle and high dose.
FA biosynthesis and FA elongation are also among the up
regulated pathways. Hence more FAs and lipids are produced.
In contrast, the protein processing in ER, known to be related
to lipid homeostasis, is down regulated. Interestingly, several
studies have previously shown the existence of comorbidities
between liver diseases and cardiovascular (CDV) diseases (Anstee
et al., 2018). The deregulation of the renin-angiotensin system
could explain part of the relation between steatosis and any
possible CDV disease. Vitamin digestion and absorption is
down regulated, which also points toward de-regulation in the
FA β-oxidation. Also tyrosine metabolism, which is related
to liver damage displays down-regulation. When the liver is
damaged, phenylalanine cannot be converted to tyrosine. At this
highest concentration, the adipocytokine signaling pathway and
TNFα signaling pathway are deregulated, which indicates an
activation of the cellular immune system. This immune system
de-regulation may contribute the steatotic condition to move
forward to other more severe drug-induced liver damages. Note
that at high dose, cells often develop non-specific toxicity and the
pathways altered may be not related solely to steatosis but also
to other toxicity endpoints. The pathway analysis confirmed the
little contribution of doses over time at the gene level observed
previously, as the majority of the pathways deregulated in middle
dose are also present in high dose.

Finally, to obtain a more characteristic view on the specific
action points of the different compounds, we performed a
similar analysis after clustering the compounds through the gene’s
signature similarity. Using the Euclidean distance based on the
log2FC of the gene expression, all compounds were clustered in
four sets (Figure 5).

VPA was clustered separately. MP and AA formed a
different cluster as well as APAP and COL. A final cluster
contained the remaining compounds. This last cluster contains
essentially drugs used to treat a variety of conditions, acting
as immunosuppressant’s, antineoplastic agents, antibiotics,
biguanides and butylpyrazolidines.

After clustering, the pathway time-series analysis was
performed on each of the four clusters (Figure 6). For the
compounds of the larger cluster, cluster 1 (TBF, AMT, DIL,
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FIGURE 3 | De-regulation over time of the 28 steatotic chemicals for the selected protein, NEURL1B, from the time-series analysis. The y-axis indicates the
normalized expression value of the gene at every time-point, 2, 8 and 24 h (x-axis), where the different colors indicate the dosages (red indicates control, blue low
dose, purple middle dose, and green high dose). It shows a time dependency of the protein expression and compound specific dose effect. However, it does not
show a systematic change on the gene expression due to dose. For some compounds only two time-point samples were taken.

PhB, HYZ, CSA, WY, RIF, ASA, AM, AAA, EE, VA, TC, MTS,
IMI, CPM, DSF, CMA, ETH, LS, ETN), at low concentrations
of treatment metabolic pathways such as fat digestion and
absorption, linoleic and linolenic acid metabolism, calcium
signaling pathway and others are up regulated over time.
Other pathways, such as FA metabolism, peroxisome, retinol
metabolism, and some steroid metabolic pathways are down
regulated. At higher concentrations from time 2 to 24 h, the
FA metabolism, calcium signaling pathway and steroid hormone
biosynthesis increase over time, showing a de-regulation of
these pathways promoted by the treatment. The FA degradation
pathway is down regulated. It means that the FAs inside the
cell are increasing and there are no pathways to deplete them.
The oxidative phosphorylation becomes down regulated over
time. So, the oxidative conditions in the mitochondria are
starting to be reduced at this concentration. Finally, at the
highest concentration tested, many signaling pathways known
to be steatosis-producing related are targeted. FoxO, MAPK,
PPAR signaling pathways, are highly up regulated. Steroid
hormone biosynthesis, FA biosynthesis, glycerophospholipid
metabolism, glycosphyngolipid biosynthesis and other lipid
metabolic pathways are also up regulated. Moreover, SNARE

interactions in vesicular transport are also up regulated over
time, which could indicate the internalization of the FAs into
vesicles, and so accumulation inside the cells. In contrast,
pathways, such as oxidative phosphorylation, vitamin digestions
and absorption and FA degradation are down regulated over
time.

For cluster 2 (AA, MP) (Figure 6) at low concentrations
the most highly up regulated pathways are the PI3K-Akt
signaling pathway, the Mtor signaling pathway and the
adipocytokine signaling pathway. Some metabolic pathways
like FA degradation, peroxisome and retinol metabolism
are down regulated. With the increasing concentration,
steroid biosynthesis starts to be up regulated. At the highest
concentration, glycolysis/gluconeogenesis, FA degradation,
TNFα signaling pathway, tyrosine metabolism, peroxisome,
PPAR signaling pathway and retinol metabolism become down-
regulated over the time and FA metabolism, adipocytokine
signaling pathway, MAPK signaling pathway, among others,
become up-regulated. This could be explained by a lesser
effect of these compounds. Therefore higher concentrations
are needed in order to deregulate the cell to a steatotic
pattern.
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FIGURE 4 | Time-series pathway analysis based on GFE and depending on the concentration. The y-axis displays the overall Gene Fold Enrichment.

In the case of cluster 3 (APAP, COL) (Figure 6), at
low concentrations, oxidative phosphorylation is highly
down regulated, together with retinol metabolism and
some lipid metabolism such as ether lipid metabolism and
glycolysis/gluconeogenesis. On the other hand, FA elongation,
TNFα signaling pathway, PI3K-Akt signaling pathway and
sphingolipid signaling pathway and sphingolipid metabolism are
highly up regulated. At higher concentrations, retinol metabolism
continues to be down-regulated, glycolysis/gluconeogenesis, FA
elongation are down-regulated and protein processing in the ER,
steroid biosynthesis, SNARE interactions in vesicular transport
among others are up regulated. These deregulations could
affect the export of FAs to the exterior of the cell and their
accumulation within organelles.

For the last cluster, containing only VPA (Figure 6) at low,
middle and high doses, FA degradation, PPAR signaling pathway
and retinol metabolism, all of them involved in the elimination of
FAs are up regulated. This compound produces a strong effect on
the metabolism of FAs and lipids and therefore the cells react with
increasing the pathway activities associated with FA degradation.

So, it is interesting to see that, each of the cluster shows some
pathway deregulation related lipid metabolism, FA degradation,
glycolysis or PPAR signaling pathway, all related to steatosis.

DISCUSSION

The conventional assumption that a drug acts selectively
on a single target is shifting toward “drug-holistic” systems

based approaches. Similarly, a disease or a toxicity endpoint
reflects not only the impairment of a unique gene. In fact,
the disruption of many genes and pathways can lead to
a disease or a specific toxicity. In the case of steatosis,
we have focused the study on trying to understand the
underlying mechanisms for steatosis using a set of diverse
compounds. Considering the MIEs and KEs known to lead to
the AOP steatosis (based on AOP-Wiki), our study confirms
the deregulation of these biomarkers and highlighted new
genes that produce steatosis. With the development of a
time-series analysis combined with pathway analysis, it is
possible to follow the evolution of the pathways over time
and how they are connected to the different stages of
steatosis.

Interestingly, the integration of a large and diverse set
of compounds in the analysis pinpoints their specificity in
leading to steatosis. However, our results show that the time
seems to have a higher impact in the DEGs and pathways
analysis than the concentration. The early dedifferentiation
of PHH in 2D cultures might explain this observation.
It is also possible that the global normalization reduces
the specific signal of some genes. Additionally, for more
than half of the compounds studied, only two times points
have been tested experimentally, which might influence the
results.

In our study, the compounds have been tested in PHH and
the translation to human liver tissue would be of great interest
to validate these outcomes. Some rats in vivo data beyond the
24 h time point are available in TG-GATEs and could be analyzed
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FIGURE 5 | Clustering by Euclidean distance of the different compounds based on the logarithm in base 2 Fold Change of the gene expression for the different
conditions. Each color represents a cluster. The y-axis is a measure of closeness of either cluster or individual data points.

similarly in order to evaluate the overlap between in vitro and
in vivo data. Finally, it has been reported that 3D cell cultures
could be a more suitable system to mimic human organs that 2D
cultures (Fey and Wrzesinski, 2012) and it would be interesting
to assess the steatogenic effect of these compounds in this 3D
spheroid system.

To summarize, most of the genes that are associated with
a steatosis AOP, described in AOP wiki, have been found
in our study. The integration of the previously published
information on steatosis with the newly found genes and
pathways from our analysis can enrich the knowledge of
developed AOPs on steatosis. The Figure 7A represents an
AOP network, i.e., the result of an accumulation of a number
of individual AOPs listed on the AOP Wiki website. The
list of AOPs used for the completion of the full steatosis
pathway is: 34 (LXR activation leading to hepatic steatosis),
36 (Peroxisomal Fatty Acid Beta-Oxidation Inhibition Leading
to Steatosis), 57 (AhR activation leading to hepatic steatosis),
58 (NR1I3 (CAR) suppression leading to hepatic steatosis),
60 (NR1I2 (Pregnane X Receptor, PXR) activation leading
to hepatic steatosis), 61 (NFE2L2/FXR activation leading to
hepatic steatosis). Besides, the capture of coenzyme A by VPA

was added to the mechanistic pathway (Schumacher and Guo,
2015), as well as oxidative stress (Spahis et al., 2017). In this
figure, we can see direct (and indirect) interaction between
genes suggested by the analysis and known genes. For example,
TSPAN6 deregulates oxidative phosphorylation, which acts on
the mitochondrial β-oxidation. The deregulation of ALDH7A1
will lead to a higher production of lipids and impact the
oxidative stress with a reduction of β-oxidation. In contrast,
PON2 impacts the immune system. We looked also at the
cellular compartmental level and how the genes deregulation
can perturb the interaction with each other and lead to steatosis
(Figure 7B). We can see that all the cell compartments can
be involved in steatosis, many of which undertake functions
within the mitochondria and the nucleus. More specifically,
perturbation in endoplasmic reticulum and vesicles through the
genes MUL1, TMEM135, OSBPL9, SCD1, SREBP-1C, GPAT3 can
lead to steatosis.

Other studies have reported computational approaches
to leverage large-scale toxicogenomic information, biological
pathways and high throughput data for the identification of
toxicity pathways. For example, Bell et al. (2016) described a
computational approach in which curated biological pathways
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FIGURE 6 | Time-series pathway analysis based on GFE and depending on the concentration for the four clustered of compounds. The y-axis displays the overall
Gene Fold Enrichment.
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FIGURE 7 | (A) Adverse Outcome Pathway related to steatosis network, which summarizes a collection of information across several AOPs. The yellow boxes
represent known genes and key events associated to steatosis. The blue color shows the newly suggested genes and pathways involved in the AOPs. Only
compounds to which there is a higher likelihood to affect the MIE or KE than other compounds have been introduced in the AOP. In (B) the different cell
compartments and how the interact with each other in the pathways that lead to steatosis.
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and high-throughput toxicity data are used to identify toxicity
pathways. This computational method uses a data-driven
approach to assemble an AOP, which allows for the integration of
biological information into pathway-based networks and can be
updated with new information. Coupling both approaches could
be interesting in the enrichment of the steatosis AOPs.

Overall, our findings illustrate how an integrative
computational chemical system biology approach can be used
to study steatosis and obtain new metabolic pathways that
are deregulated during the process of liver injury by chemical
exposure. Obviously, these findings need to be further validated
with additional experimental studies. These associations are
potentially not causative but more reflect biomarkers along the
pathway to develop steatosis. In many case, changes in gene
expression are a response to a stressor and it is only when
these adaptive changes are overwhelmed that the adverse effect
occurs.
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