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Abstract 

A model and data toolbox is presented to assess risks from combined exposure to multiple chemicals 

using probabilistic methods. The Monte Carlo Risk Assessment (MCRA) toolbox, also known as the 

EuroMix toolbox, has more than 40 modules addressing all areas of risk assessment, and includes a 

data repository with data collected in the EuroMix project. This paper gives an introduction to the 

toolbox and illustrates its use with examples from the EuroMix project. The toolbox can be used for 

hazard identification, hazard characterisation, exposure assessment and risk characterisation. 

Examples for hazard identification are selection of substances relevant for a specific adverse outcome 

based on adverse outcome pathways and QSAR models. Examples for hazard characterisation are 

calculation of benchmark doses and relative potency factors with uncertainty from dose response data, 

and use of kinetic models to perform in vitro to in vivo extrapolation. Examples for exposure 

assessment are assessing cumulative exposure at external or internal level, where the latter option is 

needed when dietary and non-dietary routes have to be aggregated. Finally, risk characterisation is 

illustrated by calculation and display of the margin of exposure for single substances and for the 

cumulation, including uncertainties derived from exposure and hazard characterisation estimates.  
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1 Introduction 

Human activities have drastically increased the number of chemical substances to which we are 

exposed and which might have a negative impact on our health. Chemical risk assessment has focused 

traditionally on potential risks of single substances. However, multiple substances can have the same 

health effect, so their combined effects on the same phenomenological endpoint should be assessed 

(Drakvik et al., 2020). Consequently, the need was perceived to develop risk assessment methods for 

combined exposure to multiple substances, i.e. mixtures of substances. The current legislative 

requirements for risk assessment of mixtures were recently reviewed (Rotter et al., 2018). 

The tasks for mixture risk assessment are not trivial. First, decisions are needed regarding which 

chemical substances should be evaluated together in an assessment group (AG) when considering a 

specific adverse outcome (AO). For those substances, data or assumptions on both exposure and 

hazard are needed. A specific human population group has to be defined as the object of protection. 

Exposure might need to be aggregated over several sources, such as dietary exposure, dermal or 

inhalation exposure, sometimes for specific population groups, e.g. those working in a risky profession 

like pesticide spraying. Hazard data can be obtained from in vivo, in vitro and in silico approaches. 

The latter two categories require biological modelling, e.g. using adverse outcome pathways (AOPs), 

to assess the relevance of responses for the defined in vivo AO. The most common assumption for 

cumulating effects is the dose addition (DA) model, but its validity might need to be checked (EFSA, 

2013a, 2019; OECD, 2018). Under the DA model the relative potencies of substances are expressed as 

relative potency factors (RPFs). It should be noted that RPFs are typically different at the external or 

internal biological level. Kinetic modelling can be used to bridge the gap between external and internal 

doses by constructing in vitro to in vivo extrapolation (IVIVE) models. Inevitably, limitations in data 

availability lead to the necessity to make model assumptions and to uncertainty (EFSA, 2018). Many 

parts of the data will be uncertain, but this has often been ignored in practical work, notably for AG 

membership and RPF estimates. 
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One of the major aims of the EuroMix project was to integrate hazard, exposure, toxicokinetic and 

toxicodynamic modelling approaches for mixtures of chemicals together with example data sets into a 

web-based model and data toolbox openly accessible for stakeholders. The system is able to assess 

quantifiable uncertainties and their influence on the results of cumulative and aggregated risk 

assessment. For this, it uses a 2D Monte Carlo approach based on quantifiable variability and 

uncertainty in the inputs, where an inner loop estimates variability distributions for specific outputs, 

characterising the variability between individuals or individual-days. Then an outer loop estimates 

uncertainty distributions for specific outputs, e.g. 95% confidence limits for a percentile of a 

variability distribution. 

In the EuroMix project, the toolbox has been developed as version 9 of the Monte Carlo Risk 

Assessment (MCRA) platform (see van der Voet et al., 2015 for a description of the previous version 

MCRA 8). The toolbox also integrates the method innovations recently developed for EFSA in their 

approach to cumulative exposure assessment and implemented as well in MCRA version 8.3 (van 

Klaveren et al., 2019ab). MCRA is a web-based platform (https://mcra.rivm.nl) which employs a high-

performance computation cluster to run simulations. For a full description of the toolbox we refer to 

the online reference documentation (MCRA, 2019). The toolbox can be used in conjunction with the 

EuroMix handbook (Zilliacus et al., 2019a). In this paper the aim is to provide an overview of the 

available methods and illustrate the use of the toolbox with several examples for hazard identification, 

hazard characterisation, exposure assessment and risk characterisation. These examples are not full 

case studies, but are only intended to illustrate existing and new functionalities that are available in the 

toolbox. 

In section 2.1 of this paper we describe the toolbox of models and data that has resulted from the 

EuroMix project. The data collected in the EuroMix project are summarised in section 2.2. In sections 

2.3-2.6 short descriptions are given of the methods implemented in the toolbox for the four areas of 

risk assessment, i.e. hazard identification, hazard characterisation, exposure assessment and risk 

characterisation, respectively, and the data for some simple examples are described. Sections 3.1-3.4 

https://mcra.rivm.nl/
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then show the results for the examples. The results and the intended use of the toolbox are discussed in 

section 4.  

 

2 Methods  

2.1 Description of the MCRA toolbox 

The toolbox for mixture risk assessment has been built according to the modular design shown in 

Figure 1. The modules are listed in Appendix A. Modules are of three basic types: 1. Scoping modules 

regarding primary entities on which the risk assessment is built; 2. Data modules, specifying groups of 

data sources needed or optional for the assessment; and 3. Calculator modules, which calculate results 

of a certain type. Note, that calculator modules can in principle also act as data modules if the results 

are already available from previous work. 

 

Figure 1. Modular design of the MCRA toolbox. Not all links are shown in this graph. See Appendix A for a complete list. 
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The primary entities in the toolbox relate to the agents of risk (Substances), the sources of dietary 

exposure (Foods), the objects of protection (Populations), the potential hazards (Effects), and how 

these are measured (Responses in Test systems). The data and calculation modules on the left side of 

Figure 1 are related to exposure assessment, those on the right side to hazard identification and hazard 

characterisation. The module for risk assessment is in the middle of the diagram, integrating exposures 

and hazard characterisations.  

The exposures module can aggregate non-dietary exposures (which then need to be provided as data) 

and dietary exposures. Dietary exposures are calculated from consumptions and concentrations, 

possibly incorporating many detailed aspects. Food consumptions may need to be redefined by 

conversion of food codes from the codes used in consumption surveys to the codes used in 

concentration monitoring data. Occurrence data (concentrations and substance authorisations) may 

need to be converted due to differences between active substances and measured substances (in the 

pesticide field known as complex residue definitions), and such data may be condensed in 

concentration models (e.g. a lognormal distribution with a spike of non-detects). Total diet study 

(TDS) concentration data require a conversion to appropriate food codes. Exposures may also be 

adjusted for food processing effects and for the greater concentration variability in units of 

consumption compared to the composite samples used in the monitoring program. In addition, 

modelled exposures may be inspected for co-occurrence of substance combinations as exposure 

mixtures, and they may be compared to human monitoring data. 

Hazard identification is concerned with identifying the active substances related to a given health 

effect. AOP networks may be used to identify relevant effects connected to the adverse outcome of 

interest in the assessment. Identification of active substances as belonging to the relevant AG may be 

just specified as data, or it may be derived from available toxicity data or from in silico models 

(QSAR and/or molecular docking). Effect representations data will link observed responses to effects 

of interest and may specify benchmark responses, which are toxicologically relevant levels for those 
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responses, to be used in the modelling of dose-response data to obtain benchmark doses (BMDs). 

BMDs as well as other points of departure (POD) specified as data can then be used for hazard 

characterisation, either directly or after applying assessment factors for  POD type, species differences 

and/or within-species variability. Kinetic models (or simple absorption factors) may be use to 

extrapolate between external and internal doses. We use the term hazard characterisation (HC) as a 

generic term which can be any form of POD or health-based guidance value, depending on the 

purpose of the analysis. For the assessment of mixtures, RPFs are calculated as the ratio of HC for an 

index substance to HC for a specific substance.  

The toolbox distinguishes between two types of runs: the nominal run and the uncertainty analysis 

loop. The nominal run represents a single calculation in which the aim is to compute the most likely, if 

possible unbiased estimates for the model at hand. E.g., when computing dietary exposure 

distributions, the nominal run computes one exposure distribution, using, as much as possible, fixed 

values for all uncertain inputs, and summarises the exposure distribution by point estimates of 

statistics such as the mean exposure or specific percentiles of variability. In the uncertainty analysis, 

on the other hand, the calculation run is repeated a number of times, each time with a different 

uncertainty scenario obtained using bootstrapping, parametric resampling, and/or re-calculation of 

uncertain values, yielding uncertainty distributions and confidence intervals for specific outputs. 

Making the distinction between the nominal run and the uncertainty loops has the practical advantage 

that it allows the user to setup and evaluate complex simulations first using only the nominal runs to 

quickly obtain a picture of the results and identify possible errors in the data or in the model settings 

before running the more time-consuming uncertainty analysis loop. 

User work is organized in workspaces. A workspace is a collection of work items that are logically 

grouped together. A workspace has a name, description and, optionally, a number of tags. Users are 

the owners of their own workspace folders. An action is started with the module of the corresponding 

action type (e.g. dietary exposures), but also links to other modules that are needed for its completion 

(e.g. consumptions per food as measured, consumptions, foods, etc.). An action can be available in 

two forms: 1) a data selection action and 2) a calculation action. A data selection action comprises the 
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selection of already available data of that action type, optionally the specification of selections on that 

data, and in some cases some pre-processing of data. A calculation action is an action in which the 

data of that action is calculated based on relevant input and specific calculator settings. Within a 

workspace, multiple actions can be created. When running an action, a task is spawned that produces 

output. Output is available in the form of reports or in the form of data that can be used as input in 

other actions. Actions have multiple outputs when settings are changed. Output reports are presented 

as screen reports or print reports and structured according to the modules of the modular design. 

 

2.2 Data – Example data organised in the EuroMix project 

The toolbox contains a repository for relevant data. Data can be uploaded by individual users or by 

representatives of a larger user group. Data can be shared with other users or user groups. The data 

administrator for each data set can decide on use, read, or read/write permission for users. The data 

collected during the EuroMix project (Data/EuroMix repository) are shared with project participants 

and other stakeholders and are summarised in Table 1. These data collected in the EuroMix project 

were the basis for the examples shown below. 

 

Table 1. Data in the toolbox, as collected in the EuroMix project. For specific data regarding modules that were not in the 

focus of the EuroMix project and therefore not included in this table, references are van Klaveren et al. (2019ab) for Unit 

variability factors, Substance authorisations, Substance conversions, Concentration limits and Food extrapolations, Kolbaum 

et al. (2019) for TDS sample compositions, van der Voet et al. (2009) for Intra-species factors and Inter-species factors. 

Module Description data sets   

Foods 2289 foods-as-eaten and foods-as-measured coded in FoodEx1 (EFSA, 2011) 
32 processing types  

Substances 1629 substances, classified in categories PPPs, Biocides, Alkaloids, 
EnvironmentalPollutants, FoodAdditives, Mycotoxins (Kyriakopoulou et al., 2017) 

Effects 
AOP networks 

48 effects in 7 AOP networks related to liver steatosis, reproductive toxicity and 
craniofacial malformations 

Populations 15 population groups from 10 countries (different age groups) (Crépet et al., 2019a) 

https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/foods/index.html#module-foods
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/substances/index.html#module-substances
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/effects/index.html#module-effects
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/populations/index.html#module-populations
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Module Description data sets   

Test systems 
Responses 
Effect 
representations 

14 test systems, 477 responses, 162 effect representations (Luckert et al., 2019; 
Schreiber et al., 2019ab) 

Consumptions 11 files with food consumption data in 10 countries (Crépet et al., 2019a) 

Food recipes 5555 records specifying food ingredients in the FoodEx1 system or conversions (Boon et 
al., 2015) 

Concentrations Food monitoring data 2010-2014, SSD formatted data (Crépet et al., 2019a) 

Processing 
factors 

667 processing factors for pesticides and environmental pollutants (derived from 
Verarbeitungsfaktoren_3-0.xls, downloaded 01-09-2015 from 
https://www.bfr.bund.de/de/a-z_index/verarbeitungsfaktoren-8400.html) 

Non-dietary 
exposures 

Simulated non-dietary exposures from Browse and Bream2 (Kennedy et al., 2019) 

Human 
monitoring 
data 

Norwegian biomonitoring study (Husøy et al., 2019) 

QSAR 
membership 
models 

26 QSAR models applied to all substances in the EuroMix chemical inventory (Rorije et 
al., 2019) 

Molecular 
docking models 

20 Molecular docking models applied to all substances in the inventory (Rorije et al., 
2019) 

Kinetic models EuroMix Generic PBTK model parametrised for 9 substances based on httk and for all 
substances in the inventory based on QSAR (Tebby et al., 2019) 

Points of 
departure 

144 NOAEL or LOAEL values related to Steatosis-liver (Crépet et al., 2019a) 

Dose response 
data 

28 files describing experiments with single substances or mixtures , on 15 responses (or 
groups) in 9 test systems in 6 laboratories (Luckert et al., 2019, Schreiber et al., 2019ab) 

 

 

2.3 Hazard identification: AOP-based assessment groups, probabilistic 

memberships from in silico data or expert elicitation 

2.3.1 Implemented methods for hazard identification 

In the context of mixture risk assessment, hazard identification includes the task of identifying and 

grouping substances that may lead to a specified adverse outcome (AO) considered in a risk 

https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/test-systems/index.html#module-testsystems
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/consumption-modules/consumptions/index.html#module-consumptions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/consumption-modules/food-recipes/index.html#module-foodrecipes
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/concentrations/index.html#module-concentrations
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/processing-factors/index.html#module-processingfactors
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/processing-factors/index.html#module-processingfactors
https://www.bfr.bund.de/de/a-z_index/verarbeitungsfaktoren-8400.html
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/non-dietary-exposures/index.html#module-nondietaryexposures
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/non-dietary-exposures/index.html#module-nondietaryexposures
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-data/index.html#module-humanmonitoringdata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-data/index.html#module-humanmonitoringdata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-data/index.html#module-humanmonitoringdata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/qsar-membership-models/index.html#module-qsarmembershipmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/qsar-membership-models/index.html#module-qsarmembershipmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/qsar-membership-models/index.html#module-qsarmembershipmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/molecular-docking-models/index.html#module-moleculardockingmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/molecular-docking-models/index.html#module-moleculardockingmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/kinetic-modules/kinetic-models/index.html#module-kineticmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/points-of-departure/index.html#module-hazarddoses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/points-of-departure/index.html#module-hazarddoses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/dose-response-data/index.html#module-doseresponsedata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/dose-response-data/index.html#module-doseresponsedata
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assessment. The set of such substances together form the AG for the AO. The toolbox offers various 

methods to establish AGs. In this work we will focus on some of these methods The Active substances 

module of the toolbox includes several possibilities for defining AGs. First, the substances belonging 

to an assessment group related to a given AO can be directly specified. Secondly, only the substances 

for which POD data are available can be selected. Thirdly, substances can be selected based on 

predictions for the given AO from QSAR or molecular docking models (Cotterill et al., 2016; Rorije et 

al., 2019). Under the first and third options, missing PODs can be imputed (Kennedy et al., subm.). 

In probabilistic modelling, substances can also be identified with a membership probability for the 

assessment group. Membership probability can be derived from expert knowledge elicitation, as in 

recent EFSA reports (EFSA et al., 2019ab), and entered as data in the toolbox. Probabilities can also 

be based on the fraction of positive QSAR or molecular docking models, either as a simple ratio 

estimate or using a Bayesian calculation that includes the sensitivity and specificity of the QSAR 

models when available (Kennedy et al, subm.). 

2.3.2 Example 

The EuroMix inventory list of 573 pesticides (Kyriakopoulou et al., 2017) was analysed for possible 

hazard with respect to the adverse outcome steatosis. From data available at EFSA, steatosis-specific 

PODs were available for a minority of pesticides. Additional indications for steatotic activity were 

derived from in silico models such as QSAR model predictions and molecular docking binding 

energies (Cotterill et al., 2016; Rorije et al., 2019). An AOP network for steatosis (Vinken, 2015; 

Mellor et al., 2016) was assessed (Luckert et al., 2018) and has been graphically outlined (Figure 2). 

This network was uploaded to the toolbox in the form of relational tables specifying all effects and 

effect relations. Based on this data, several options for non-probabilistic (crisp) or probabilistic AG 

membership assessments that are available in the toolbox will be illustrated. 
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Figure 2. Adverse Outcome Pathway (AOP) network for the adverse outcome (AO) liver steatosis. The ovals are molecular 

initiating events (MIEs) and the boxes are other key events (KEs). The arrows depict key event relationships (KERs). The 

numbers in the ovals/boxes refer to KE numbers in the AOP wiki (https://aopwiki.org). * refers to KEs not included in the 

AOP wiki but described in Mellor et al. (2016). ** refers to KEs not included in the AOP wiki but described in Vinken (2015). 

 

2.4 Hazard characterisation: dose response modelling, calculation of RPFs, use 

of kinetic models for IVIVE 

2.4.1 Implemented methods for hazard characterisation 

For hazard characterisation in the context of mixture risk assessment the RPF calculations are based 

on POD values for the substances. The POD value can be a BMD from benchmark dose modelling or 

a No Observed Adverse Effect Level (NOAEL) or Lowest Observed Adverse Effect Level (LOAEL). 

Health-based guidance values, such as Acceptable daily Intake (ADI) or Acute Reference Dose 

https://aopwiki.org/
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(ARfD) can also be used instead of POD, i.e. the POD divided by the assessment factors, which 

should be taken into consideration for comparison to exposure. Because of the many variations 

possible, the value used for the RPF calculation is generically called HC in this paper and in the 

toolbox. 

Well-known softwares for benchmark dose (BMD) modelling of dose response data are BMDS 

(http://www.epa.gov/bmds) and PROAST (http://www.rivm.nl/en/proast) (EFSA, 2017). In module 

Dose response models of the toolbox, dose response data organised in the data repository can be fitted 

using the various dose response models (Slob, 2002; Slob and Setzer, 2014; EFSA, 2017), either using 

an internalised version of the PROAST software or using the web-based PROAST version 

(https://proastweb.rivm.nl). In the toolbox connections can be specified between effects, e.g. the 

adverse outcome or related biological effects, and responses, which are the measured quantities, in 

vivo or in vitro, that are available for BMD modelling. For example, it was proposed to consider the 

AdipoRed response after 72 hours in a HepaRG test system as one of the most appropriate and cost-

effective responses in relation to the AO steatosis (Lichtenstein et al., 2019). Part of these Effect 

representations is the specification of an appropriate benchmark response (BMR), i.e. the response 

level considered suitable for the BMD modelling, often as a limit value for adversity (EFSA, 2017). 

Whereas dose response models focus on BMD calculation related to specific responses, further or 

alternative steps may be needed to obtain an appropriate HC. In the Hazard characterisations module, 

many possibilities are provided to define HCs either as deterministic threshold values, such as 

NOAEL, ADI or ARfD, or as distributions generated from probabilistic models. HCs can be 

calculated for acute or chronic risk types, and for different target levels of the human body (external 

via some route of exposure or internal for a specific defined organ or compartment). It may be needed 

to align the available information to the desired target level by including assessment factors for inter-

species differences, intra-species variation, different expression types (e.g. BMD or NOAEL or 

LOAEL) and the difference between external and internal exposure. The latter conversion is especially 

relevant when in vitro dose response data are to be used for a HC that should be compared with 

external, e.g. dietary, exposure data. In general this type of modelling is known as in vitro to in vivo 

http://www.epa.gov/bmds
http://www.rivm.nl/en/proast
https://proastweb.rivm.nl/
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extrapolation (IVIVE). In this approach, we need human physiologically based toxicokinetic (PBTK) 

models. Within EuroMix, the Cosmos model was integrated in the toolbox as a general PBTK 

applicable model (Bois et al., 2019, Tebby et al., 2019). 

The conceptual model used for the use of in vitro and/or in vivo animal study data for human hazard 

characterisation and risk assessment using IVIVE is shown in Figure 3. A typical situation is that there 

are many substances in a proposed AG, which could be measured all in vitro but not in vivo. The in 

vitro dose response relations are assumed to coincide with in vivo relations between internal dose and 

some early biological response. The in vitro data can then be used to derive internal RPFs, i.e. at the 

tissue or cell level. Then kinetic models (or absorption factors which are considered a lower tier of 

kinetic model) can be used to adjust external PODs. i.e. expressed as external exposure levels, to 

internal HCs, or alternatively to translate internal RPFs to external RPFs. 

 

Figure 3. Overview of in vitro to in vivo extrapolation (IVIVE) model components. cum = cumulative; index = index 

substance; ani = animal, hum - human. Classes of substances: A: substances with in vitro and in vivo data, B: substances 

with only in vitro data. 
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In mixture risk assessments, RPFs are calculated by dividing the HC of a chosen index substance by 

the HC of each specific substance. This implies that RPFs may, and typically will be different 

depending on whether an external exposure or an internal exposure, e.g. at the target tissue or cell 

level, was used. In the module Relative potency factors both types can be calculated, and modelled 

uncertainties in the values used to derive the RPFs (e.g. from BMD modelling) are translated to 

uncertainties about RPFs. It may further be noted that RPFs represent the distance between parallel 

dose response curves, and can even be calculated when no BMR has been specified in the dose 

response modelling. 

In the toolbox, external doses from animal studies can be adapted to external doses for humans by the 

use of inter-species and/or intra-species factors. Alternatively, no inter-species and intra-species 

factors are used, and then the final margin of exposure will have to be considered against an 

appropriate value representing the combined assessment factors, e.g. 100. We use the latter approach 

in this paper. 

 

2.4.2 Examples 

As a first example, hazard characterisations and RPFs were calculated based on the NOAELs or 

LOAELs available for 144 substances related to the AO steatosis, using the well-studied risk driver 

imazalil as an index substance. Standard inter-species and intra-species assessment factors of 10 were 

used for all hazard characterisations. As in Crépet et al. (2019), for 13 substances where no NOAEL 

was available, the LOAEL was divided by 3 to obtain an estimated NOAEL. This is a simple 

approach, and further refinement may be necessary in real applications. The guidance document from 

WHO/IPCS (2018) states that it would be much better to use dose-response data. In the current 

project, it was not possible to use the dose-response data for all 144 substances.  

In the EuroMix project three chemicals were prioritised in relation to the AO steatosis: imazalil, 

thiacloprid and clothianidin based on relevance from dietary exposure and other considerations 
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(Crépet at al., 2019a, Lichtenstein et al., subm.). We therefore provide more detailed example 

calculations based on in vitro dose response data for these chemicals.  

Dose response relations for the intracellular lipid accumulation after 72 hours were measured using the 

AdipoRed assay in the in vitro HepaRG test system for three substances in the steatosis AG (Luckert 

et al. 2019). Using the Proast model (https://www.rivm.nl/en/proast; Slob and Setzer, 2014), that is 

integrated in the MCRA toolbox, a 6-parameter parallel-curve exponential dose response model was 

fitted to the data. Three parameters represent the lower and upper asymptote and common slope, one 

parameter is the BMD for the index substance (here imazalil), and the remaining two parameters 

represent the RPFs for the other two substances relative to the index substance. A 10% increase in 

AdipoRed response was assumed to be an appropriate benchmark response (BMR) level. The 

appropriateness of the parallel-curve model was checked by superimposing the shifted dose response 

curves and the data (Kienhuis et al., 2015). The RPFs are based on in vitro doses in molar units. For 

reverse dosimetry we changed to mass units and mass-based RPFs.  

Using the EuroMix Generic PBTK model that is integrated in the toolbox (Bois et al., 2019; Tebby et 

al., 2019) the internal liver concentration was simulated when a daily dose equal to the BMD is given. 

In the EuroMix project different parameterisations of the model for each substance have been 

investigated (Tebby et al., 2019). Here, we rely on kinetic parameters estimated by QSAR but with 

hepatic clearance values obtained from in vitro clearance measurements. The long-term exposure 

relevant for chronic risks was obtained by averaging over predicted liver concentrations in the period 

between 15 and 28 days. The ratio of this internal concentration to the external exposure per unit 

bodyweight was then used as the absorption factor. For all routes, the exposure is taken to be the total 

amount entering via that route per unit bodyweight and per day. 

 

2.5 Exposure assessment: dietary exposure with large AG, aggregating dietary 

and non-dietary exposures, comparison with human monitoring 

2.5.1 Implemented methods for exposure assessment 

https://www.rivm.nl/en/proast
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The module Dietary exposures of the toolbox implements the methods of the EFSA guidance on 

probabilistic modelling (EFSA, 2012) as well as the most recent EFSA methodology for cumulative 

dietary exposure assessment for acute and chronic risks of pesticides (van Klaveren et al., 2019ab; 

EFSA et al., 2019ab). Using the module Food conversions consumptions of food-as-eaten as specified 

in a dietary consumption survey can be recoded in terms of the foods-as-measured. In this paper 

concentration data according to EFSA’s standard sample description (SSD1) (EFSA, 2010) were used 

with FoodEx1 food classification (EFSA, 2011). The toolbox however has no fixed coding systems, 

and could equally well use the newer SSD2 system (EFSA, 2013b) provided a table with code 

conversions for the foods-as-eaten is available. 

The module Dietary exposures also implements advanced methods for long-term exposure commonly 

used in nutrition science, such as the logistic-normal normal (LNN) model for episodical intakes 

(Goedhart et al., 2012; Roodenburg et al., 2013; Boon et al., 2014; van der Voet et al., 2015).  

In the module Exposures dietary (external) exposures can be translated to internal exposures, using 

simple absorption factors or integrated kinetic models. Non-dietary exposures from e.g. dermal or 

inhalatory routes can be aggregated with the dietary exposures (Kennedy et al., 2019; Karrer et al., 

2019; Vanacker et al., in prep.). There can be multiple instances of a kinetic model (e.g. the human 

model for imazalil or the rat model for clothianidin). The parameters of each instance can be specified 

as fixed values or as variable and uncertain quantities. Distributions for variability and uncertainty are 

characterised by their type (log-normal, logistic-normal) and coefficient of variation.  

Modelled exposures in given body compartments, e.g. blood or urine, can be compared to actually 

measured exposures from human (bio-)monitoring studies in the module Human monitoring analysis. 

Dose-additivity is a common assumption in mixture risk assessment (EFSA, 2013a, 2019; OECD, 

2018). With large number of substances that have the same health effect it is practically impossible to 

check this assumption for all combinations. It is then important to identify the main groups of 

substances that contribute to the cumulative exposure. The module Exposure mixtures implements a 
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multivariate method, sparse nonnegative matrix underestimation (SNMU), to find such groups (Crépet 

et al., 2019a).  

Uncertainty about assessment group membership for substances can be addressed probabilistically as 

sketched in section 2.3.1. In the toolbox, such probabilities can be used in an exposure assessment to 

include or exclude substances in the multiple loops of an uncertainty calculation (see also EFSA, 

2019ab), as described in Kennedy et al. (subm.). 

2.5.2 Examples 

An example is given of dietary exposure from 144 pesticides with a POD (NOAEL or LOAEL) for 

steatosis (Kyriakopoulou et al., 2017). Consumption data were available for a Dutch population of 

children (1-19 years) (van Rossum et al., 2011). These were combined with merged European food 

control and monitoring data 2010-2014 (Crépet et al., 2019a) using a previously established database 

of food conversions (Boon et al., 2015) and BfR processing factors (https://www.bfr.bund.de/de/a-

z_index/verarbeitungsfaktoren-8400.html, downloaded 01-09-2015). As reported in section 3.2, the 

PODs were used to calculate external RPFs. For the handling of left-censored data (concentrations 

reported to be below a limit of reporting) the EC-EFSA method based on observed occurrence patterns 

was applied (van Klaveren et al., 2019ab), thus avoiding the extreme conservatism of the EFSA basic 

pessimistic model. Exposure percentiles for the basic observed individual means (OIM) method and 

the LNN method are compared, and the most important food-substance combinations (risk drivers) are 

identified. 

 

In a second example, dietary exposures were combined with non-dietary exposures for the three 

prioritised steatotic substances imazalil, thiacloprid and clothianidin. The dietary exposures were 

based on consumption data of French adults (Dubuisson et al., 2010) and the same other dietary 

exposure data as mentioned above. The non-dietary exposures were estimates for adult residents from 

the Browse model (Kennedy et al., 2019). Internal RPFs for steatosis were based on in vitro data from 

AdipoRed assays (Luckert et al., 2019). For linking external to internal level exposures, the EuroMix 

https://www.bfr.bund.de/de/a-z_index/verarbeitungsfaktoren-8400.html
https://www.bfr.bund.de/de/a-z_index/verarbeitungsfaktoren-8400.html
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Generic PBTK was used, with parameterisations for the human including variability of the parameters 

(Tebby et al., 2019).  

 

In a third example, the module Human monitoring analyis was used to combine questionnaire data on 

food consumption and personal care product use with monitoring data on bisphenol A (BPA) in food, 

and compare the resulting predicted exposures with measured urine levels. Human biomonitoring data 

for BPA were available from a Norwegian survey which measured bisphenols in urine and asked 

participants for their diet and their use of personal care products (Husøy et al., 2019). Predicted 

exposures were based on the recorded consumptions and personal care product use in combination 

with measured or modelled BPA levels (Karrer et al., 2019) using a kinetic model developed for this 

purpose and integrated in the toolbox (Karrer et al., 2018). 

 

2.6 Risk characterisation: comparing exposure and hazard characterisation 

distributions  

2.6.1 Implemented methods for risk characterisation 

Risk characterisation is fundamentally the process of comparing exposure to hazard. Both exposure 

levels and hazard threshold levels (called HCs in the toolbox) can be variable (between individuals or 

individual-days) and/or uncertain. The toolbox module Risks can be used to display this comparison. 

More directly, the ratio of HC to exposure, i.e. the margin of exposure (MOE) is calculated and 

displayed. For mixture exposure, this has also been termed the MOE total (MOET) or combined MOE 

(e.g. Rotter et al., 2018; EFSA, 2019), but in the toolbox the term MOE is used throughout, for both 

single-substance and cumulative cases. For example, in a traditional risk assessment human exposures 

are often compared to a POD derived from an animal study. The product of assessment factors, e.g. 

100 resulting from a factor 10 each for inter-species and intra-species differences, may then be used as 

a threshold for the MOE specified by the user.  
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In a more advanced calculation such as in the integrated probabilistic risk assessment (IPRA) approach 

(van der Voet & Slob, 2007; van der Voet et al., 2009), the assessment factors (as well as their 

variability and uncertainty) are internalised in the probabilistic hazard characterisation and modelled 

probabilistically. Probabilistic hazard and exposure estimates are then compared and the MOE 

compares individual human exposures to individual human HCs. Note that for this case this ratio has 

previously been termed the individual MOE (IMOE), but in the toolbox the term MOE is used 

generically, whether the HC includes the assessment factors or not. For practical risk assessment, the 

distribution of MOE (based on probabilistic exposure or probabilistic hazard or both) can be 

characterised with a lower percentile of interest, e.g. P1, or with the lower confidence limit on such a 

lower percentile. For an example of this fully probabilistic approach see Jacobs et al. (2015). 

Uncertainty about assessment group membership for substances can be addressed probabilistically as 

sketched in section 2.3.1. In the toolbox, such probabilities can be used in a risk assessment to include 

or exclude substances in the multiple loops of an uncertainty calculation (see also EFSA, 2019ab), as 

described in Kennedy et al. (subm.).  

2.6.2 Example 

A mixture risk assessment for Dutch children was performed for the group of 144 pesticides with a 

POD for steatosis (Kyriakopoulou et al., 2017), calculating MOE values based on Dutch consumption 

data (van Rossum et al., 2011) and European monitoring data (Crépet et al., 2019) and using a user-

specified MOE threshold value of 100.  

 

3 Results 

3.1 Hazard identification: Assessment groups, probabilistic memberships from 

in silico data 

Running the Active substances module for the 573 pesticides listed in the EuroMix Chemical 

Inventory, 144 substances (25%) were found to belong to the AG for steatosis based on available 
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PODs for steatosis. The remaining 429 pesticides (75%) may or may not have steatosis as a non-

critical effect, but it was not recorded in the dossiers. Therefore QSAR models may be useful to 

consider possible AG membership. We first illustrate non-probabilistic (crisp) options for membership 

assignment. From a larger collection of 29 available QSAR models collected in the EuroMix data, the 

five QSAR models that relate to the AOP network for steatosis were automatically identified (Table 

2). Note that three of these models directly relate to the adverse outcome, whereas the remaining two 

relate to other effects (molecular initiating events or key events) that occur upstream in the AOP 

network. Using the toolbox it was calculated how many substances would belong to the AG for 

steatosis. This was based on the optimised FERA model, on all three available steatosis models, or on 

all five models related to the steatosis AOP network (Table 3). Pesticides for which no QSAR results 

could be calculated were omitted or added to the AG. Depending on the QSAR models chosen and the 

treatment of the substances without a QSAR prediction, the number of pesticides with an QSAR 

indication of a possible effect was between 250 and 525 (see column QSAR-based in Table 3), much 

higher therefore than the number for which a POD was available (n=144). In a second scenario, the 

QSAR results were only used to reduce the set of 144 pesticides having a POD, by omitting all 

substances without a QSAR prediction of steatosis. Instead of 144 pesticides we then found between 

83 and 135 pesticides in the AG. In a third scenario, the QSAR-derived sets were expanded with those 

pesticides for which a POD was available although no QSAR-signal was obtained. This resulted in 

between 311 and 528 pesticides in the AG. 

 

Table 2. QSAR models related to the adverse outcome steatosis. Note that some of the 573 substances could be analysed 

with the QSAR models. 

Model Model description Effect Number of 

substances 

with QSAR 

results 

Fraction 

of these 

substances  

classified  

in AG 

1 COSMOS Nuclear Receptor model for Steatosis liver nuclear 

receptors used to predict hepatotoxicity - and to predict 

steatosis 

Steatosis-liver 513 0.60 
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2 at least one of the 16 Liver NR Docking models from Uni 

Milano above binding threshold energy 

Steatosis-liver 513 0.84 

3 FERA developed model using the reference dataset for 

Steatosis - to predict steatosis 

Steatosis-liver 513 0.49 

4 OCHEM AhR receptor binding model used to predict 

hepatotoxicity - and to predict steatosis 

AhR-act-liver 512 0.40 

5 OCHEM PPARg receptor binding model used to predict 

hepatoxicity - and to predict steatosis 

PPARgamma-

act-liver 

508 0.45 

 

 

Table 3. Classification of pesticides by use of QSAR models related to the adverse outcome steatosis. 

QSAR model(s) 

(see Table 2) 

rule for 

aggregation 

include in 

AG 

pesticides 

without 

QSAR 

results 

Number of pesticides in steatosis AG 

(% of 573 pesticides) 

QSAR-based Restricted 

to POD 

present 

Expanded 

with POD 

present 

3 (FERA model) - no 250 (44%) 83 (15%) 311 (54%) 

yes 310 (54%) 96 (17%) 358 (62%) 

1,2,3 (steatosis only) any no 445 (78%) 122 (21%) 467 (82%) 

yes 505 (88%) 135 (24%) 514 (90%) 

majority no 357 (62%) 111 (19%) 390 (68%) 

yes 417 (73%) 124 (22%) 437 (76%) 

1,2,3,4,5 (include 

AOP-linked effects) 

any no 465 (81%) 128 (22%) 481 (84%) 

yes 525 (92%) 141 (25%) 528 (92%) 

majority no 295 (52%) 90 (16%) 349 (61%) 

yes 355 (62%) 103 (18%) 396 (69%) 

 

Considering the large uncertainty about steatosis AG membership, an alternative approach is to 

estimate probabilities of membership, and use these in the uncertainty analysis. Here, ratio-based 

membership probabilities were derived (Figure 4). In this analysis, a default probability 0.5 was used 

if QSAR classification was missing. 48 substances were excluded from the AG (all QSAR 

classifications negative) and 68 substances were included with certainty (all QSAR classifications 

positive). For the remaining 457 substances a membership probability equal to the fraction of positive 

QSAR models was derived. A more advanced Bayesian calculation is also available, and is described 

elsewhere (Kennedy et al., subm.). These membership probabilities can be used in probabilistic 



22 

 

assessments by including each substance in iterated uncertainty runs with the calculated probability as 

proposed by EFSA (EFSA et al., 2019ab), which method is also available in the toolbox.  

 

Figure 4. Probabilistic memberships for 573 pesticides for the Steatosis AG based on predictions from five QSAR models. 

 

3.2 Hazard characterisation: Dose response modelling and relative potency 

factors 

The preparation of the NOAEL and LOAEL data of 144 pesticides related to steatosis has been 

described in Crépet et al. (2019a).  Hazard characterisations varied between 0.25 µg/kg bw/day 

(ethoprophos) and 20 mg/kg bw/day (metosulam). A complete overview is given in the supplementary 

material, Appendix B. Based on the hazard characterisation of 40 µg/kg bw/day for the index 

substance imazalil, the RPFs varied between 160 (ethoprophos) and 0.002 (metosulam). For the three 

substances also used in the second example, the RPFs from in vivo NOAELs were 1, 0.148 and 3.33 

for imazalil, clothianidin and thiacloprid, respectively. 

For imazalil, clothianidin and thiacloprid, dose response relations for the AdipoRed response after 72 

hours were measured in the in vitro HepaRG test system. Using the integrated Proast model in the 

toolbox, a 6-parameter parallel-curve exponential dose response model was fitted to the combined data 
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of the three experiments, where three parameters represent the lower and upper asymptote and 

common slope, one parameter is the BMD for the index substance (here imazalil), and the remaining 

two parameters represent the RPFs for the other two substances relative to the index substance. Figure 

5 and Table 4 show the results. In Figure 5b the doses for all three substances are expressed as 

equivalents of the index substance, 𝑑𝑒𝑞 = 𝑅𝑃𝐹 ∙ 𝑑. 

On visual inspection the data show no major deviations from the parallel curve model, but the 

variation around the fitted curve is large, which translates to wide confidence intervals for BMDs and 

RPFs. For example, the RPF for thiacloprid is 0.16, but is uncertain by almost a factor 3 from the 95% 

confidence interval (0.09, 0.26). 

a.  b.  

Figure 5. Dose response model AdipoRed in HepaRG test system (a) Parallel curves fitted for three substances. (b) Doses for 

all substances expressed in equivalents of the index substance Imazalil. BMDs for a BMR of 10% increase are shown. 

 

Table 4. Benchmark doses (BMD, in µM) with lower (P5) and upper (P95) bounds (BMDL, BMDU), calculated from a parallel-

curve exponential model to the AdipoRed dose response data, and internal and external RPFs (with bootstrap-based 90% 

confidence intervals). 

Substance  BMD in vitro 
(µM) 

RPF internal 
(mol based) 

Molecular 
mass 

RPF internal 
(mass based) 

Absorption 
factor from 
kinetic 
model 

RPF external 
(mass 
based) 

Clothianidin 309 

(160-595) 

 0.023  

(0.015-0.037) 

249.68 0.027 

(0.018-0.042) 

0.013 0.00038 
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(0.00025-
0.00058) 

Imazalil 7.1 

(3.18-11.8) 

1 297.18 1 0.91 1 

Thiacloprid 44.4 

(23-85.5) 

 0.16 

(0.09-0.26) 

252.73 0.19 

(0.12-0.35) 

0.32 0.066 

(0.041-0.14) 

 

Using the EuroMix Generic PBTK model the internal liver concentration when a daily dose equal to 

the BMD is given was simulated and averaged over the period between 15 and 28 days to estimate the 

pseudo-steady-state concentration (Figure 6). The ratio of this internal concentration to the external 

exposure was then used as the absorption factor to convert internal to external RPFs (Table 4, Figure 

7). Note that for a given dose imazalil has the highest concentration in the liver (higher absorption 

factor). Consequently, the external RPFs for clothianidin and thiacloprid are much lower than the 

internal RPFs. 

 

 

Figure 6. EuroMix Generic PBTK model and example of use to derive internal to dietary (oral) external ratio (imazalil, human 

model), based on one dose per day leading to an internal concentration equal to the in vitro BMD (zero dermal and 

inhalatory exposures are assumed). The horizontal line indicates the mean internal exposure in the selected interval 

between 14 and 28 days. 
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Figure 7. External, mass-based relative potency factors calculated from in vitro BMDs, with 90% confidence intervals based 

on BMD uncertainties. Index substance imazalil. 

 

 

3.3 Exposure assessment: risk drivers, aggregating dietary and non-dietary 

exposure, comparison with human monitoring 

 

3.3.1 Cumulative dietary exposure and risk drivers for steatosis 

Following the traditional approach, the cumulative dietary exposure of Dutch children (1-19 years) to 

steatosis-related pesticides was calculated at the external level, using external RPFs for dose addition. 

In Figure 8 we show an example of cumulative exposure assessment based on NOAEL- or LOAEL-

based RPFs for the 144 of 573 pesticides that were related to steatosis according to the POD data (see 

3.2 and Appendix B). It can be seen that imazalil in citrus fruits are main risk drivers, where it can be 

noted that processing factors for the peeling and/or juicing of citrus fruits were missing and therefore 

suggest a possibly useful refinement of the model. For further details see Crépet et al. (2019b). 
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Figure 8. a) Exposure (µg/kgBW/day imazalil equivalents) Dutch population from 144 steatosis-related pesticides using 

NOAEL- or LOAEL-based dose addition, and OIM method. b) risk drivers in the upper 2.5% of the distribution. 

 

Comparing different models for long-term exposure, the model-assisted estimates of the LNN model 

were found to be lower than the OIM estimates in the upper tail (Table 5), which confirms that the 

OIM method underestimates the median, but overestimates the upper tail percentiles (Dodd et al., 

2006; Goedhart et al., 2012). 

Table 5. Chronic exposure percentiles using two methods: observed individual means (OIM) and model-assisted logistic-

normal normal (LNN) estimates, median and 90% confidence limits. 

 
Cumulative exposure 

(µg/kg bw/day, as imazalil) 

 

Percentage OIM LNN OIM/LNN 

50 1.42 (1.20-1.68) 1.74 (1.46-2.05) 0.82 

90 4.51 (4.00-5.06) 4.26 (3.77-4.92) 1.06 

95 5.86 (5.26-6.71) 5.37 (4.77-6.27) 1.09 

99 9.32 (8.36-10.4) 7.88 (7.02-8.86) 1.18 

99.9 15.1 (12.3-17.0) 10.7 (9.64-12.6) 1.42 

99.99 19.0 (15.5-22.2) 12.6 (11.3-14.2) 1.51 

 

3.3.2 Aggregated cumulative exposure using a kinetic model  
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With dietary and non-dietary exposures, it is essential to aggregate at the internal level. Consequently, 

internal RPFs are needed for dose addition. In a simple approach standard absorption factors can be 

used, e.g. 1 for dietary or inhalation exposure and 0.1 for dermal exposure. See Kennedy et al. (2019) 

for such an application. Here we illustrate the use of kinetic models in an example with just three 

substances. In this example the EuroMix Generic PBTK model was used to translate dietary, dermal 

and inhalation exposures to internal exposure in the liver. Further, for each individual the external 

exposures on each of the 365 days of the simulation were randomly selected from the seven daily 

imazalil exposures that were calculated for the seven days of this individual in the French 

consumption survey. In separate runs for dietary, dermal and inhalation external exposure, the mean 

absorption factors to the liver were estimated as (0.91, 0.96, 0.92) for imazalil, (0.35, 0.34, 0.32) for 

thiacloprid and (0.017, 0.019, 0.013) for clothianidin. Figure 9 shows simulated kinetic curves for the 

amount of imazalil in the liver for the nine individuals in the French consumption survey that had 

aggregated cumulative exposures closest to the 97.5th percentile of the distribution. It can be seen that 

very variable kinetic curves were obtained, and that for some individuals the pseudo steady state is not 

yet reached after half a year. This is due partly to differences in dietary exposures and partly to the 

assumed variability of kinetic model parameters. The high variability in absorption is also evident 

from the plot of internal vs. external exposure (Figure 10). 
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Figure 9. Simulated kinetics of imazalil for 9 individuals in the French population around the 97.5th percentile of exposure 

in the cumulative exposure distribution. Note the random draws from the seven survey days for the external doses. 

 

 

Figure 10. Internal vs. external exposure. 
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Using estimates that respectively 10.3%, 0.9%, 0.8% and 0.1% of the population lives near 

agricultural fields where wheat, potatoes, sugar beet or dessert apples are sprayed, we observe that for 

those people thiacloprid and imazalil via the dermal route had the largest contribution in their non-

dietary exposure (Figure 11a). This is in accordance with the results based on fixed absorption factors 

in Kennedy et al. (2019). However, in the total exposure of the total adult population the non-dietary 

contributions were minor. Imazalil from dietary exposure had by far the largest contribution in this 

example (Figure 11b). 

 

Figure 11. Contributions by route and substance to (a) the non-dietary cumulative exposure, (b) the total (dietary and non-

dietary) cumulative exposure. 

 

3.3.3 Comparison of modelled exposure with human biomonitoring data 

Using the Human monitoring analysis module of the toolbox, human biomonitoring data (BPA 

measured in urine on a single day) from a Norwegian study (Husøy et al., 2019; Karrer et al., 2019) 

were compared to chronic exposure predictions based on the dietary consumptions and  non-dietary 

uses of personal care products recorded for the survey participants (Figure 12). The results showed 

roughly comparable levels of BPA around 1-10 µg/kg body weight per day, but no strong correlation. 
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Figure 12. Bisphenol-A measured in urine vs. predicted from dietary and non-dietary exposures for 144 persons.  

 

3.4 Risk characterisation: comparing exposure and hazard characterisation 

distributions  

In an assessment of all 144 pesticides with a POD for steatosis, the final risk assessment is shown in 

two different ways. First, the HCs, which in this case were the NOAELs in or derived from the data 

repository, were plotted against the exposure distributions for each of the substances separately, and 

also cumulated (Figure 13a). The variability and uncertainty in the exposure also induce variability 

and uncertainty of the MOE, as represented by the diagonal line sections. Background colours have 

been applied to indicate possible areas of risk and safety. Note that one line (in the red area) represents 

equality of exposure and HC (POD), whereas the other line (in the yellow area) represents the user-

specified threshold value 100 for the interpretation of MOEs.  

A more direct representation of the MOEs is given in Figure 13b. In both plots it is seen that the 

cumulative MOE is well above 100, the 5th percentiles of the cumulative distribution is estimated as 

649, with a lower 95% confidence limit of 597. Imazalil stands out as the main risk driver. 
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Figure 13. a. Hazard vs. exposure plot using 100 as a MOE level for risk of steatosis. Exposure ranges and induced MOE 

ranges are plotted for cumulative (imazalil as index substance) and for the separate substances (only 20 with lowest MOE 

shown). Black line segments represent the variability range between percentiles p1 and p99, with white extensions 

representing one-sided 95% uncertainty limits on these percentiles. b. Margin of exposure, cumulative and for the separate 

substances (restricted to substances with P1(MOE)<106), using 100 as a MOE threshold for risk. Bars represent MOE ranges 

in the population (P1-P99), with whiskers representing one-sided 95% uncertainty limits for P1 and P99. 

 

4 Discussion 

This paper has described the modular structure of the MCRA model and data toolbox developed in the 

EuroMix project. Simple examples have been shown how the toolbox can be used for various aspects 

of the risk assessment of chemical mixtures. It is stressed that this paper does not intend to present 

extended case studies. All examples have been given for illustration of the methodology only, and do 

not represent real hazard, exposure or risk assessments. For example, more study is needed regarding 

the large differences between the in vivo and in vitro derived RPFs for clothianidin or thiacloprid 

relative to imazalil. In fact, it is not the purpose of this paper to propose any specific methodology as 

an optimal approach for specific case studies, but rather to emphasise that a wide variety of both 
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simple and more complex approaches with varying degrees of conservatism can be explored and 

compared using an appropriate model and data toolbox.  

More possibilities are available in the toolbox than could be illustrated here. For example, the toolbox 

also contains functionality to use molecular docking models for identifying AG membership (Cotterill 

et al., 2016; Kennedy et al., subm.). Missing HCs can be imputed, e.g. based on thresholds of 

toxicological concern (Munro et al., 1996; Kennedy et al., subm.). More refined exposure models can 

be applied, including the use of occurrence patterns for the imputation of left-censored data and 

residue definitions for measured substances which are only indirectly measuring the active substances 

(van Klaveren et al., 2019ab). The most relevant mixtures for which further refinement could be 

important can be identified (Crépet et al., 2019a). Integrated probabilistic risk assessments where the 

uncertainty factors are also modelled probabilistically can be run (van der Voet and Slob, 2007; van 

der Voet et al., 2009; Jacobs et al., 2015). 

MCRA 9, developed as the EuroMix toolbox and presented in this paper, is maintained after the 

EuroMix project at https://mcra.rivm.nl and can be used in its current state. Users can upload their 

own data or can access data which are shared by other platform users or user groups. The possible 

links between the MCRA toolbox and the IPCHEM platform of the European Commission for 

supporting the assessment of chemical mixtures have been discussed (Dalla Costa et al., 2018) and the 

European Commission, EFSA, industry and regulators were trained in the use of MCRA (Bopp et al., 

2018, Zilliacus et al. 2019b). The toolbox will also be further developed in cooperation with EFSA 

and other stakeholders such as national risk assessment institutes. Such development might go in two 

opposite directions. On the one hand, the use by less-experienced users can be optimised by offering 

clearly described tiers including presets of options, avoiding the need to specify all settings by hand. 

On the other hand, the modular design of the toolbox makes it suitable for developing interoperability 

with other web-based databases and models, and for adding new functionalities. A practical example 

would be to add the use of expert-elicited uncertainty distributions to adjust the results of risk 

https://mcra.rivm.nl/
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assessments (EFSA, 2019cd). Another extension would be to include read-across approaches for 

hazard assessment as have been recently proposed (Escher et al., 2019). 

In conclusion, the MCRA model and data toolbox has been found useful to perform case studies of 

hazard identification, hazard characterisation, exposure assessment and risk characterisation, as shown 

in this paper and in other deliverables in the EuroMix project (Crépet et al., 2019ab; Kennedy et al., 

2019; Karrer et al., 2019; Kennedy et al., subm.; Vanacker et al., in prep.). At the same time, the 

toolbox has been prepared to serve a wider public, and will be tested and further developed in future 

collaborations. 
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Appendix A. Summary of modules in the MCRA toolbox 

Category Module Description 

Primary entities  Foods Foods are uniquely defined sources of dietary exposure to chemical substances. 
Foods may refer to 1) foods-as-eaten: foods as coded in food consumption data 
(e.g. pizza); 2) foods-as-measured: foods as coded in concentration data (e.g. 
wheat); 3) any other type of food (e.g. ingredients, e.g. flour). 

  Substances  Substances are chemical entities. Substances can refer to: 1) active substances 
such as investigated in toxicology; 2) measured substances such as defined in 
specific analytical methods. 

  Effects Effects are biological or toxicological consequences for human health, that may 
result from chemical exposure and are the focus of hazard or risk assessment. 

  Populations  Populations are groups of human individuals that are the scope of exposure or 
risk assessments. 

  Test systems  Test systems are biological or artificial systems used for assessing hazard in 
relation to chemical exposure from substances in varying doses. Test systems 
may refer to 1) in vivo test systems (e.g. a rat 90-day study, a human 
biomonitoring study); 2) in vitro test systems (e.g. HepaRG cells). 

  Responses  Responses are measurable entities in test systems. Responses are used to 
represent effects (see effect representations) and their measured values are 
collected in dose response data. 

Consumption  Consumptions  Consumptions data are the amounts of Foods consumed on specific days by 
Individuals in a food consumption Survey. For an acute exposure assessment, 
the interest is in a population of person-days, so one day per individual may be 
sufficient. For chronic exposure assessments, the interest is in a population of 
person, so preferably two or more days per individual are needed. 

  Market shares  Market shares data specify for a given food percentages of more specific foods 
(subfoods, e.g. brands) representing their share in a market. Market shares are 
used when consumption data are available at a more generalised level than 
concentration data. 

  Food recipes  Food recipes data specify the composition of specific foods (typically: foods-as-
eaten) in terms of other foods (intermediate foods or foods-as-measured) by 
specifying proportions in the form of a percentage. 

Occurrence  Concentrations  Concentrations data are analytical measurements of chemical substances 
occurring in food samples. Optionally, concentrations data can be recalculated 
for active substances, extrapolated to other foods, and/or default values can be 
added for water. 

  Processing factors  Processing factors are multiplication factors to derive the concentration in a 
processed food from the concentration in an unprocessed food. Processing 
factors can be given for identified processing types (e.g. cooking, washing, 
drying). 

  Unit variability factors  Unit variability factors specify the variation in concentrations between single 
units of the same food, which have been put together in a mixture sample on 
which the concentration measurements have been made. 

  Occurrence patterns  Occurrence patterns (OPs) are the combinations (or mixtures) of substances 
that occur together on foods and the frequencies of these mixtures occurring 
per food, expressed in percentages. In the context of pesticides, occurrence 
patterns can be associated with agricultural use percentages. Occurrence 
patterns are relevant to account for co-occurrence of active substances in 
exposed individuals. Occurrence patterns may be specified as data or modelled 
based on observed patterns of positive concentrations. 

https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/index.html#primary-entity-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/foods/index.html#module-foods
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/substances/index.html#module-substances
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/effects/index.html#module-effects
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/populations/index.html#module-populations
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/test-systems/index.html#module-testsystems
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/primary-entity-modules/responses/index.html#module-responses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/consumption-modules/index.html#consumption-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/consumption-modules/consumptions/index.html#module-consumptions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/consumption-modules/market-shares/index.html#module-marketshares
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/consumption-modules/food-recipes/index.html#module-foodrecipes
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/index.html#occurrence-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/concentrations/index.html#module-concentrations
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/processing-factors/index.html#module-processingfactors
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/unit-variability-factors/index.html#module-unitvariabilityfactors
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/occurrence-pattern-models/index.html#module-agriculturaluses
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Category Module Description 

  Substance 
authorisations  

Substance authorisations specify which food/substance combinations are 
authorised. 

  Substance 
conversions  

Substance conversions specify how measured substances are converted to 
active substances, which are the substances assumed to cause health effects. In 
the pesticide legislation such measured substances and the substance 
conversion rules are known as residue definitions. 

  Concentration limits  Concentration limits specify (legal) limit values for substance concentrations on 
foods and are sometimes used as conservative values for concentration data. In 
the framework of pesticides the legal Maximum Residue Limit (MRL) is the best 
known example. 

  Concentration models  Concentration models are distributional models of substance concentrations on 
foods. They describe both the substance presence (yes/no, with no representing 
an absolute zero concentration) and the substance concentrations. 
Concentration models are specified per food/substance combination. 

  Foods as measured  Foods as measured are foods within the foods scope for which concentration 
data of substances are available (or expected). 

  Focal food 
concentrations  

In some cases the attention in an assessment is on a specific food (focal food), 
against the background of other foods. Focal food concentrations are separate 
concentration data for one or more focal food commodities, that will take the 
place of any other concentration data for the focal food in the ordinary 
concentrations data. 

  Total diet study 
sample compositions  

Total diet study sample compositions specify the composition of mixed food 
samples, such as used in a total diet study (TDS), in terms of their constituting 
foods. 

  Food extrapolations  Food extrapolations data specify foods (from-foods) that can be used to impute 
concentration data for other foods with insufficient data (to-foods). 

Exposure  Food conversions  Food conversions relate foods-as-eaten, as found in the consumption data, to 
foods-as-measured, which are the foods for which concentration data are 
available. 

  Consumptions per 
food as measured  

Consumptions per food as measured are consumptions of individuals expressed 
on the level of the foods for which concentration data are available (i.e., the 
foods-as-measured). These are calculated from consumptions of foods-as-eaten 
and food conversions that link the foods-as-eaten amounts to foods-as-
measured amounts. 

  Dietary exposures 
with screening  

Dietary exposures with screening are just Dietary exposures, but the calculation 
includes a prior screening step to identify the main risk drivers (food-substance 
combinations). This allows computations with more substances by suppressing 
some details for less important food-substance combinations. 

  Dietary exposures  Dietary exposures are the amounts of substances, expressed per kg bodyweight 
or per individual, to which individuals in a population are exposed from their 
diet per day. Depending on the exposure type, dietary exposures can be short-
term/acute exposures and then contain exposures for individual-days, or they 
can be long-term/chronic exposures, in which case they represent the average 
exposure per day over an unspecified longer time period. 

  Non-dietary 
exposures  

Non-dietary exposures are the amounts of substances to which individuals in a 
population are exposed via any of three non-dietary routes: dermal, inhalation 
or oral, per day. 

  Exposures  Exposures, possibly from both dietary and non-dietary routes of exposure, to 
which individuals in a population are exposed per day at a chosen target level. 
This target level may be external exposure (dietary exposure) or internal 
exposure. 

https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/substance-authorisations/index.html#module-authoriseduses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/substance-authorisations/index.html#module-authoriseduses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/substance-conversions/index.html#module-residuedefinitions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/substance-conversions/index.html#module-residuedefinitions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/concentration-limits/index.html#module-residuelimits
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/concentration-models/index.html#module-concentrationmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/foods-as-measured/index.html#module-foodsasmeasured
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/focal-food-concentrations/index.html#module-focalfoods
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/focal-food-concentrations/index.html#module-focalfoods
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/total-diet-study-sample-compositions/index.html#module-totaldietstudycompositions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/total-diet-study-sample-compositions/index.html#module-totaldietstudycompositions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/occurrence-modules/food-extrapolations/index.html#module-foodextrapolations
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/index.html#exposure-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/food-conversions/index.html#module-foodconversions
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/consumptions-per-food-as-measured/index.html#module-consumptionsperfoodasmeasured
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/consumptions-per-food-as-measured/index.html#module-consumptionsperfoodasmeasured
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/dietary-exposures-screening/index.html#module-dietaryexposurescreening
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/dietary-exposures-screening/index.html#module-dietaryexposurescreening
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/dietary-exposures/index.html#module-dietaryexposures
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/non-dietary-exposures/index.html#module-nondietaryexposures
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/non-dietary-exposures/index.html#module-nondietaryexposures
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/exposures/index.html#module-targetexposures
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Category Module Description 

  Exposure mixtures  Exposure mixtures are mixtures of substances that contribute relatively much to 
the overall cumulative exposure (potential risk drivers). The occurrence and 
concentrations of compounds in the same samples may be correlated, which is 
of importance for acute exposure assessments (Note that chronic assessments 
only use mean concentration values). Theoretically, this could be modelled and 
fitted to datasets. However, in practical applications (regarding pesticide 
residues) the number of positive values is commonly too low to allow such 
detailed modelling. Co-exposure of compounds is defined as the pattern of 
compounds occurring together on a single individual day. Co-exposure can 
enter the risk assessment through the use of mixtures of substances on a single 
food or by combining different food sources on a single day (through 
consumption). 

  Human monitoring 
data 

Human monitoring data quantify concentrations found in human surveys. Data 
are provided on the survey, the individuals in the survey, the samples taken, the 
analyses performed, the analytical methods used, the properties for substances 
analysed, and the concentrations found. 

  Human monitoring 
analysis  

Human monitoring analysis compares observed human monitoring data with 
predictions made for the same population of individuals from dietary survey 
data, concentration data and (optionally) non-dietary exposure data. 

In silico  QSAR membership 
models  

QSAR membership models specify assessment group memberships for active 
substances related to a specific health effect (adverse outcome). Memberships 
should be derived externally from Quantitative Structure-Activity Relationship 
(QSAR) models. 

  Molecular docking 
models  

Molecular docking models specify binding energies for substances in specific 
molecular docking models related to a specific health effect (adverse outcome). 

Kinetic  Kinetic models  Kinetic models convert exposures or hazard characterisations from one or more 
external routes or compartments to an internal (target) compartment. The 
reverse conversion from internal to external can also be made (reverse 
dosimetry). 

Hazard Active substances  Active substances are the substances that may lead to a specific health effect 
(adverse outcome). Active substances can be either specified directly as data or 
calculated from QSAR membership models or from Molecular docking models. 
Optionally, active substances can have assessment group memberships 
between 0 and 1. 

  Relative potency 
factors 

Relative potency factors (RPFs) describe the potency of substances with respect 
to a defined effect, relative to the potency of a chosen index substance. RPFs 
can be given as data or computed from hazard characterisations. 

  Hazard 
characterisations  

Hazard characterisations are benchmark doses for active substances and for the 
chosen effect at the chosen target level (external or internal) of the hazard 
assessment. Hazard characterisations are based on points of departure, such as 
BMDs from dose response models or externally specified points of departure 
(MDSs, NOAELs or LOAELs). The computation may involve inter-species 
conversion, intra-species factors and the use of kinetic models or absorption 
factors to convert external doses to internal doses. 

  Points of departure  Externally specified points of departure can be used as an alternative to 
calculated BMDs from dose response models. Points of departure can be of 
various types, such as NOAEL, LOAEL or BMD. 

  Dose response 
models  

Dose response models specify the results of models fitted to dose response 
data. Dose response models can be provided as data or calculated using a local 
or remote version of PROAST. The main results for hazard and risk assessment 
are benchmark doses (BMDs), related to a specified substance, response, 
optionally covariate value, and the benchmark response (BMR). 

https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/exposure-mixtures/index.html#module-exposuremixtures
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-data/index.html#module-humanmonitoringdata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-data/index.html#module-humanmonitoringdata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-analysis/index.html#module-humanmonitoringanalysis
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/exposure-modules/human-monitoring-analysis/index.html#module-humanmonitoringanalysis
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/index.html#in-silico-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/qsar-membership-models/index.html#module-qsarmembershipmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/qsar-membership-models/index.html#module-qsarmembershipmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/molecular-docking-models/index.html#module-moleculardockingmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/in-silico-modules/molecular-docking-models/index.html#module-moleculardockingmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/kinetic-modules/index.html#kinetic-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/kinetic-modules/kinetic-models/index.html#module-kineticmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/index.html#hazard-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/active-substances/index.html#module-assessmentgroupmemberships
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/relative-potency-factors/index.html#module-relativepotencyfactors
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/relative-potency-factors/index.html#module-relativepotencyfactors
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/hazard-characterisations/index.html#module-targethazarddoses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/hazard-characterisations/index.html#module-targethazarddoses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/points-of-departure/index.html#module-hazarddoses
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/dose-response-models/index.html#module-doseresponsemodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/dose-response-models/index.html#module-doseresponsemodels
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Category Module Description 

  Dose response data  Dose response data are data on response values of test systems at specified 
doses of substances (or mixtures of substances) from dose response 
experiments. 

  Effect representations  Effect representations are the responses which can be used to measure 
specified effects and the benchmark response (BMR) that defines a hazard limit 
for the effect. 

  Inter-species 
conversions  

Inter-species conversions specify how to convert a hazard characterisation for a 
given species to a hazard characterisation for humans. In the simplest approach, 
this specifies a fixed inter-species factor. In a higher tier, this specifies a 
geometric mean (GM) and geometic standard deviation (GSD) for a lognormal 
uncertainty distribution of the inter-species factor. 

  Intra species factors  Intra-species factors specify how to convert a hazard characterisation from the 
average to a sensitive human individual. In the simplest approach, this is a fixed 
inter-species factor. In a higher tier, lower and upper values for the intra-
species factor are used to derive a variability distribution (lognormal around 1) 
and an uncertainty distribution for the geometric standard deviation related to 
human variability in sensitivity. 

  AOP networks  Adverse Outcome Pathway (AOP) Networks specify how biological events 
(effects) can lead to an adverse outcome (AO) in a qualitative way through 
relations of upstream and downstream key events (KEs), starting from 
molecular initiating events (MIEs). 

Risk Risks  Risks (health impacts) are quantified by comparing exposures and hazard 
characterisations at the chosen level (external or internal) via margins of 
exposure (MOE) or more generalised or integrated margins of exposure (IMOE). 
In addition, risks can be assessed from a plot of hazard characterisations vs. 
exposures. 

 

  

https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/dose-response-data/index.html#module-doseresponsedata
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/effect-representations/index.html#module-effectrepresentations
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/inter-species-conversions/index.html#module-interspeciesconversionmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/inter-species-conversions/index.html#module-interspeciesconversionmodels
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/intra-species-factors/index.html#module-intraspeciesfactors
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/hazard-modules/aop-networks/index.html#module-aopnetworks
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/risk-modules/index.html#risk-modules
https://mcra-test.rivm.nl/EuroMix/WebApp/manual/modules/risk-modules/risks/index.html#module-healthimpacts
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Appendix B. Hazard characterisations and relative potency factors based 

on NOAELs or LOAELs of 144 pesticides 

Table B1. Hazard characterisations and relatiove potency factors for pesticides for which NOAEL or 

LOAEL related to steatosis was available from in vivo study. POD: Point of departure; F1: 

conversion factor for POD type; F2: inter-species factor; F3: intra-species factor; HC: hazard 

characterisation; RPF: relative potency factor. 

Substance name Substance code Species POD type Value 

(µg/kg/day) 

F1 F2 F3 HC 

 (µg/kg bw/day) 

RPF 

Ethoprophos RF-0164-001-PPP Dog NOAEL 25 1 0.1 0.1 0.25 160.000 

Dazomet RF-0118-001-PPP Dog NOAEL 40 1 0.1 0.1 0.4 100.000 

Endrin RF-0156-001-PPP Dog NOAEL 50 1 0.1 0.1 0.5 80.000 

Fipronil RF-0192-001-PPP Mouse NOAEL 55 1 0.1 0.1 0.55 72.727 

Mesotrione RF-00003357-PAR Rat LOAEL 480 0.333 0.1 0.1 1.6 25.000 

Flufenoxuron RF-0204-001-PPP Rat NOAEL 230 1 0.1 0.1 2.3 17.391 

Abamectin (RD) RF-0011-001-PPP Dog NOAEL 250 1 0.1 0.1 2.5 16.000 

Diclofop (RD) RF-0128-001-PPP Dog NOAEL 440 1 0.1 0.1 4.4 9.091 

Benfluralin RF-0039-001-PPP Rat NOAEL 500 1 0.1 0.1 5 8.000 

Hexaconazole RF-0241-001-PPP Rat NOAEL 500 1 0.1 0.1 5 8.000 

Tralkoxydim RF-0427-001-PPP Dog NOAEL 500 1 0.1 0.1 5 8.000 

Flusilazole RF-0218-001-PPP Rat NOAEL 530 1 0.1 0.1 5.3 7.547 

Teflubenzuron RF-0407-001-PPP Mouse LOAEL 2100 0.333 0.1 0.1 7 5.714 

Iprovalicarb RF-0256-001-PPP Dog LOAEL 2600 0.333 0.1 0.1 8.67 4.615 

Bifenazate RF-00003033-PAR Dog NOAEL 900 1 0.1 0.1 9 4.444 

Triadimefon and 

triadimenol (RD) 

RF-0428-001-PPP Rat LOAEL 2700 0.333 0.1 0.1 9 4.444 

Deltamethrin RF-0120-001-PPP Rat NOAEL 1000 1 0.1 0.1 10 4.000 

Dithiocarbamates 

(RD) 

RF-0151-001-PPP Mouse LOAEL 3000 0.333 0.1 0.1 10 4.000 

Emamectin 

benzoate 

RF-0648-001-PPP Rat NOAEL 1000 1 0.1 0.1 10 4.000 

Flutriafol RF-0220-001-PPP Rat NOAEL 1050 1 0.1 0.1 10.5 3.810 
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Bromuconazole RF-0053-002-PPP Rat NOAEL 1090 1 0.1 0.1 10.9 3.670 

Amitrole 

(aminotriazole) 

RF-0025-001-PPP Rat NOAEL 1200 1 0.1 0.1 12 3.333 

Proquinazid RF-0365-001-PPP Rat NOAEL 1200 1 0.1 0.1 12 3.333 

Thiacloprid RF-0417-001-PPP Rat NOAEL 1200 1 0.1 0.1 12 3.333 

Fenbuconazole RF-0176-001-PPP Mouse NOAEL 1300 1 0.1 0.1 13 3.077 

Flufenacet RF-0203-001-PPP Dog NOAEL 1300 1 0.1 0.1 13 3.077 

Dichlorvos RF-0127-001-PPP Rat LOAEL 4000 0.333 0.1 0.1 13.3 3.000 

Tetraconazole RF-0414-001-PPP Mouse NOAEL 1400 1 0.1 0.1 14 2.857 

Clofentezine RF-0098-001-PPP Rat NOAEL 1700 1 0.1 0.1 17 2.353 

Dicofol RF-0130-001-PPP Rat NOAEL 1700 1 0.1 0.1 17 2.353 

Flubendiamide RF-0199-001-PPP Rat NOAEL 1700 1 0.1 0.1 17 2.353 

Fluazifop RF-0698-001-PPP Mouse NOAEL 1860 1 0.1 0.1 18.6 2.151 

Cypermethrin (RD) RF-0112-001-PPP Mouse NOAEL 1900 1 0.1 0.1 19 2.105 

Ipconazole RF-0254-001-PPP Dog NOAEL 1900 1 0.1 0.1 19 2.105 

Lufenuron RF-0265-001-PPP Rat NOAEL 1900 1 0.1 0.1 19 2.105 

Isoxaflutole RF-0259-001-PPP Rat NOAEL 2000 1 0.1 0.1 20 2.000 

Cyproconazole RF-0113-001-PPP Rat NOAEL 2200 1 0.1 0.1 22 1.818 

Paclobutrazol RF-0325-001-PPP Rat NOAEL 2200 1 0.1 0.1 22 1.818 

Carbendazim and 

benomyl 

RF-0041-001-PPP Dog NOAEL 2600 1 0.1 0.1 26 1.538 

Benthiavalicarb RF-0043-001-PPP Mouse NOAEL 2700 1 0.1 0.1 27 1.481 

Formetanate (RD) RF-0223-001-PPP Rat NOAEL 2900 1 0.1 0.1 29 1.379 

Fluopyram RF-1071-001-PPP Rat NOAEL 3360 1 0.1 0.1 33.6 1.190 

Triflumizole (RD) RF-0440-001-PPP Rat NOAEL 3500 1 0.1 0.1 35 1.143 

1-Naphthylacetic 

acid (1-NAA) 

RF-0007-001-PPP Mouse LOAEL 10800 0.333 0.1 0.1 36 1.111 

Bromopropylate RF-0052-001-PPP Rat NOAEL 3700 1 0.1 0.1 37 1.081 

DDT (RD) RF-0119-001-PPP Rat LOAEL 12000 0.333 0.1 0.1 40 1.000 

Fenarimol RF-0174-001-PPP Rat NOAEL 4000 1 0.1 0.1 40 1.000 

Fluazinam RF-0198-001-PPP Rat NOAEL 4000 1 0.1 0.1 40 1.000 

Imazalil RF-0246-001-PPP Rat NOAEL 4000 1 0.1 0.1 40 1.000 

Phosmet RF-0338-001-PPP Mouse NOAEL 4000 1 0.1 0.1 40 1.000 

Metconazole RF-0286-001-PPP Rat NOAEL 4300 1 0.1 0.1 43 0.930 
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Cyflufenamid RF-0107-001-PPP Rat NOAEL 4400 1 0.1 0.1 44 0.909 

Difenoconazole RF-0133-001-PPP Mouse NOAEL 4700 1 0.1 0.1 47 0.851 

Florasulam RF-0195-001-PPP Dog NOAEL 5000 1 0.1 0.1 50 0.800 

Bromoxynil RF-00003327-PAR Mouse NOAEL 5100 1 0.1 0.1 51 0.784 

Benfuracarb RF-00003374-PAR Mouse LOAEL 15400 0.333 0.1 0.1 51.33 0.779 

Isopyrazam RF-00000025-PAR Rat NOAEL 5500 1 0.1 0.1 55 0.727 

Tebuconazole RF-0403-001-PPP Mouse NOAEL 5900 1 0.1 0.1 59 0.678 

Silthiofam RF-0389-001-PPP Rat NOAEL 6400 1 0.1 0.1 64 0.625 

Famoxadone RF-0171-001-PPP Mouse NOAEL 6800 1 0.1 0.1 68 0.588 

Acetamiprid RF-0014-001-PPP Rat NOAEL 7000 1 0.1 0.1 70 0.571 

Mepanipyrim RF-0274-002-PPP Rat NOAEL 7000 1 0.1 0.1 70 0.571 

Quizalofop-P-

tefuryl 

RF-0384-003-PPP Mouse NOAEL 7000 1 0.1 0.1 70 0.571 

Spinosad (RD) RF-0393-001-PPP Mouse NOAEL 7500 1 0.1 0.1 75 0.533 

Bixafen RF-1056-001-PPP Mouse NOAEL 8500 1 0.1 0.1 85 0.471 

Metalaxyl and 

metalaxyl-M 

RF-0281-001-PPP Rat NOAEL 8700 1 0.1 0.1 87 0.460 

Dimethenamid-P RF-0137-002-PPP Dog NOAEL 10000 1 0.1 0.1 100 0.400 

Propaquizafop RF-0356-001-PPP Mouse NOAEL 10000 1 0.1 0.1 100 0.400 

Tolfenpyrad RF-0943-001-PPP Dog NOAEL 10000 1 0.1 0.1 100 0.400 

Chlorothalonil RF-0084-001-PPP Rat NOAEL 10600 1 0.1 0.1 106 0.377 

Isoxaben RF-0258-001-PPP Mouse NOAEL 12000 1 0.1 0.1 120 0.333 

Trichlorfon RF-0435-001-PPP Rat NOAEL 13300 1 0.1 0.1 133 0.301 

Myclobutanil RF-0308-001-PPP Mouse NOAEL 13700 1 0.1 0.1 137 0.292 

Pyrethrins RF-0374-001-PPP Mice NOAEL 14000 1 0.1 0.1 140 0.286 

Bitertanol RF-0048-001-PPP Rat NOAEL 14900 1 0.1 0.1 149 0.268 

Dimethomorph RF-0140-001-PPP Dog NOAEL 15000 1 0.1 0.1 150 0.267 

Isoproturon RF-0257-001-PPP Rat NOAEL 15000 1 0.1 0.1 150 0.267 

Triazoxide RF-0433-001-PPP Rat NOAEL 15000 1 0.1 0.1 150 0.267 

Valifenalate  RF-1057-001-PPP Mouse NOAEL 16800 1 0.1 0.1 168 0.238 

Triticonazole RF-0447-001-PPP Mouse NOAEL 17000 1 0.1 0.1 170 0.235 

Metazachlor RF-00003344-PAR Rat NOAEL 18000 1 0.1 0.1 180 0.222 

Oxadiazon RF-0318-001-PPP Rat NOAEL 18000 1 0.1 0.1 180 0.222 

Pencycuron RF-0330-001-PPP Rat NOAEL 18000 1 0.1 0.1 180 0.222 
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Bupirimate RF-0055-001-PPP Dog NOAEL 20000 1 0.1 0.1 200 0.200 

Diflufenican RF-0135-001-PPP Mouse LOAEL 62000 0.333 0.1 0.1 206.7 0.194 

Fluxapyroxad RF-00000024-PAR Mouse NOAEL 21000 1 0.1 0.1 210 0.190 

Pyraflufen-ethyl RF-00003367-PAR Mouse NOAEL 21000 1 0.1 0.1 210 0.190 

Acequinocyl RF-0013-001-PPP Mouse NOAEL 21000 1 0.1 0.1 210 0.190 

Fenazaquin RF-0175-001-PPP Hamster NOAEL 25000 1 0.1 0.1 250 0.160 

Mandipropamid RF-0268-001-PPP Dog NOAEL 25000 1 0.1 0.1 250 0.160 

Prothioconazole RF-0868-001-PPP Mouse NOAEL 25000 1 0.1 0.1 250 0.160 

Penthiopyrad RF-00002609-PAR Rat NOAEL 27000 1 0.1 0.1 270 0.148 

Clothianidin RF-0101-001-PPP Rat NOAEL 27000 1 0.1 0.1 270 0.148 

Cymoxanil RF-0111-001-PPP Mouse NOAEL 29000 1 0.1 0.1 290 0.138 

1-

Naphthylacetamide 

(1-NAD) 

RF-0006-001-PPP Dog NOAEL 30000 1 0.1 0.1 300 0.133 

Etridiazole RF-0170-001-PPP Rat NOAEL 30000 1 0.1 0.1 300 0.133 

Metrafenone RF-0299-001-PPP Rat NOAEL 30000 1 0.1 0.1 300 0.133 

Prosulfocarb RF-0366-001-PPP Dog NOAEL 30000 1 0.1 0.1 300 0.133 

Bensulfuron RF-0493-001-PPP Rat NOAEL 30000 1 0.1 0.1 300 0.133 

Diflubenzuron RF-0134-001-PPP Mouse NOAEL 32000 1 0.1 0.1 320 0.125 

Flutolanil RF-0219-001-PPP Mouse NOAEL 32000 1 0.1 0.1 320 0.125 

Dodemorph RF-0645-001-PPP Dog NOAEL 32000 1 0.1 0.1 320 0.125 

Triasulfuron RF-0431-001-PPP Dog NOAEL 33000 1 0.1 0.1 330 0.121 

Fenoxycarb RF-0182-001-PPP Mouse LOAEL 101000 0.333 0.1 0.1 336.67 0.119 

Tepraloxydim RF-00003039-PAR Rat NOAEL 34000 1 0.1 0.1 340 0.118 

Epoxiconazole RF-0157-001-PPP Rat NOAEL 34000 1 0.1 0.1 340 0.118 

Azadirachtin RF-0030-001-PPP Rat NOAEL 36000 1 0.1 0.1 360 0.111 

Pethoxamid RF-0333-001-PPP Rat NOAEL 36200 1 0.1 0.1 362 0.110 

Pyriofenone RF-00003031-PAR Rat NOAEL 36400 1 0.1 0.1 364 0.110 

1-Methyl-

cyclopropene 

RF-0005-001-PPP Rat NOAEL 39000 1 0.1 0.1 390 0.103 

Trifloxystrobin RF-0439-001-PPP Mouse NOAEL 39000 1 0.1 0.1 390 0.103 

Quinoxyfen RF-0382-001-PPP Dog LOAEL 119000 0.333 0.1 0.1 396.67 0.101 

Bentazone RF-0042-001-PPP Dog NOAEL 40000 1 0.1 0.1 400 0.100 

fenamidone RF-0172-001-PPP Rat NOAEL 48000 1 0.1 0.1 480 0.083 
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Dicloran RF-0129-001-PPP Mouse NOAEL 49000 1 0.1 0.1 490 0.082 

Propiconazole RF-0358-001-PPP Mouse NOAEL 49400 1 0.1 0.1 494 0.081 

Carbetamide RF-0064-001-PPP Rat NOAEL 50000 1 0.1 0.1 500 0.080 

Fenpyrazamine RF-00002610-PAR Rat NOAEL 51900 1 0.1 0.1 519 0.077 

Iodosulfuron 

methyl sodium 

RF-0252-001-PPP Mouse NOAEL 54000 1 0.1 0.1 540 0.074 

Benalaxyl (RD) RF-0038-001-PPP Rat NOAEL 59000 1 0.1 0.1 590 0.068 

Etoxazole RF-0169-001-PPP Mouse NOAEL 60000 1 0.1 0.1 600 0.067 

Desmedipham RF-0121-001-PPP Mouse NOAEL 61000 1 0.1 0.1 610 0.066 

Fenpropimorph RF-0185-001-PPP Rat NOAEL 63000 1 0.1 0.1 630 0.063 

Chlorotoluron RF-0092-001-PPP Rat NOAEL 80000 1 0.1 0.1 800 0.050 

Chloridazon (aka 

pyrazone) 

RF-0080-001-PPP Dog NOAEL 82000 1 0.1 0.1 820 0.049 

Tolylfluanid RF-0425-001-PPP Rat NOAEL 105000 1 0.1 0.1 1050 0.038 

Resmethrin RF-0385-001-PPP Mouse NOAEL 105500 1 0.1 0.1 1055 0.038 

Iprodione RF-0255-001-PPP Mouse NOAEL 115000 1 0.1 0.1 1150 0.035 

Halosulfuron 

methyl 

RF-0234-001-PPP Rat NOAEL 116000 1 0.1 0.1 1160 0.034 

Lenacil RF-0262-001-PPP Rat NOAEL 118000 1 0.1 0.1 1180 0.034 

Penflufen RF-00003362-PAR Mouse NOAEL 146000 1 0.1 0.1 1460 0.027 

Tri-allate RF-0430-001-PPP Hamster NOAEL 146000 1 0.1 0.1 1460 0.027 

Amisulbrom RF-0470-001-PPP Rat NOAEL 147000 1 0.1 0.1 1470 0.027 

Trifluralin RF-0442-001-PPP Rabbit NOAEL 225000 1 0.1 0.1 2250 0.018 

Spirodiclofen RF-0394-001-PPP Mouse NOAEL 234000 1 0.1 0.1 2340 0.017 

Ethofumesate RF-0163-002-PPP Rat NOAEL 300000 1 0.1 0.1 3000 0.013 

Picloram RF-0343-001-PPP Mouse LOAEL 1000000 0.333 0.1 0.1 3333 0.012 

Methoxyfenozide RF-0296-001-PPP Rat NOAEL 379000 1 0.1 0.1 3790 0.011 

Ethoxysulfuron RF-0166-001-PPP Mouse NOAEL 492000 1 0.1 0.1 4920 0.008 

Rimsulfuron (aka 

renriduron) 

RF-0386-001-PPP Rat NOAEL 495000 1 0.1 0.1 4950 0.008 

Orthosulfamuron RF-0315-001-PPP Rat NOAEL 500000 1 0.1 0.1 5000 0.008 

Captan RF-0061-001-PPP Dog NOAEL 600000 1 0.1 0.1 6000 0.007 

Thiamethoxam RF-0418-001-PPP Mouse NOAEL 1163000 1 0.1 0.1 11630 0.003 

 


