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Abstract. The oxidative potential (OP) of particulate mat-
ter (PM) measures PM capability to potentially cause anti-
oxidant imbalance. Due to the wide range and complex mix-
ture of species in particulates, little is known about the pollu-
tion sources most strongly contributing to OP. A 1-year sam-
pling of PM10 (particles with an aerodynamic diameter be-
low 10) was performed over different sites in a medium-sized
city (Grenoble, France). An enhanced fine-scale apportion-
ment of PM10 sources, based on the chemical composition,
was performed using the positive matrix factorization (PMF)
method and reported in a companion paper (Borlaza et al.,
2020). OP was assessed as the ability of PM10 to generate
reactive oxygen species (ROS) using three different acellu-
lar assays: dithiothreitol (DTT), ascorbic acid (AA), and 2,7-
dichlorofluorescein (DCFH) assays. Using multiple linear re-
gression (MLR), the OP contributions of the sources identi-
fied by PMF were estimated. Conversely, since atmospheric
processes are usually non-linear in nature, artificial neural
network (ANN) techniques, which employ non-linear mod-
els, could further improve estimates. Hence, the multilayer
perceptron analysis (MLP), an ANN-based model, was addi-
tionally used to model OP based on PMF-resolved sources

as well. This study presents the spatiotemporal variabilities
of OP activity with influences by season-specific sources,
site typology and specific local features, and assay sensitiv-
ity. Overall, both MLR and MLP effectively captured the
evolution of OP. The primary traffic and biomass burning
sources were the strongest drivers of OP in the Grenoble
basin. There is also a clear redistribution of source-specific
impacts when using OP instead of mass concentration, un-
derlining the importance of PM redox activity for the iden-
tification of potential sources of PM toxicity. Finally, the
MLP generally offered improvements in OP prediction, espe-
cially for sites where synergistic and/or antagonistic effects
between sources are prominent, supporting the value of using
ANN-based models to account for the non-linear dynamics
behind the atmospheric processes affecting OP of PM10.

1 Introduction

One of the most critical pollutants in the atmosphere is par-
ticulate matter (PM), especially in urban areas that are heav-
ily impacted by anthropogenic emissions (David et al., 2019;
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Qiao et al., 2018; Schwela, 2000). Recent studies showed in-
creasing interest in PM at a city level, allowing assessment of
fine-scale pollution variability (Boppana et al., 2019; Dioni-
sio et al., 2010; Etyemezian et al., 2005; Krasnov et al., 2016;
Padhi and Padhy, 2008). The intricate topography and sea-
sonality of particulate air pollution in the city of Grenoble
(France) make it an ideal location to explore variabilities of
PM pollution while also accounting for different site typolo-
gies within a single medium-sized city (Calas et al., 2019;
Favez et al., 2010; Srivastava et al., 2018; Tomaz et al.,
2016, 2017; Weber et al., 2019). Such small-scale variabil-
ities for mass and chemical composition have been recently
addressed in a companion paper (Borlaza et al., 2021).

Many research studies have focused on the links be-
tween PM mass exposure and various adverse health effects
(Dabass et al., 2018; Delfino et al., 2005; Du et al., 2016;
Hime et al., 2018; Lao et al., 2019; Matus C. and Oyarzún
G., 2019; Pope et al., 2009; Pope, 2002; Winterbottom et al.,
2018). However, it is also of high concern to improve the
understanding of the PM sources in relation to such health
impacts. Indeed, oxidative stress is now well recognized as
one of the main biological mechanisms considered to be
contributing to these detrimental impacts from air pollution
exposure through the capability of PM to generate reactive
oxygen species (ROS) within the lung, which leads to pro-
inflammatory responses that can ultimately result in apopto-
sis (Ayres et al., 2008; Baulig et al., 2003; Dhalla et al., 2000;
Donaldson et al., 2001; Jin et al., 2018; Kelly, 2003; Leni et
al., 2020; Mudway et al., 2020; Nel, 2005; Piao et al., 2018).
The oxidative potential (OP) of PM, defined as the capabil-
ity of PM to generate ROS/deplete anti-oxidants, makes an
interesting complement to regulated metrics of ambient PM
exposure (Bates et al., 2019; Daellenbach et al., 2020; Guo et
al., 2020; Gurgueira et al., 2002; Park et al., 2018; Shiraiwa
et al., 2017; Valavanidis et al., 2008).

Most studies often correlate OP from PM with chemical
species in ambient aerosols (Bell and HEI Health Review
Committee, 2012; Boogaard et al., 2012; Borlaza et al., 2018;
Cassee et al., 2013; Janssen et al., 2014; Perrone et al., 2016;
Pietrogrande et al., 2018; Rohr and Wyzga, 2012; Yang et al.,
2015). However, due to the wide range and complex mix-
ture of PM and the dynamic atmospheric processes to con-
sider, the main drivers of OP can be difficult to highlight
(Calas et al., 2019). Several methods have been used to as-
sign the sources of OP, including the application of recep-
tor modelling techniques such as positive matrix factoriza-
tion (PMF) and chemical mass balance (CMB) (Ayres et al.,
2008; Bates et al., 2015; Cesari et al., 2019; Fang et al., 2016;
Paraskevopoulou et al., 2019; Verma et al., 2014; Weber et
al., 2018, 2021; Yu et al., 2019; Zhou et al., 2019), princi-
pal component analysis (PCA) (Borlaza et al., 2018; Conte
et al., 2017), and robotic chemical mass balance (RCMB)
coupled with multiple linear regression (MLR) analysis (Ar-
gyropoulos et al., 2016). With these current techniques, the
OP of PM has been linked to specific emission sources and

their estimated contributions. However, a non-linear relation-
ship of redox-active components of PM is generally observed
(Arangio et al., 2016; Calas et al., 2017; Charrier and Anasta-
sio, 2015; Li et al., 2012; Xiong et al., 2017; Yu et al., 2018),
and hence traditional deterministic models could be, in some
way, limited.

Approaches using artificial neural network (ANN) analy-
sis have demonstrated enhanced results compared to classical
models when predicting PM from different variables such as
meteorological data (Abderrahim et al., 2016; Chaloulakou
et al., 2003; Díaz-Robles et al., 2008; Hooyberghs et al.,
2005; Huang and Kuo, 2018; McKendry, 2002; Papanasta-
siou et al., 2007; Perez and Reyes, 2006), satellite-derived
aerosol products (Gupta and Christopher, 2009), and other
traffic-related variables (Cabaneros et al., 2020, 2017; Gietl
and Klemm, 2009; He et al., 2015). The ANN-based models,
such as multilayer perceptron (MLP), support pattern recog-
nition and could extract trends from non-linear data, making
it an interesting and competitive innovative method of analy-
sis in many scientific disciplines, including air quality studies
(Cabaneros et al., 2019; Chattopadhyay and Bandyopadhyay,
2007; Dorling et al., 2003; García Nieto et al., 2018; Gupta
and Christopher, 2009; Jiang et al., 2004; Ordieres et al.,
2005; Perez and Reyes, 2006). Since atmospheric processes
are generally non-linear in nature, exploring the features of
MLP could provide meaningful results closer to realistic es-
timates than most linear models (Elangasinghe et al., 2014;
Eldakhly et al., 2017; Gerken et al., 2006; Kukkonen, 2003;
Nathan et al., 2017; Rahimi, 2017).

This study takes advantage of the enhanced source appor-
tionment obtained in the companion paper (Borlaza et al.,
2021), revealing the fine-scale spatiotemporal characteris-
tics of PM sources within a medium-size city area (Greno-
ble basin), specifically in three different urban environments
(background, hyper-centre, and peri-urban typologies). Here,
the main drivers of OP are first attributed to PM sources (re-
solved by PMF) using a classical MLR analysis. Second, the
possible advantages of MLP analysis are also evaluated to
compare MLP prediction of OP activity with MLR predic-
tion. In summary, by taking the opportunity of this unique
database on PM chemistry and OP, we aim to investigate
mainly two innovative questions.

1. Is there variability in the OP activity within a medium-
sized urban area, and can this be related to the variability
of the contributions of the emission sources?

2. Can MLP be used to accurately model the spatiotem-
poral evolution of OP by taking the PM source contri-
butions as input variables and, if so, does it catch the
non-linear pattern of OP?
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2 Materials and methods

2.1 Site description and PM10 sampling collection

The sampling sites and samples used in this study are de-
scribed in detail in the companion paper (Borlaza et al.,
2021). Briefly, the sampling sites are located in the city of
Grenoble in the south-east of France, as illustrated in Fig. 1.
The mountainous environment in the area restricts atmo-
spheric movements and promotes the development of atmo-
spheric thermal inversions, resulting in an increase in pol-
lutant concentrations, especially during the winter season
(Bessagnet et al., 2020; Tomaz et al., 2017). The three mea-
surement sites are located in an urban background (UB, Les
Frênes), urban hyper-centre (UH, Caserne de Bonne), and
peri-urban (PU, Vif), all within 15 km from the city cen-
tre of Grenoble. The UB site is an established urban back-
ground reference site for the regional air quality monitor-
ing network (Atmo Auvergne Rhône-Alpes) in the south of
the city and largely investigated previously (Srivastava et al.,
2018; Tomaz et al., 2016). The PU site is in a suburban area
with rural residential areas adjacent to an urbanization (low-
density area), where biogenic emissions are prominently ex-
pected as the site is at the foot of the Vercors and Belledone
mountain ranges. Lastly, the UH site is in the hyper-centre
of Grenoble and, despite being in a pedestrian area, is the
most highly exposed to surrounding commercial and traffic
emissions amongst the three sites.

The daily (24 h) filter-based PM10 (particles≤ 10 µm in di-
ameter) sampling was performed with a 3 d interval for about
1 year (28 February 2017 to 10 March 2018; sampling starts
at 00:00 CEST) obtaining a total of about 130 samples per
site. PM10 was collected using a high-volume sampler (Dig-
itel DA-80, 30 m3 h−1) onto 150 mm diameter quartz fibre
filters (Tissu-quartz PALL QAT-UP 2500 diameter 150 mm)
following the recommendations of EN 12341:2014 proce-
dures (CEN, 2014). All filters underwent a preheating treat-
ment at 500 ◦C for 12 h to avoid any organic contamination.
Additionally, field blank filters (n= 20) were collected to de-
termine the detection limits of the applied chemical analysis
and to secure quality of samples during transport, setup, and
recovery. The total PM10 mass concentration was also simul-
taneously measured using a tapered element oscillating mi-
crobalance equipped with filter dynamics measurement sys-
tems (TEOM-FDMS) (CEN, 2017; Grover, 2005).

2.2 Chemical characterization

All samples were subjected to several chemical analyses to
quantify major and minor constituents of PM10, including
organic carbon (OC), elemental carbon (EC), ions (sodium,
Na+; ammonium, NH+4 ; potassium, K+, magnesium, Mg2+;
calcium, Ca2+; chloride, Cl−; nitrate, NO−3 ; sulfate, SO2−

4 ),
methane sulfonic acid (MSA), organic acids (3-MBTCA,
pinic acid, phthalic acid), anhydro-sugars (levoglucosan and

mannosan) and primary saccharides (arabitol and mannitol,
hereafter summed up and referred to as polyols), cellulose,
and elements (Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb,
Rb, Sb, Se, Sn, Ti, V, Zn). Detailed descriptions of the chem-
ical analyses are available in the companion paper (Borlaza
et al., 2021), and a summary of PM10 characteristics is avail-
able in Table S1 in the Supplement.

2.3 OP analysis

For OP analysis, the filters were subjected to PM10 extrac-
tion using a simulated lung fluid (SLF) solution composed of
a Gamble+DPPC (dipalmitoylphosphatidylcholine) mixture
(Calas et al., 2018). In order to maintain a constant amount of
extracted PM10, filter punches were adjusted by area to ob-
tain iso-mass at 25 µgmL−1. No filtration was done in order
to include both water-soluble and insoluble particles. Such an
extraction method has been adopted to facilitate the extrac-
tion of PM10 in conditions closer to lung physiology (Calas
et al., 2017). To avoid the interferences in the wells by insol-
uble particles, we subtracted the intrinsic absorbance of all
PM extractions before adding the reactants. This procedure
has been tested on both soluble and insoluble compounds
that are likely within the range of atmospheric concentra-
tions. The results have confirmed good dispersion of parti-
cles, leading to homogeneous results. A more detailed report
is available in Calas et al. (2018).

For positive control tests, the 1,4-naphthoquinone (1,4-
NQ) was used for both DTT and AA assays. Particularly, a
40 µL of 24.7 µM stock solution was used for DTT assay and
80 µL of 24.7 µM 1,4-NQ solution for AA assay (Calas et
al., 2017, 2018). A 100 nM H2O2 was used for DCFH assay.
The measurement quality was estimated by calculating the
coefficient of variation (CV) of the positive controls; all CVs
were < 3 % for the three assays. Additionally, an ambient
filter collected from the lab roof, with a known and constant
expected OP value, was analysed to ensure precision of OP
measurements.

The OP activity can be represented using two different
measures: (1) the mass-normalized OP activity (OPm), where
OP is normalized by the mass of PM10 (µg), and (2) the
volume-normalized OP activity (OPv), where OP is normal-
ized by the sampled air volume (m3). The OPm is the in-
trinsic OP property of 1 µg of PM, while OPv represents the
PM-derived OP per m3 of air. Three acellular complemen-
tary assays were used to perform OP measurements and are
briefly described in the following sections. All samples were
subjected to triplicate analysis, and each sample results in the
mean of such a triplicate. The common CV is between 0 %
and 10 % for each assay.

2.3.1 Dithiothreitol (DTT) assay

DTT is considered a chemical surrogate to cellular re-
ducing agents, nicotinamide adenine dinucleotide (NADH)
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Figure 1. Study area in Grenoble (France) on a European map (left) and location of the three urban sites (right), namely Les Frênes or UB
(urban reference background site), Caserne de Bonne or UH (urban hyper-centre site), and Vif or PU (peri-urban site). © OpenStreetMap
contributors 2020. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

and nicotinamide adenine dinucleotide phosphate oxidase
(NADPH) to mimic in vivo interactions of PM and biological
oxidants. The consumption of DTT in the assay is inferred as
a measure of the ability of the PM to transfer electrons from
DTT to oxygen, thereby producing reactive oxygen species
(ROS). Our procedure is based on a modified protocol by
Cho et al. (2005), as described in Calas et al. (2018). The
PM10 extracts were reacted with DTT, resulting in the con-
sumption of DTT in the solution. The remaining DTT is then
titrated with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) to
produce a yellow chromophore (5-mercapto-2-nitrobenzoic
acid or TNB), which is in direct proportion to the amount of
reduced DTT remaining in solution after the reaction with
the PM10 extract. These mixtures were injected in a 96-well
plate (CELLSTAR, Greiner-Bio), and the consumption of
DTT (nmolmin−1) was determined by following the TNB
absorbance at 412 nm wavelength using a microplate reader
(TECAN spectrophotometer Infinite M200 Pro) at 10 min in-
tervals for a total of 30 min of analysis time.

2.3.2 Ascorbic acid (AA) assay

The AA assay is based on a modified procedure by Kelly and
Mudway (2003), as described in Calas et al. (2018), using a
respiratory tract lining fluid (RTFL). This assay uses AA, a
known antioxidant which prevents the oxidation of lipids and
proteins in the lung lining fluid (Valko et al., 2005). The con-
sumption of AA (nmolmin−1) in the assay is inferred as the
OP of PM10 quantified by the transfer of electrons from AA
to oxygen (O2). Similar to the DTT assay, the PM10 extracts
were reacted with AA into a 96-well plate UV-transparent
(CELLSTAR, Greiner-Bio). The absorbance was measured
at 265 nm using a plate reader (TECAN spectrophotometer

Infinite M200 Pro) at 4 min intervals for a total of 30 min of
analysis time.

2.3.3 Dichloro-dihydro-fluorescein diacetate (DCFH)
assay

The 2,7-dichlorofluorescin (DCFH) assay is commonly used
for detecting intracellular H2O2 and oxidative stress using
a non-fluorescent probe through the formation of a fluores-
cent product (dichlorofluorescein or DCF) in the presence of
ROS and horseradish peroxidase (HRP). The DCF is mea-
sured by fluorescence at the excitation and emission wave-
lengths of 485 and 530 nm, respectively, every 2 min for a
total of 30 min of analysis time. The ROS concentration in
the sample is calculated in terms of H2O2 equivalent based
on a H2O2 calibration (100, 200, 300, 400, 500, 1000, and
2000 nmol).

2.4 Data analysis

2.4.1 Synthesis of the methodology used for PM10
source apportionment

The source apportionment performed on this dataset has been
described in detail in the companion paper (Borlaza et al.,
2021). In brief, the PMF methodology used the EPA PMF5.0
software (US EPA, Norris et al., 2014) and closely follows
the parameterization used in previous works by our group
(Favez et al., 2017; Waked et al., 2014; Weber et al., 2019,
2021) with a few relevant modifications.

The input variables used were mass concentration and un-
certainty levels of PM10 and its chemical composition (a to-
tal of 35 variables) including OC, EC, ions, elements, and
some organic markers (MSA, levoglucosan, mannosan, poly-
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ols, pinic acid, 3-MBTCA, phthalic acid, and cellulose). The
associated uncertainties were calculated based on a method
proposed by Gianini et al. (2012). Specific geochemical con-
straints, based on expert prior knowledge, were added to the
solution using the ME-2 solver (Paatero, 1999), particularly
for the traffic source factor (Charron et al., 2019). The statis-
tical validity of the solution and the uncertainties were esti-
mated using the bootstrap and displacement methods follow-
ing the European recommendation for source apportionment
studies (Belis et al., 2019; Brown et al., 2015). The specific
tracers used to identify the sources are presented in Table S2.

2.4.2 Multiple linear regression (MLR) analysis

A MLR analysis was performed to attribute OP from the
PMF-resolved sources of PM10, following the OP deconvolu-
tion methodology proposed by Weber et al. (2018). The OPv
from the three assays were used individually as the depen-
dent variable, while the PMF-resolved source contributions
were used as independent variables, as shown in Eq. (1):

OPobs =
(
Gn×βn

)
+ ε, (1)

where OPobs is the observed daily OPv matrix of size d×1 in
nmolreactant min−1 m−3, G is the contribution of the sources
from the PMF in µgm−3 of size d × n, and β is the regres-
sion coefficient representing the intrinsic OP (or the OPm)
of size 1× n in nmolmin−1 µg−1. Finally, ε is the residual
term accounting for the difference between the observed and
modelled OP of size d×1 in nmolreactant min−1 m−3. The OP
contribution of each source is calculated by multiplying the
source-specific regression coefficient by the contribution of
the source to PM10 (Gk ×βk).

2.4.3 Multilayer perceptron (MLP) neural network
analysis

Background of the MLP analysis

The MLP analysis is designed using a feed-forward learn-
ing model (Calcagno et al., 2010; García Nieto et al., 2018;
Salazar-Ruiz et al., 2008) that produces a predictive model
for one or more output variables (OPv) based on the values
of the input variables (PM10 source contributions). The three
main components of MLP are (1) the input layer, (2) the hid-
den layer, and (3) the output layer. Generally, the MLP con-
sists of interconnected layers of artificial neurons that form a
network using a set of input data and draws it onto a set of
output data, which are then used to further train the neural
network through a back-propagation process (Bishop, 1995;
Fontes et al., 2014; Kim and Gilley, 2008). In this study, the
neural network architecture was limited to a one hidden layer
design to demonstrate the applicability of non-linear models,
even only with a rudimentary architecture, and to compare
its predictive capability against that of MLR.

Figure 2. The MLP neural network architecture used in this study,
where n refers to the number of sources,G is the normalized contri-
bution from the PMF, and OPv is the different volume-normalized
OP activities (OPDTT

v , OPAA
v , and OPDCFH

v ).

Implementation of the MLP

As an initial step, a rescaling process is applied to both the
input and output layers to eliminate potential bias due to the
range of variance within the dataset (Gardner and Dorling,
1998). Each variable is standardized by subtracting the mean
observed value and then divided by the standard deviation.
The daily contributions of the PM sources obtained from the
PMF were fed in the input layer to the hidden layer. The MLP
analysis was performed for each site using the OPv from each
assay (OPDTT

v , OPAA
v , and OPDCFH

v ) as multiple variables in
the output layer (see Fig. 2), making a set of nine independent
studies. At each node (or neuron), the information given by
the input neurons is condensed into a unique value and prop-
agated to the next layer. For instance, the MLP described in
Fig. 2 is formally defined by Eq. (2) for the first layer (hidden
layer):

∀j ∈ {1, . . ., l} ,zj =H
(∑d

i=1
wG
i,j × xi +w

G
0,j

)
, (2)

with wG
i,j the weight of the neuron between the input and

hidden layer and wG
0,j an activation constant for neuron j .

The activation function H is often non-linear.
To sum up, the hidden layer develops the input data and

deciphers the relationship of the neurons within the MLP
network. The number of neurons in the hidden layer was de-
termined automatically by the estimation algorithm. With the
activation function, the hidden layer transfers a response onto
the output layer. The activation functions tested in this study
were sigmoid and hyperbolic tangent (TanH) as these are ap-
propriate for continuous dependent variables (IBM, 2016). A
weight initialization was preset for potential occurrence of
vanishing gradients (Bengio et al., 1994; Hochreiter, 1998;
Hochreiter and Schmidhuber, 1997). The scaled conjugate
and stochastic gradient descent optimization algorithms were
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tested to obtain the optimal weights in both the input and out-
put layers (Slini et al., 2006; Vakili et al., 2015). The various
MLP architectures tested are summarized in Sect. S3 in the
Supplement.

The dataset was partitioned into (1) the training set ac-
counting for 80 % and (2) the testing set accounting for 20 %
of the dataset. For each of the nine studies, the training set
contains data points that were used to train the MLP, while
the testing set is an independent set of data points used to
monitor errors during the training step. During the training
step, the MLP is continually developed and refined until the
weighting values between the nodes accurately predict the
outcome (i.e. minimal possible errors). To prevent the model
from over-fitting, a set of stopping rules is applied to termi-
nate the training of the MLP when any of these scenarios
occur, such as (1) there being no decrease in prediction er-
ror for more than one step, (2) the maximum training time
being reached (15 min), (3) the minimum relative change in
the training error being reached (0.0001), and (4) the mini-
mum relative change in the training error ratio being reached
(0.001). A maximum of 1000 data passes (epochs) are stored
in memory until this step is completed. Using the results ob-
tained in the training step, the results are validated in the test-
ing step to check the performance of the network by assess-
ing its forecasting capability on data points outside the train-
ing set. The MLP neural network analysis was performed
using IBM SPSS Statistics for Windows, version 20 (IBM
Corp., Armonk, NY, USA).

Demonstration of the non-linear behaviour of sources
using the MLP models

Since MLP analysis should account for the interactions be-
tween PM10 sources, the non-linear atmospheric dynamics
causing possible synergistic or antagonistic effects on the
OP activity can be captured. To visualize such possible non-
linear behaviour, the MLP models obtained were applied on
a set of dummy datasets. Each dummy dataset consists of the
same mass contributions (from PMF analysis) of each source
(in µgm−3) as in the original dataset but setting one source
(n) to zero.

This modelled OP using a dummy dataset (MLPn) is sub-
tracted to the modelled OP by the original MLP model
(MLP) (containing all source contributions). This difference
represents a source-specific OP contribution, and their sum-
mation (MLPsum) is described in Eq. (3):

MLPsum =
∑

MLPn. (3)

For example, if the biomass burning source contribution was
set to zero in the dummy dataset (MLPn=biomass burning), then
(MLP−MLPn=biomass burning) represents the MLP-modelled
OP contribution of the biomass burning source. Assuming
there are completely no synergistic or antagonistic effects
between PM10 sources, then the original MLP-modelled OP
contributions should be equal to the sum of all source-

specific OP contributions (MLP=MLPsum). In cases where
MLP>MLPsum, then synergistic effects are highlighted be-
tween some PM10 sources, resulting in an increased MLP-
modelled OP activity. Conversely, MLP<MLPsum high-
lights antagonistic effects between some PM10 sources, re-
sulting in a decreased MLP-modelled OP activity.

2.4.4 Statistical analysis

For the comparison of temporal variations of the observed
measurements, all the correlations were evaluated using
Spearman rank correlation coefficients (rs), where p ≤ 0.05
is considered statistically significant. For the comparison of
OP measures, the correlations were evaluated using Pearson
correlation coefficients (r), where p ≤ 0.05 is considered sta-
tistically significant. For the evaluation and comparison of
model performance between the MLR and MLP results, a
number of performance indicators were calculated, such as
the goodness of fit (R2), root mean square error (RMSE),
and Pearson correlation coefficient (r). The STATA/SE ver-
sion 15.1 software (College Station, TX, USA) or Python li-
braries were used for the statistical analyses.

3 Results and discussion

3.1 Temporal variation of PM10 and OP activity

The daily distributions of PM10 and OP activity (OPDTT
v ,

OPAA
v , and OPDCFH

v ) for each site are provided in Sect. S4.
The range of the OP measurements in Grenoble is well within
the range of measurements in France (Calas et al., 2018,
2019; Weber et al., 2021, 2018). Detailed discussion of the
temporal variability of PM10 sources is available in the com-
panion paper (Borlaza et al., 2021).

Overall, the average PM10 concentrations on days of mea-
surements were higher during the colder months (October to
April) at 17±10 µgm−3 and lower during the warmer months
(May to September) at 10±4 µgm−3 in the city of Grenoble.
With the Alpine environment and the atmospheric dynam-
ics in the study area, the occurrence of atmospheric inver-
sions and the restriction of strong winds often result in higher
concentration levels of air pollutants, especially in the winter
season (Bessagnet et al., 2020; Tomaz et al., 2017). Such ob-
served seasonality in PM10 mass concentration is also com-
monly explained by higher contributions from the biomass
burning source in the colder seasons, especially in an Alpine
valley as previously reported in previous studies (Calas et al.,
2019; Favez et al., 2010; Herich et al., 2014; Srivastava et al.,
2018; Tomaz et al., 2016, 2017; Weber et al., 2018, 2019). In
the same way, a seasonality is displayed in OP activity in the
Grenoble basin as well. In fact, the average daily OP activ-
ity levels during the winter season can be up to 2, 7, and 5
times higher than in the summer season for OPDTT

v , OPAA
v ,

and OPDCFH
v , respectively. Indeed, the observed strong sea-

sonality (higher OP during winter, lower OP during summer)
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at all sites could induce a high spatial homogeneity between
sites as well. However, there are a number of local features
observed at different sites, such as spikes in the OP activ-
ity during the warmer months at the UH and PU sites (see
Fig. S1 in the Supplement). These spikes are prominently
seen in OPDTT

v , with some occurrences also in the OPAA
v and

OPDCFH
v , which also emphasizes the sensitivity of each assay.

Previous studies have reported that OPDTT
v has shown

higher sensitivity with organics, metals, and the synergistic
effect of the two (Bates et al., 2019; Dou et al., 2015; Fang
et al., 2017; Gao et al., 2020a, b; Jiang et al., 2019; We-
ber et al., 2021; Yu et al., 2018), with OPAA

v being sensitive
mostly to metal concentrations (Bates et al., 2019; Crobeddu
et al., 2017; Visentin et al., 2016; Weber et al., 2021). Ta-
ble S4 summarizes several publications on OP assays and
their correlations with chemical species. In our study, a good
correlation (r = 0.68) was found between OPDTT

v and OPAA
v

when all sites are combined (see Fig. S1), possibly affected
by the local features solely captured by the DTT assay. Due
to the sensitivity to various ROS and RNS (reactive nitro-
gen species) of most molecular probes, the sensitivity of the
DCFH assay to specific components of PM10 can be diffi-
cult to isolate (Bates et al., 2019; Jovanovic et al., 2019).
However, OPDCFH

v showed good correlation (r = 0.68) with
OPDTT

v and an even stronger correlation (r = 0.93) with
OPAA

v (see Fig. S2).
The comparison of the two OP measures, OPv and OPm, of

each OP assay can provide information regarding the depen-
dency of OP activity on PM10 mass concentration. As shown
in Fig. S3, there is only a moderate correlation (r = 0.51) be-
tween OPDTT

v and OPDTT
m , suggesting the dependency of the

DTT assay on chemical composition rather than PM10 mass
concentration. On the other hand, both OPAA (r = 0.76) and
OPDCFH (r = 0.70) showed good correlations between their
measures per volume or per mass, pointing out their de-
pendency on PM10 concentrations and, indeed, a potential
stronger influence by meteorological conditions, a key driver
for concentrations in Alpine valleys.

3.2 Spatial variation of OP activity

The seasonal mean ratios (MR) of OP activities be-
tween sites are presented in Fig. 3, calculated by av-
eraging the daily ratios of volume-normalized OP ac-
tivities (OPDTT

v , OPAA
v , and OPDCFH

v ) between the sites
(hyper-centre/background UH/UB, hyper-centre/peri-urban
UH/PU, and background/peri-urban UB/PU) by season,
where winter is from December to February, spring is from
March to May, summer is June to August, and autumn is
September to November.

Generally, there is spatial homogeneity (MR closer to 1)
in OP between the UB and UH sites in line with the find-
ings from the companion paper (Borlaza et al., 2021). Their
similarities in terms of PM10 sources have been previously
attributed to similarities in source contribution not only from

common sources (e.g. biomass burning and nitrate-rich), but
also in terms of specific local sources in these sites such as
primary traffic, mineral dust, and, to a lesser extent, the in-
dustrial factor. This could be attributed not only to their prox-
imity in terms of geographical location, but also to their re-
semblance in typology, resulting in similarities of both PM10
and OP variabilities.

Conversely, there is an observed variability in the MR
in UH/PU and UB/PU suggesting weaker homogeneity
(MR farther to 1) in the PU site compared to sites closer
to the city centre (UH and UB sites). For example, the
PU site can be strongly influenced by some event days
with extremely low OPDTT

v , especially in the winter season
(OPDTT

v < 0.1 nmolmin−1 m−3, n= 3), resulting in an in-
crease in the MR against other sites. In fact, the MR for
OPDTT

v can be as high as 9.6 and 7.2 during winter for the
UH/PU and UB/PU ratio. This can also be seen in the other
seasons but is more prominent between the UH and PU sites.
Aside from seasonal influences, there are also some differ-
ences between assays as observed in the UH/PU and UB/PU
ratio during winter. For instance, the MR in OPDTT

v are no-
tably much higher than in OPAA

v and OPDCFH
v , further high-

lighting assay sensitivity.
Although spatial homogeneity was generally observed be-

tween the sites, there are local features that must be taken
into consideration, as well as seasonal influence and OP as-
say sensitivity. Overall, there is an observed similarity in the
spatiotemporal variabilities of PM10 and measured OP activ-
ity, making it even more interesting to determine which of
the PM10 sources are driving OP.

3.3 Determination of the sources driving OP using
multiple linear regression (MLR) analysis

To determine the main drivers of the OP of PM10, an OP
deconvolution method was performed with a classical MLR
analysis following the proposed method by Weber et al.
(2018) using the source contributions obtained in the PMF
studies presented in the companion paper (Borlaza et al.,
2021) and the measured OP at each site.

3.3.1 Performance of the MLR models

Thanks to the OP deconvolution method, the measured OP
has been attributed to the PM10 sources, allowing the quan-
tification of the contribution of each source to OP. Generally,
the MLR-modelled OPs are well within the range of the ob-
served OP activity, even taking into account the low uncer-
tainties of the measurements as presented in Fig. 4. However,
there are a few local features (i.e. high OP events) in the
observed OPDTT

v during warmer months in the UH and PU
sites that were not captured by the MLR models. There are
also some overestimations during the colder months (specifi-
cally around January to February 2018) at the same sites. Yet
these lead to an acceptable goodness of fit (R2) for the MLR-
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Figure 3. Seasonal mean ratios (MR) between the sites (a) hyper-centre/background (UH/UB), (b) hyper-centre/peri-urban (UH/PU), and
(c) background/peri-urban (UB/PU) using volume-normalized OP activities (OPDTT

v , OPAA
v , and OPDCFH

v ). Dashed grey line denotes MR
equal to 1, suggesting total spatial homogeneity. Boxplot mean marked by white circle and median marked by black line.

Figure 4. Comparison of the observed and modelled OPv (OPDTT
v , OPAA

v , and OPDCFH
v ) at different urban sites using MLR and MLP

models. The equation of the line and goodness of fit (R2) between observed and modelled OP are included.

modelled OPDTT
v in the UB (R2

= 0.80), UH (R2
= 0.62),

and PU (R2
= 0.50) sites compared to the MLR-modelled

OPAA
v (UB: R2

= 0.73, UH: R2
= 0.63, and PU: R2

= 0.94)
and OPDCFH

v (UB:R2
= 0.96, UH:R2

= 0.89, and PU:R2
=

0.93). These associations were also confirmed using Pearson
correlations (r) as presented in Fig. S6.

However, there are instances where models, even those
with good R2 values, could have a considerable bias and

should be interpreted with caution. For example, the relation-
ship between the observed and MLR-modelled OPAA

v in the
UB site has a slope of 0.9 but an intercept of 0.7, showing
significant deviation between model and measurements. Ad-
ditional details on the correlation between the observed and
MLR-modelled OP activity are summarized in Sect. S6.
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3.3.2 Intrinsic OP (OPm) of each PM10 source

The ability of each PM source to induce oxidative stress is
represented by the intrinsic OP (OPm) given by the regres-
sion coefficient (β) of the MLR model, as shown in Fig. 5.
With higher OPm, the source is more redox-active and highly
likely to contribute to the overall OP.

Generally, the statistically dominant sources (based on
the MLR models, p value≤ 0.05) in every site are the in-
dustrial, biomass burning, and primary traffic (except for
OPDCFH

m in the UH site) sources, suggesting stronger im-
pact of anthropogenic sources. Both the biomass burning and
primary traffic sources have mostly shown significant pos-
itive OPm across all sites. However, amongst the sources
with dominant intrinsic OP, it is important to note the vari-
ability of the OPm of the industrial source. This source has
been previously identified as a heterogeneous source in the
companion paper. It is important to note that the impact of
trace metals, used to identify this source (i.e. As, Cd, Cr,
Mn, Mo, Ni, Pb, Zn), is inherently variable at this spatial
scale. Particularly, the industrial source has the highest OPm
for both the UB (OPDTT

m = 0.82± 0.24, p ≤ 0.01; OPAA
m =

0.99±0.20, p ≤ 0.01; OPDCFH
m = 1.05±0.13, p ≤ 0.01) and

UH (OPDTT
m = 0.52± 0.18, p ≤ 0.01; OPAA

m = 0.69± 0.16,
p ≤ 0.01; OPDCFH

m = 0.62± 0.10, p ≤ 0.01) sites. However,
for the PU site, the industrial source has a low to negative
OPm for the DTT and DCFH assays, suggesting that this
source has less impact on this specific urban typology. In
fact, in the PU site, the highest OPm was found in different
sources, such as the primary biogenic (OPDTT

m = 0.29± 0.1,
p ≤ 0.01), industrial (0.44± 0.17, p ≤ 0.01), and biomass
burning (OPDCFH

m = 0.21± 0.01, p ≤ 0.01) sources for the
DTT, AA, and DCFH assays, respectively.

Although it is clear that anthropogenic sources have higher
OPm, there are also impacts from biogenic sources (both pri-
mary and secondary biogenic oxidation) that need to be con-
sidered, especially in sites that have an abundance of this type
of source. The secondary biogenic oxidation source has only
shown statistically significant OPm in the PU site for all OP
assays (also the UB site on OPDTT

m only), underlining the in-
fluence of site-specific features on OPm.

Aside from biogenic sources, thanks to the enhanced PMF
solution used in this study, we were able to determine the
redox characteristics of commonly unresolved sources. The
contributions of specific organic tracers (particularly phthalic
acid) in some anthropogenically derived sources, such as
sulfate- and nitrate-rich sources, can also point to contribu-
tions from anthropogenic secondary organic aerosols (SOA)
as discussed in the companion paper (Borlaza et al., 2021).
This is particularly important, especially that such sources
could play a key role in the dynamics of OP of PM10 (Dael-
lenbach et al., 2020).

It is also interesting that biomass burning appears to be
contributing less to OPm in the DTT assay compared to both
the AA and DCFH assays. We acknowledge the fact that

OP from the DTT assay has been reported to be respon-
sive/sensitive to organics, making this quite intriguing. How-
ever, recent studies have reported that OP from the DTT
assay could be unreactive to some metal species (specifi-
cally iron), unlike other assays, namely AA and glutathione
(GSH). Hence, OP measured using the DTT assay may not
completely capture ROS from Fenton chemistry or even the
synergistic effects with regards to hydroxyl radical ( qOH)
generation as reported by Xiong et al. (2017). Similarly, Yu
et al. (2018) have reported that soluble manganese showed
synergistic effects with quinones and an antagonistic effect
between soluble copper and quinones. Generally, there is an
undeniable interplay between species that needs to be con-
sidered as well as the sensitivity of each assay to species.
As much as each analysis attempts to fully characterize the
chemistry of PM, there can still be species that are unmea-
sured but, in fact, play a role in ROS generation. Hence, re-
ported associations could be due to similarity in variations
with PM concentration rather than a significant causal rela-
tionship between assays and PM components. Nevertheless,
the sensitivity of the DTT assay to a wider range of com-
pounds that are present in various sources led to a more bal-
anced distribution of OP sources (and so weighting the con-
tribution of biomass burning with regards to other sources)
than the other OP assays, such as AA and DCFH.

Finally, Weber et al. (2021) discussed the variability of OP
at the national scale, and the values here are in the ballpark
of the national results. A key feature is that the uncertainties
of each OPm can provide information on its statistical signifi-
cance, therefore offering caution when using these values for
modelling purposes.

3.3.3 All-site average OP contribution (OPv) by each
PM10 source

In terms of overall daily mean contribution, as pre-
sented in Fig. 6 (see Sect. S7 for site-specific figures),
the main contributors of PM10 mass are the biomass
burning and the nitrate- and sulfate-rich sources in the
Grenoble basin when taking into account the results
from the three sites. However, in terms of OPDTT

v , the
primary traffic source showed the highest contribution
(0.33 nmolmin−1 m−3) closely followed by the biomass
burning source (0.31 nmolmin−1 m−3). For both OPAA

v and
OPDCFH

v , the biomass burning source is notably the strongest
contributor (0.72 and 0.56 nmolmin−1 m−3, respectively).

The mass contributions of the biomass burning source can
be twice as much as that of the primary traffic source, but
OP contributions in terms of OPDTT

v are almost similar. The
industrial source also has very minimal contribution in terms
of PM10 mass but has a relevant contribution to OPv. More-
over, there are sources that contribute to a large extent to the
total PM10 mass but barely contribute to the OP, such as the
nitrate-rich (all OP assays) and sulfate-rich sources (only for
OPAA

v and OPDCFH
v ). This observed redistribution of source
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Figure 5. Site-specific intrinsic OP (OPm) per source analysis from each assay (OPDTT
m , OPAA

m , and OPDCFH
m ) represented by mean (bar)

and standard deviation (error bar) based on the MLR (urban background, UB: blue, urban hyper-centre, UH: orange, peri-urban, PU: green).
Note: asterisks represent statistically significant OPm within a 95 % confidence interval (p value≤ 0.05).

Figure 6. Overall daily mean OPv contribution of the sources to PM10, OPDTT
v , OPAA

v , and OPDCFH
v using MLR analysis in the form of

mean and 95 % confidence interval of the mean (error bar) (n= 378 samples).
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impacts based on OPv highlights the importance of consid-
ering PM redox activity instead of solely mass concentration
(Daellenbach et al., 2020).

Although secondary inorganic sources are commonly as-
sociated with low impact on PM toxicity (Cassee et al., 2013;
Daellenbach et al., 2020), the sulfate- and nitrate-rich sources
showed contributions to OPDTT

v and OPDCFH
v , respectively.

Even with minimal OPm (see Fig. 5), the relevant mass con-
tribution of these sources resulted in a relevant contribution
to OPv. It should also be considered that both sulfate- and
nitrate-rich sources have been previously associated with an-
thropogenic SOA due to phthalic acid contribution in this
factor (Borlaza et al., 2021).

Clearly, the OPv contribution of the biomass burning
source is captured by all assays. In fact, in the AA and DCFH
assays, the OPv contributions are both heavily dominated by
the biomass burning source, while the DTT assay showed
sensitivity to a wider range of sources. However, it is impor-
tant to take into consideration the mechanism at work behind
these assays. Both the DTT and AA assays mimic in vivo
interactions of redox-active components in PM10 and bio-
logical oxidants representing PM-induced oxidative stress,
while DCFH measures generated particle-bound ROS. Al-
though these source-specific OPv contributions provide crit-
ical knowledge on the main drivers of OPv, it is difficult to
rely on just one measurement (i.e. one type of assay) without
testing its relevance to health outcomes.

3.3.4 Seasonal and site-specific differences in OP
contribution (OPv) by each PM10 source

Clearly, the previous yearly averages mask strong seasonal
variabilities as presented in the monthly OPv contributions
of each source (see Fig. 7). During colder months, the OPv
of the biomass burning source is present in all assays and
especially prominent in the AA and DCFH assays. During
warmer months, the source OPv contributions vary across
different assays. However, the OPv contributions from the
primary traffic source is present throughout the year. Aside
from seasonal influences, there are also differences between
the sites that vary according to the assay.

For OPDTT
v , there are similarities in the contributions of

some sources in the UB and PU sites such as the consis-
tent monthly contribution from the sulfate-rich source and
the contributions from the secondary biogenic source dur-
ing warmer months, highlighting the influence of secondary
aerosols in these sites. The UB and UH sites also have sim-
ilarities in terms of OPDTT

v contributions from the mineral
dust source during warmer months and from the nitrate-rich
source during the colder months, both of which are sources
that can be influenced by road emissions and anthropogenic
SOA. This can be explained by the proximity of the UB and
UH sites to roadways, where PM10 in these sites is more in-
clined to interact with metals from road dust resuspension
and other non-exhaust vehicular emissions than the PU site

(discussed in detail in the companion paper, Borlaza et al.,
2021). Surprisingly, there is also a similarity seen in the UH
and PU sites in terms of OPDTT

v contributions from the pri-
mary biogenic source during warmer months.

For OPAA
v , the contribution from the mineral dust source

during warmer months in the UB and UH sites and the con-
tribution from secondary biogenic oxidation source in the PU
site were similarly captured. During colder months, biomass
burning is dominating in the UB and PU sites; however, the
UH site exhibited contributions from a variety of sources.
There is also a consistent OPAA

v contribution of aged sea
salt in the UB site and the contribution of nitrate-rich and
sea/road salt during the colder months in the PU site.

For OPDCFH
v , the contributions from the primary traffic

source (especially in the UB and PU sites) are much less than
the two other assays, suggesting weaker sensitivity of the
DCFH assay to this source. Instead, the contributions from
the nitrate-rich source, a source also commonly associated
with secondary anthropogenic emissions (Aksoyoglu et al.,
2017; Boyd et al., 2017; Faxon et al., 2018; Pennino et al.,
2016; Priestley et al., 2018), are more prominent during the
colder months in all sites.

This further highlights not only the importance of PM re-
dox activity over mass concentration, but also the impor-
tance of considering the seasonal influence on PM sources
that drive the OP of PM. These findings are also consistent
with current research, underlining that the main sources of
OP are those including species mainly originating from an-
thropogenic emissions (Janssen et al., 2014; Shi et al., 2006;
Yang et al., 2015) such as road transport and biomass burn-
ing (Boogaard et al., 2012; Borlaza et al., 2018; Calas et al.,
2019; Daellenbach et al., 2020; Daher et al., 2014; Pant et
al., 2015; Park et al., 2018; Seo et al., 2020; Simonetti et al.,
2018; Weber et al., 2021) and also site typologies that favour
the accumulation of pollutants and photo-active aging (Dael-
lenbach et al., 2020; Janssen et al., 2014; Pietrogrande et al.,
2019).

3.4 Predicting OP activity from PM10 sources using
MLP analysis

The residuals between the observed and MLR-modelled OP
could be attributed to atmospheric processes that were not
captured as most linear models assume no interaction be-
tween independent variables (i.e. multicomponent or multi-
source interactions). With this in mind, we are inclined to
explore another method of predicting OP from PM10 sources
that hopefully addresses this limitation. The application of
ANN techniques using non-linear functions, such as MLP
analysis, is an interesting new approach that accounts for cor-
relation and/or non-linear interactions between independent
variables.
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Figure 7. The monthly mean OPv contributions of each PM10 source in the three urban sites in Grenoble, France, for OPDTT
v , OPAA

v , and
OPDCFH

v based on MLR analysis.

3.4.1 Optimization of the MLP neural network
architecture

A number of MLP architectures (8 architectures in each site;
total of 24 MLP models) were explored to find the optimal
neural network in each site by exploring two different acti-
vation functions (TanH and sigmoid), an optimization algo-
rithm (scaled conjugate and gradient descent), and different
learning rates (from 0.2 to 0.6). In Sect. S3, Table S3 shows
the performance comparison of all of the MLP models tested.
The optimal model was selected based on the lowest RMSE
(ideally nearly 0) and the highest Pearson correlation coef-
ficient (r) (ideally nearly 1). Other model performance mea-
sures such as mean absolute error (MAE), mean absolute per-
centage error (MAPE), and Spearman rank correlation coef-
ficient (rs) were also explored and led to relatively similar
results.

It is important to note that, although there are other more
complex architectures, we limited our tests to a rudimentary
MLP architecture that is deemed sufficient and appropriate
based on the type of input and output dataset of this study.
Clearly, there is room for further exploration in the direction
of using MLP for predicting OP from PM sources. To our
knowledge, this is the first attempt to use MLP in apportion-
ing OP from PM sources and may serve as a baseline for
future applications of MLP in PM toxicity.

3.4.2 Comparison of predictive accuracy between the
MLP and MLR models

To conduct insightful evaluation of the predictive accuracy of
the MLP and MLR models, the model performance measures
were calculated as shown in Table 1. The predicted OPDTT

v
by the MLP model generally showed lower prediction error
(RMSE) than the MLR model for all the sites. Conversely,

Atmos. Chem. Phys., 21, 9719–9739, 2021 https://doi.org/10.5194/acp-21-9719-2021



L. J. S. Borlaza et al.: Disparities in PM10 origins and OP at a city scale (Part 2) 9731

the model performance measures in OPAA
v and OPDCFH

v were
less straightforward. The predicted OPAA

v showed lower pre-
diction errors for the UB and UH sites using MLP models,
with lower prediction errors for the PU site using MLR mod-
els.

The temporal distribution of the observed and modelled
OP activities for both the MLR and MLP models were pre-
viously presented in Fig. 4. It is interesting to note that even
MLP was not able to fully capture some peaks (especially in
the warmer months) of the observed OPDTT

v . However, the
RMSE values using MLP were much lower than MLR, par-
ticularly in the UH site, where the RMSE was reduced from
0.69 to 0.54 and in the PU site from 0.62 to 0.58. In the
UB site, the MLP did not exceed the performance of MLR
by a weighty extent. Nonetheless, the MLP model generally
performed better, making it a competitive new technique in
predicting OP activity even with a rudimentary MLP archi-
tecture.

3.4.3 The non-linearity of OP contributions of PM10
sources based on MLP analysis

With some interactions between PM10 sources resulting in
synergistic or antagonistic effects on the OP activity, it is
deemed essential to look closer into this potential non-linear
aspect to understand better the oxidizing capacity of PM10
sources. To demonstrate this non-linearity, the MLP models
were applied to dummy datasets leading to source-specific
OPv. The total source-specific OPv (MLPsum; see Sect. 2.4.3)
was compared to the original MLP-modelled OPv as pre-
sented in Fig. 8 for OPDTT

v in the UH site (see Sect. S7 for
similar figures for the UB and PU sites). The data points be-
low the 1 : 1 line show an overall synergistic effect between
PM10 sources on OPv, while data points above the 1 : 1 line
show an overall antagonistic effect between PM10 sources on
OPv.

Overall, there is a synergistic effect of PM10 sources on
OPDTT

v in most days in the UH site. This is also seen in
the OPAA

v and OPDCFH
v (see Fig. S9). Several studies have

reported synergistic effects in OP due to the interaction be-
tween metal and organic species (Arangio et al., 2016; Char-
rier and Anastasio, 2015; Dou et al., 2015; Fang et al., 2017;
Li et al., 2012; Lin and Yu, 2020; Xiong et al., 2017; Yu et al.,
2018). The UH site has pertinent contributions coming from
the mineral dust source (high in metal species, possibly com-
bined with anthropogenic organics, from road dust resuspen-
sion) and primary biogenic source (high in organic species)
which could be initiating the synergistic effects (see Fig. S7).
While there are relevant contributions from biogenic sources
in the other two sites, their mineral dust source is not as high
as in the UH site (or vice versa). These findings further sup-
port the importance of accounting for the contribution of bio-
genic sources as previously reported in other similar studies
(Samake et al., 2017; Tuet et al., 2017) as well as the impor-

Figure 8. The comparison of the original modelled OPDTT
v (MLP)

and the sum of source-specific modelled OPDTT
v activity. Note:

dashed grey line corresponds to the 1 : 1 line. Data points below the
1 : 1 line show an overall synergistic effect between PM10 sources
on OP activity; above the 1 : 1 line it is otherwise.

tance of source interactions and dynamics, as it could have
considerable influence on the OP of PM10.

In Sect. 3.4.2, it was presented that MLP offered improve-
ments compared to MLR, based on its much lower prediction
errors in the UH site (see Table 1). Indeed, it is possible that
MLR had difficulties in generating an accurate OP model for
a site that has a highly non-linear behaviour based on the
potential synergistic effects between PM10 sources. In fact,
the lowest prediction error by MLR (the OPDTT

v model in the
PU site with RMSE= 0.21; see Table 1) also showed data
points closer to the 1 : 1 line between the MLP vs. MLPsum
(see Fig. S9), suggesting weaker influence of the synergis-
tic/antagonistic effects between PM10 sources. However, the
MLP still performed better (the OPDTT

v model in the PU site
with RMSE= 0.19; see Table 1), supporting the flexibility
of MLP in both linear and non-linear behaviour of PM10
sources compared to MLR.

4 Conclusions

This study, together with the findings of its companion paper
(Borlaza et al., 2021), has presented an extensive analysis of
a city-scale OP and its association with various sources of
PM10 based on a 1-year PM10 sampling over different sites
in Grenoble (France), with approaches using both linear and
non-linear modelling techniques. The main findings of this
study are as follows.
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Table 1. The comparison of predictive accuracy of the observed OP activity between the MLR and MLP models based on root mean square
error (RMSE) and Pearson correlation (r). Note: RMSE is ideally ∼ 0 (lower RMSE in bold), and r is ideally ∼ 1 (higher r in bold).

Site Model Root mean square error (RMSE) Pearson correlation coefficient (r)

OPDTT
v OPAA

v OPDCFH
v OPDTT

v OPAA
v OPDCFH

v

Urban background (UB) MLP 0.35 0.32 0.19 0.94 0.97 0.98
MLR 0.38 0.32 0.21 0.93 0.97 0.98

Urban hyper-centre (UH) MLP 0.54 0.50 0.30 0.88 0.94 0.95
MLR 0.69 0.90 0.31 0.79 0.80 0.94

Peri-urban (PU) MLP 0.58 0.44 0.32 0.75 0.97 0.96
MLR 0.62 0.42 0.31 0.71 0.97 0.96

– There is a strong seasonality in the observed OP found
in all assays used (AA, DTT, and DCFH), with higher
OP during colder months and lower OP during warmer
months.

– There is a notable spatial difference in OP in a suburban
typology against sites closer to the city centre.

– There is an overall agreement (spatiotemporal homo-
geneity) between the three sites in the Grenoble basin;
however, there are some influences from local features
and site-specific events due to specific sources’ contri-
bution.

– The OP of PM10 has been successfully attributed to
PMF-resolved sources using multiple linear regression
analysis with a mostly good model fit.

– The sources of OP with the highest redox characteris-
tics (i.e. intrinsic OP or OPm) are mainly anthropogenic
sources such as industrial, primary traffic, and biomass
burning sources. The redox characteristics of commonly
unresolved sources in the biogenic fraction (MSA-rich,
primary biogenic, and secondary biogenic oxidation)
were also obtained, and such natural sources also con-
tribute to the overall OP during mild seasons.

– There is a redistribution of the impacts in terms of
source OPv contributions compared to mass contribu-
tions, highlighting the importance of considering redox
activity over mass concentration in air quality policies.

– There are seasonal influences on sources contributing
to OP. During the colder months, the biomass burning
source is typically the strongest contributor to all OP.
During the warmer months, there are different sources
(mineral dust, primary biogenic, secondary biogenic ox-
idation) contributing to OP in each site. However, there
is a consistent contribution from the primary traffic
source during the overall year.

– Even with a rudimentary design, the multilayer percep-
tron approach successfully modelled OP based on PMF-

resolved sources, with some improvements in model
performance (lower prediction errors, higher associa-
tion with observed OP) compared to MLR.

– The MLP also offered improvements, especially in sites
where there are prominent synergistic and/or antagonis-
tic effects between PM10 sources supporting the capa-
bilities of MLP in capturing non-linearities in OP.

Finally, in this paper, we tested for the very first time the
use of neural network analysis to apportion OP sources from
PM10. We showed that such a methodology is at least as
robust as the linear classical inversion one and permits an
improvement in the OP prediction when local features or
non-linear effects occur. This study also demonstrated that
enhanced-PMF solution allows us to show differences in the
spatiotemporal distribution of OP activity, targeting the re-
sponsible sources at a city scale. These findings pave the way
to establishing exposure in homogenous OP areas.
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