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Abstract
In this pioneering work, an assessment of thermal

runaway probability based on simplified chemical ki-
netics has been performed with imprecise Bayesian
methods relying on several priors. The physical phe-
nomenon is governed by two chemical kinetic param-
eters A and Ea. We suppose that their values are con-
siderably uncertain but also that we know the experi-
mental profiles of a chemical species corresponding to
their true values, thereby allowing us to compute likeli-
hoods and posteriors corresponding to different levels
of information. We are interested in the critical delay
time tc beyond which an explosion will certainly occur.
The use of several priors allows us to see when the
data truly dominate the prior with respect to the proba-
bility distribution of tc. It does not appear possible to
do so in an orthodox precise Bayesian framework that
reduces all forms of uncertainty to a single probability
distribution.

Keywords: Robust Bayesianism, explosions, chemi-
cal kinetics, principle of indifference

1. Introduction

Explosions remain a very serious threat in the industrial
world (Atrkar and Jabbari, 2013; Skob et al., 2020; Ahmed
et al., 2012). From a general point of view, an explosion can
be defined as a sudden increase in pressure and temperature
stemming from an oxidation or other exothermic reactions.
They are a complex phenomenon emerging from the inter-
play of chemistry, heat transfers and fluid dynamics. To
make predictions, it is possible to rely either on phenomeno-
logical approaches (Proust, 2005) or on CFD (Computa-
tional Fluid Dynamics) tools (Ferrara et al., 2006). These
CFD tools require a fundamental knowledge of the com-
bustion characteristics of the substances. However, these
characteristics are often highly uncertain because of the
lack of relevant experimental data and also the absence of
standardised experimental approaches to determining fun-
damental parameters (e.g. laminar flame speeds, oxidation
kinetics at high temperatures). Another difficulty which
arises when assessing explosion probabilities consists of
the factors the thermal runaway process depends upon.

In order to estimate the probability of an explosion in a
given situation, we must take into account both the proba-
bility distributions of the initial and boundary conditions
(aleatory uncertainty) and the uncertainties of the physical
and chemical parameters of the model (epistemic uncer-
tainty). For that sake, classical (precise) Bayesian meth-
ods are increasingly being employed but they suffer from
their inability to properly consider the difference between
aleatory and epistemic uncertainty (Schöbi and Sudret,
2019; Ferson and Oberkampf, 2009; Mathon et al., 2010).
Routinely, explosion hazards are assessed through the de-
termination of explosion safety parameters according to
various standards (e.g. EN 1839:2017 (EN et al., 2017),
ISO 10156:207 for gases and vapours (Zakel et al., 2019)).

However, when it comes to determining explosion prob-
abilities in a well-defined hazardous scenario by measuring
ignition-sensitive parameters (e.g. minimum ignition en-
ergy, auto-ignition temperature), it should be noted that
the risk and safety engineer can only access values which
correspond to a maximised explosion probability. The ex-
plosion probability can thus be potentially considerably
overestimated. In order to estimate more realistic proba-
bilities, we would either have to perform costly tests or to
use our more fundamental knowledge of oxidation kinetics
from low to high temperatures. The advantage of such a
chemical kinetic approach is that it can be applied to a wide
range of industrial scenarios (Warnatz et al., 2017; Peters
and Rogg, 1993).

Nevertheless, the chemical kinetic parameters are then
the main source of epistemic uncertainty in explosion haz-
ard assessments. They are generally unknown but con-
strained by physical bounds and a set of experimental data
the complete model must be able to reproduce well enough
(Shen et al., 2017; Fischer, 2019).

Up until now, most authors who sought to estimate
explosion probabilities did not consider the chemical ki-
netic parameter uncertainties but designed their approach
at a macro-level. Ronza et al. (Ronza et al., 2007) and
Moosemiller (Moosemiller, 2011) used event trees based
on historical data and expert knowledge to predict explosion
probabilities. Many researchers apply Bayesian networks
or fuzzy Bayesian networks to the assessment of explosion
hazard by eliciting expert knowledge or by using the known
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frequencies of relevant incidents (Li et al., 2020; Huang
et al., 2017; Tong et al., 2018; Yazdi and Kabir, 2017; Lu
et al., 2020) Much more works devoted to explosion hazard
could be cited but to the best of our knowledge, there does
not seem to be any article investigating the information
transfer of chemical kinetic parameter uncertainties into
explosion probabilities.

In this article, we aimed at comparing precise and im-
precise Bayesian methods for estimating the probability of
an explosion while using a highly simplified and idealised
model, the thermal theory of explosion of Semenov that
involves two chemical kinetic parameters (Semenov, 1942;
Shouman, 2006). We created a situation that naturally com-
bines aleatory uncertainty (regarding the initial temperature
after some incident) and epistemic uncertainty (concerning
the values of the pre-exponential factor A and activation
energy Ea of the simplified model that will be presented in
the next section).

If the only thing we know about an unknown parameter
is that it belongs to a given interval, classical Bayesians usu-
ally attribute it a uniform probability density distribution,
based on the (in)famous principle of indifference (POI)
(Hájek, 2002). The POI stipulates that if we are completely
ignorant about which one of n maximally basic possibilities
is true, we are rationally compelled to assign each one of
them the same probability 1/n. The problem of the POI is
that it can all too easily lead practitioners to mistake igno-
rance for knowledge. The epistemic state of someone who
tossed a coin in a casino 10,000 times and saw its frequency
of landing heads closely oscillate around 0.50 should be the
same as someone who just discovered the coin in the casino
and has no idea whatsoever about whether it is biased or
unbiased: both must believe that p(heads) = 0.50 with the
same degree of confidence. According to the late Bayesian
philosopher of science Wesley Salmon, the principle of
indifference amounts to magical thinking (Salmon, 1967):

Knowledge of probabilities is concrete knowl-
edge about occurrences; otherwise it is useless
for prediction and action. According to the prin-
ciple of indifference, this kind of knowledge can
result immediately from our ignorance of rea-
sons to regard one occurrence as more probable
than another. This is epistemological magic. Of
course, there are ways of transforming ignorance
into knowledge – by further investigation and
the accumulation of more information. It is the
same with all “magic”: to get the rabbit out of
the hat you first have to put him in. The principle
of indifference tries to perform “real magic”.

Applied to a continuous variable such as a pre-exponential
factor A, the POI orders us to use a uniform prior
f0(A). However, since we are equally ignorant about 1/A,
log10(A) and 1/log10(A), and many other deterministic
functions of A, we should also use priors which are flat

with respect to these variables and highly non-uniform with
respect to A. In their excellent work devoted to chemical
parameter uncertainty propagation, (Frenklach et al., 2007)
approvingly stated statisticians Box and Hunter’s recom-
mendation for defining priors in chemical kinetics:

In considering a parameter like the specific rate
[constant] ϕ which is essentially positive, it is
probably most realistic to take θ = lnϕ,−∞ ≤
θ ≤ ∞, as locally uniform a priory. This would
mean, for example, that having guessed a value
of ϕ , an experimenter would be about equally
prepared to accept a value twice as big as he
would to accept a value one-half as big.

At first glance, this advice would sound quite reasonable
to most chemical kineticists. However, if the authors had
also mentioned some logical implications of their approach
such as: "In the absence of any kind of knowledge about ϕ

except its positivity, we should all feel completely confident
that p(1 ≤ ϕ ≤ 100) ≈ 467.51p(10,001 ≤ ϕ ≤ 10,100),
even though both intervals have the same length.", most
practitioners would probably find that rule very strange and
arbitrary. If we only know that ϕ > 0, how on earth can we
deduce such a highly specific result?

The fundamental problem that uniform priors are no
longer uniform upon reparametrisation has led Jeffreys to
define a standard prior based on the Fisher information
that remains the same for any other parameter that is a
deterministic function of the first one (Kass and Wasser-
man, 1996). However, Jeffreys’ prior is usually bound to
be (highly) non-uniform with respect to many parametrisa-
tions of the problem and it thus also illegitimately creates
specific knowledge out of ignorance.

To overcome this problem, the field of imprecise
Bayesianism (also called robust Bayesianism or Bayesian
sensitivity analysis) chooses to describe genuine ignorance
through a wide variety of priors that results in a wide vari-
ety of posteriors (Walley, 2000; Berger et al., 1994; Insua
and Ruggeri, 2012). This approach is being employed in
an increasing number of fields such as insurance risks (Bo-
ratyńska, 2006), climate science (Tomassini et al., 2007),
cybersecurity (Hallgren and Turcotte, 2020), and clinical
trials (Greenhouse and Waserman, 1995), to name but a few.
However, as Fischer pointed out (Fischer, 2019), chemical
kineticists almost always only use one single uniform prior
and do not feel concerned about the fact that their poste-
rior might not be data-dominated. As Kass and Wasserman
pointed out (Kass and Wasserman, 1996), the reliance on
a single so-called uninformative prior is particularly dan-
gerous if the experimental data available are insufficient to
constrain the values of the model parameters, and Fischer
showed an example where relying on only one flat prior
would lead one to reject the model closest to the measure-
ments at hand whereas the use of several priors reveals that
this is a spurious and invalid conclusion (Fischer, 2019).
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In this paper, we want to compare the use of classical
precise Bayesian methods with an imprecise Bayesian ap-
proach relying on six different priors for assessing a ther-
mal runaway probability. In Section 2, our methodology is
explained. In Section 3, our results are presented and dis-
cussed. The article ends with a conclusion and the outlook
in Section 4.

2. Methodology

2.1. Computation of the Delay Time Distribution

Our detailed method can be read in Appendix A: Delay
time distributions. We first designed a risk scenario. We
consider a container filled with gaseous propane C3H8 in
a closed room with a constant volume initially at atmo-
spheric pressure. We suppose that the room is adiabatic,
which means that we neglect the heat losses. Through a
leak, a stoichiometric mixture of air-propane is formed
in the room. Because of some incident, the ambient tem-
perature jumps from 293.15 K (20 °C) to an initial tem-
perature following a normal distribution: T0 ∼ N(µT0 =
524 K,σT0 = 20 K). We have p(T0 < 440 K)< 1E-04 and
p(T0 > 600 K) < 1E-04. As a consequence, we can al-
ways consider that the initial temperature belongs to the
interval [T0,min = 440 K;T0,max = 600 K ] when develop-
ing an approximation formula for the delay time. We de-
cided to describe the system through the theory of thermal
explosion of (Semenov, 1942). According to it, the reac-
tion progress leads to an increase in temperature which
itself spawns an increase in the reaction rate that causes the
temperature to rise ever faster (thermal runaway). In our
case, the system can be described by the following equa-
tions: C3H8 + 5O2 → 3CO2 + 4H2O, ρcv

∂T
∂ t = (−∆um)r,

rate =− d[C3H8]
dt =− 1

5
d[O2]

dt = Ae−
Ea
RT [C3H8]

a[O2]
b.

[C3H8] and [O2] (mol/cm3) are the concentrations of
propane and oxygen, respectively, T (K) is the tempera-
ture, ρ(T ) (kg/cm3) is the volumetric mass density of the
mixture, cν (kcal/(kg·K)) is its thermal capacity at con-
stant volume, t(s) is the time, ∆um (kcal/mol) is the mo-
lar reaction energy, rate (mol/cm3/s) is the reaction rate,
A(mol,cm,s) is the pre-exponential factor, Ea (kcal/mol) is
the activation energy, R = 1.987E-03 kcal/(K mol) is the
ideal gas constant, and a and b are reactant coefficients.
According to (Westbrook and Dryer, 1981), the following
parameter values can be employed: A0 = 8.6E+11, Ea0 =
30.0, a = 0.1, and b = 1.65. They used laminar flame speeds
to calibrate them.

Further in the study, we shall assume that A ∈
[6.0E+11 ; 8.0E+13] (mol, cm,s) and Ea ∈ [27;46]
kcal/mol. This corresponds to a situation of strong igno-
rance in chemical kinetics. We consider an undiluted stoi-
chiometric mixture at atmospheric pressure (p = 1 atm =

101325 Pa), which means we have initially the following
mole fractions:

XC3H8,0 =
[C3H8]0

[All species] = 0.04057824, XO2,0 = 0.2028912,
XN2,0 = 0.7565306. The evolution of the variables with
time was predicted with the chemical kinetic software Can-
tera (Goodwin, 2002). We are interested in how quickly
the mixture reaches the critical temperature (also called
ignition temperature in a technical context) T c = 766 K
beyond which it would be impossible for a technician to
intervene to stop the explosion (Reed, 1986). Let tc be the
critical delay time defined as T (tc) = T c. If that time is
elapsed, an explosion will surely occur. As explained in
Appendix A: Delay time distributions, for given values of
A and Ea, log10(tc) can be very well approximated by a
linear function of 1/T0:

log10
(
tcA,Ea(T0)

)
≈ aA,Ea

1
T0

+bA,Ea (1)

with

aA,Ea =
log10

(
tcA,Ea(T0,min)

)
−log10

(
tcA,Ea(T0,max)

)
1/T0,min−1/T0,max

(2)
and

bA,Ea = log10
(
tcA,Ea(T0,min)

)
−aA,Ea

1
T0,min

. (3)

log10
(
tcA,Ea(T0,min)

)
and log10

(
tcA,Ea(T0,max)

)
are them-

selves to a large extent bilinear functions of log10(A) and
Ea so that they can be well approximated by a piecewise
bilinear interpolation. For that sake, log10

(
tcA,Ea(T0,min)

)
and log10

(
tcA,Ea(T0,max)

)
were computed for 30*30 val-

ues of (A, Ea) numerically with Cantera in order to obtain
a training set. For given values of A, Ea and T0, we can
avoid calling Cantera by estimating log10

(
tcA,Ea(T0,min)

)
and log10

(
tcA,Ea(T0,max)

)
through the piecewise bilinear

interpolation and then approximate log10
(
tcA,Ea(T0)

)
≈

aA,Ea
1
T0
+ bA,Ea through the linear interpolation formula.

The quality of the model has been tested by generating 3000
random values of (A, Ea) and T0 with A∼U(Amin,Amax),
Ea∼U(Eamin,Eamax) and T0 ∼N(µT0 ,σT0). We systemat-
ically computed tcA,Ea(T0) with Cantera and tcpred,A,Ea(T0)
by interpolation and then the relative difference r

r =
tcA,Ea(T0)− tcpred,A,Ea(T0)

min
(
tcA,Ea(T0), tcpred,A,Ea(T0)

) . (4)

For more than 99.3% of the points, we have r ≤ 5%. We
have max(r) = 12.32% which is reached for a very high
and utterly unproblematic delay time superior to 2E+08
s. Given the fact that we are not interested in numerical
accuracy but in understanding the behaviour of probabilistic
approaches to thermal runaway risks, we deemed that level
of error to be acceptable. As demonstrated in Appendix A,
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Figure 1: f (tc) f or A = A0 = 8.6E +11 and Ea = Ea0 =
30kCal/mol

for given A and Ea, the probability density of tc is given by

f (tc|A,Ea) =
aA,Ealn(10)

tc
(
bA,Ealn(10)− ln(tc)

)2

φ

( aA,Ea

log10(tc)−bA,Ea
,µT0 ,σT0

)
.

This analytical formula has been compared with an empir-
ical distribution obtained by generating 10,000 values of
T0 ∼N(µT0 = 524K,σT0 = 20K) and computing tcA,Ea(T0)
by using the linear approximation. As can be seen in Figure
1, the analytical distribution of tc corresponds very well to
the empirical one.

2.2. Priors

Chemical kineticists often define the prior in such a way
that A and Ea are stochastically independent (which might
be a problematic assumption, see (Held et al., 2008) ) and
that it is uniform with respect to log10(A) and Ea (Plessis,
2013; Hsu et al., 2009; Huan and Marzouk, 2013). Con-
sequently, we defined our first prior f0,1

(
log10(A),Ea

)
as

uniform with respect to log10(A) and Ea. We then defined
our second prior f0,2 in such a way that it is uniform with
respect to A and Ea. Our third prior f0,3 is uniform with
respect to 1/log10(A) and Ea. The fourth prior f0,4 is uni-
form with respect to 1/log10(A) and 1/Ea. The fifth prior
f0,5 is uniform with respect to 1/A and Ea. The sixth prior
f0,6 is uniform with respect to A and 1/Ea. For the sake of
the present study, we ignored the problem of the stochastic
independence of log10(A) and Ea but intend to explore
this issue in future works. The prior distributions along
with their analytical expressions can be seen in Appendix

B. It is a well-known problem of robust Bayesian analysis
that the set of priors must be large enough to avoid the
introduction of spurious information that could dominate
the experimental data (Walley, 2000) but not so wide as to
lead to nearly vacuous posteriors that would make it very
hard to draw any practical conclusion (Held et al., 2008).

From a pragmatic and pedagogical point of view, these
six priors are a good way to present an imprecise framework
to chemical kineticists as all priors are uniform with respect
to some reformulation of the kinetic parameters so that it
would be arbitrary to only rely on the results derived from
one such prior.

The elicitation of priors through subjective means
Daneshkhah et al. (2017) is outside the scope of the present
study.

2.3. Measurements and Epistemic Situations

We created "experimental" data allowing us to determine
the posterior probability distributions of log10(A) and Ea.
We considered a constant-volume adiabatic reactor at atmo-
spheric pressure with a very diluted mixture of propane and
oxygen: XC3H8 = 1E-05, XO2 = 5E-05 and XN2 = 0.99994
so that the temperature T (t) remains nearly constant. Using
the "true" values A0 = 8.60E+11 and Ea0 = 30.00 kcal/mol,
we generated mole fraction profiles of propane at differ-
ent temperatures. We then randomly chose several time
points and generated normally distributed noise in such a
way that XC3H8,exp(t j) = XC3H8(A0,Ea0, t j)+ ε j,A0,Ea0 and

ε j,A0,Ea0 ∼ N
(

0,σ j,A0,Ea0

)
with the standard deviation

σ j,A0,Ea0 = σrXC3H8(A0,Ea0, t j) where σr is the relative
standard deviation that always remains constant during an
experiment. In practice, the true parameters A0 and Ea0
are of course unknown. For each measurement j of a given
experiment, we use the expression of the standard deviation
σ j,A0,Ea0 defined just above.

As explained in Appendix C, we distinguished four epis-
temic situations:

• A: we only know that A ∈ [6.0E+11 ; 8.0E+13] (mol,
cm,s) and Ea ∈ [27;46] kcal/mol.

• B: we have one profile of XC3H8 with 6 time points
measured at 1845 K with σr = 25%.

• C: We have two profiles of XC3H8 with 6 time points
measured at 1135 K and 2249 K with σr = 25%.

• D: We have four profiles of XC3H8 with 10 time points
measured at 1135 K, 1478 K, 1845 K, and 2249 K
with σr = 6%.

As an example, XC3H8 at 1845 K with σr = 25% can be
seen in Figure 2. The other "measurements" are shown
in Appendix C. The log-likelihood can be expressed as
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Figure 2: XC3H8 at 1845 K with σr = 25%

follows:

l(data|log10(A),Ea) =
m

∑
i=1

nt,i

∑
j=1

(
−1

2
ln
(
2πσ

2
i, j
)

(5)

− 1
2σ2

i, j

(
XC3H8,i(t j,A,Ea)−XC3H8,exp,i(t j)

)2
)

whereby m is the number of experiments and nt,i is
the number of time points for experiment i and σi, j =
σrXC3H8,i,A0,Ea0(t j) as explained above. For a given prior
f0
(
log10(A),Ea

)
and a set of experimental data, the joint

posterior probability density of log10(A) and Ea can be
expressed by Eq. 6

f
(
log10(A),Ea|Data

)
= (6)

L(Data|log10(A),Ea) f0
(
log10(A),Ea

)∫∫
log10(A),Ea L(Data|log10(A),Ea) f0

(
log10(A),Ea

)
dlog10(A)dEa

The integration was carried out with a first-order Euler
explicit method (Hoffman and Frankel, 2018). The poste-
riors in Situation B, C and D (see 2.3) obtained with the
first prior and 300*300 values of (A, Ea) are shown in Fig-
ure 3, 4 and 5, respectively. It is very obvious that there
was a strong reduction in uncertainty between Situation
B (involving one imprecise experiment at one tempera-
ture) and Situation D (involving four precise experiments
at four temperatures). The other posterior probability den-
sities of log10(A) and Ea are displayed as contour-plots in
fischer21c-supp.

Figure 3: f1,B
(
log10(A),Ea

)

Figure 4: f1,C
(
log10(A),Ea

)

Figure 5: f1,D
(
log10(A),Ea

)
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Prior tc25 tc50 tc75 pcritical
f0,1 34.29 2801.66 2.34E+05 0.2424
f0,2 7.85 649.06 5.45E+04 0.3260
f0,3 39.22 3201.74 2.68E+05 0.2348
f0,4 9.39 356.02 4.00E+04 0.3360
f0,5 149.45 1.21E+04 9.99E+05 0.1585
f0,6 1.80 69.51 8019.06 0.4476

A0,Ea0 28.84 55.04 108.68 0.2636

Table 1: Features of f (tc) in situation A (times in s).

2.4. Computation of f (tc) as a Function of
f
(
log10(A),Ea

)
For a joint probability density of log10(A) and Ea
f
(
log10(A),Ea

)
(which could be either a prior or a

posterior), the probability density of tc is given by Eq 7.

f (tc) =
∫

log10(A)∈[log10(Amin),log10(Amax)],Ea∈[Eamin,Eamax]

(7)

f
(
tc|log10(A),Ea

)
f0
(
log10(A),Ea

)
dlog10(A)dEa

We then numerically computed the three quartiles of tc
(tc25, tc50, tc75) and pcritical = p(tc ≤ 30s) which is the
probability that the temperature rises so fast that a techni-
cian would not be able to step in. For A0 and Ea0, we have
tc25 = 28.86 s, tc50 = 55.08 s, tc75 = 108.79 s, and pcritical
= 0.2634.

3. Results and Discussion
3.1. Estimation of f (tc)

For the four situations A, B, C, and D, we computed f (tc)
and the four features mentioned in 2.4. All the results can
be seen in Appendix D.

In Table 1, the features of f (tc) are shown in situation
A where we have no measurements and only know that
A ∈ [6.0E+11 ; 8.0E+13] (mol, cm,s) and Ea ∈ [27;46]
kcal/mol. Our representation of our ignorance through the
six priors results in widely different distributions f (tc).

Table 2 shows the features of the six f (tc) in situation
B where the six priors have been updated by the informa-
tion contained in one experiment where XC3H8(t) has been
measured at constant temperature (see 2.3). These stark
differences show that our knowledge of A and Ea is much
too imprecise to draw any practical conclusions and that
we need new and better experimental data to sharpen their
joint posterior probability distribution and decorrelate the
two parameters.

The results for situation C can be seen in Table 3. The
posteriors are considerably more similar and closer to the
true values obtained with A0 and Ea0. However, the delay

Prior tc25 tc50 tc75 pcritical
f0,1 322.64 5667.50 1.02E+05 0.0600
f0,2 4.61E+04 2.67E+05 1.19E+06 3.4E-03
f0,3 234.54 3630.43 7.18E+04 0.0690
f0,4 108.43 1035.65 2.15E+04 0.1018
f0,5 35.05 114.69 604.56 0.2183
f0,6 2.60E+04 1.93E+05 9.59E+05 6.9E-03

A0,Ea0 28.84 55.04 108.68 0.2636

Table 2: Features of f (tc) in situation B (times in s).

Prior tc25 tc50 tc75 pcritical
f0,1 22.56 44.03 88.39 0.3508
f0,2 23.74 46.62 94.41 0.3311
f0,3 22.49 43.86 87.99 0.3521
f0,4 22.24 43.32 86.77 0.3566
f0,5 21.57 41.83 83.22 0.3689
f0,6 23.45 46.00 93.02 0.3358

A0,Ea0 28.84 55.04 108.68 0.2636

Table 3: Features of f (tc) in situation C (times in s).

times are systematically under-predicted whereas pcritical is
systematically over-predicted. As can be seen in Figure 4,
while situation C is a clear improvement over situation B,
the parameter values are still considerably uncertain. This
is plausibly due to the fact that in Situation C, the highest
value of the likelihood function is obtained for Amax,C =
7.42E+11 (mol, cm, s) and Eamax,C = 29.54 kcal/mol in-
stead of A0 = 8.60E+11 (mol, cm, s) and Ea0 = 30.00
kcal/mol. This leads to a higher reaction rate and thus to
shorter ignition delay times and a larger explosion probabil-
ity which result in tc25 = 22.14 s, tc50 = 41.48 s , tc75 =
81.66 s , pcritical = 0.3639 for Amax,C and Eamax,C. The sys-
tematic under-prediction of the delay times could possibly
be avoided by using a parametric family of prior proba-
bility distributions resulting in larger posterior probability
intervals.

Finally, the results obtained by updating the priors with
the data of four experiments with a higher accuracy are
summarised in Table 4. One can see that the discrepan-
cies have become much narrower and that they are very
close to the true values of the variables. The small system-

Prior tc25 tc50 tc75 pcritical
f0,1 28.55 54.53 107.77 0.2672
f0,2 28.61 54.65 108.03 0.2664
f0,3 28.54 54.52 107.75 0.2672
f0,4 28.53 54.49 107.70 0.2674
f0,5 28.48 54.40 107.51 0.2680
f0,6 28.60 54.62 107.98 0.2666

A0,Ea0 28.84 55.04 108.68 0.2636

Table 4: Features of f (tc) in situation D (times in s).
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atic underprediction of the delay times and overprediction
of pcritical probably stem from the fact that in Situation
D, the highest value of the likelihood function is reached
for Amax,D = 8.32E+11 (mol, cm, s) and Eamax,D = 29.92
kcal/mol instead of A0 = 8.60E+11 (mol, cm, s) and Ea0 =
30.00 kcal/mol. This results in a higher reaction rate and
hence in shorter ignition delay times and a greater value of
the explosion probability. For Amax,D and Eamax,D, we have
tc25 = 27.74 s, tc50 = 52.85 s , tc75 = 104.15 s , pcritical =
0.2773.

3.2. Epistemic Consequences

Precise Bayesianism stipulates that the epistemic state of
a rational agent can be perfectly well described through
a single probability distribution. This is nicely captured
by this statement of de Finetti (De Finetti, 1931; Vicig
and Seidenfeld, 2012) who is widely regarded as one of
the most important Bayesian mathematicians of the 20th
century:

In experimental sciences, the world of feelings
is replaced by a fictitious world where quantities
have an exactly measurable value; in probability
theory, I replace my vague, elusive mood with
that of a fictitious agent with no uncertainty in
grading the degrees of his beliefs.

According to most precise Bayesian theorists, uncertainty
is nothing beyond and above a probability distribution over
all possible states of an event or process.

The results obtained during this work challenge this view
but also help us see which properties a good imprecise
Bayesian analysis ought to have.

The first problem concerns the arbitrariness of the choice
of the probability distribution. As can be seen through the
stark differences between the distributions of tc, in situation
B the prior strongly dominates the likelihood based on the
experimental data. It seems completely arbitrary to say that
we ought to only consider the results stemming from one
prior (such as the one uniform with respect to log10(A)
and Ea) and disregard all other ones (such as those uniform
with respect to A and Ea or 1/A and 1/Ea). For if we are
at the beginning completely ignorant about the values of
log10(A) and Ea, we should logically also be completely
ignorant about, say, 1/A and 1/Ea. Using Jeffreys’ prior
which is invariant with respect to reparametrisation would
not help, as it would be non-uniform (probably strongly
non-uniform) for at least some parametrisations. An easy
way to avoid these problems is to represent the epistemic
state of an engineer in situation B through all distributions
at the same time (and possibly also distributions stemming
from other priors).

The second problem is the inability of the orthodox pre-
cise Bayesian position to distinguish knowledge and igno-
rance. Let us consider the probability pcritical that the ther-

mal runaway gets out of hand. For an imprecise Bayesian,
the distinction between knowledge and ignorance can be
captured by the differences between the posteriors and the
values derived out of them. In situation A where we only
know the parameter bounds, pcritical,A takes on values be-
tween 0.1585 and 0.4476 and we can see that the average
delay times t25, t50 and t75 differ by orders of magnitude.
In situation B where we only have one experiment which
does not allow us to separate log10(A) and Ea, pcritical,B
takes on values between 3.4E-03 and 0.2183 and the av-
erage delay times again differ by orders of magnitude. In
situation D where we have more accurate measurements
from four experiments at different temperatures, pcritical,D
takes on values between 0.2664 and 0.2680, which is close
to 0.2634 and the differences between the delay times is
always smaller than 0.5 %. This corresponds to a situation
of warranted knowledge. The main limitation of the very
simple priors we have chosen can be seen in situation C:
the relative difference between the delay times is smaller
than 12 % but the lowest and highest values of pcritical,D
(0.3311 and 0.3689) are far from the true value (0.2634).
This outcome could plausibly be avoided by using a family
of near-ignorance priors in the exponential family (Benavoli
and Zaffalon, 2015; Quaeghebeur and De Cooman, 2005).

While the crude priors we considered here do not allow
us to discriminate between cases where the distribution of
tc is inaccurate, they do permit us to recognise situations
where the data truly dominate the priors. Indeed, Bayesian
convergence theorems (commonly known as "The priors
wash out!") (Hawthorne, 1994) show that the different pos-
teriors are bound to converge towards a singular probability
density distribution equal to 1 for A = A0 and Ea = Ea0
with a favourable rate if the chosen priors are not too ex-
treme.

Now, how could a Bayesian who is, for some reason,
allergic to the very idea of interval probability manage to
capture the distinction between knowledge and ignorance
whilst using only one prior distribution? One possible way
to do this would be to rely on the difference between "the
weight of the argument" and the balance of evidence that
was first introduced by British economist John Maynard
Keynes (Keynes, 1921) and was recently explored by (Hill,
2019). Let us suppose that this Bayesian chooses to use the
prior which is uniform with respect to log10(A) and Ea. In
situation A, all pairs of (log10(A), Ea) have the same prob-
ability density. This corresponds to a situation of extreme
ignorance (or maximum ignorance given the parameter
bounds). Thus in situation A, we have pcritical,A = 0.2424
but this value is extremely unreliable as the weight of
the argument is equal to zero. Likewise, in situation B
pcritical,B = 0.06 but this value is strongly unreliable be-
cause log10(A) and Ea are strongly correlated as can be
visualised in Figure 3. pcritical,D = 0.2672 and this value
is strongly reliable as shown by Figure 5 where the likely
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values of (log10(A),Ea) occupy a very small region. In
situation C, pcritical,C = 0.3508 but the degree of reliability
(or weight of the argument) is weaker as a much larger
range of values are equally probable.

The reliability of pcritical , (Keynes’ weight of the argu-
ment) would also have obvious consequences for decision-
making and actions. In situations D, we reliably know that
the probability of an uncontrollable thermal runaway is
way too high, which means we must absolutely store the
propane in a room where this type of incident raising the
initial temperature T0 is impossible. In situations A, B and
C, we do not reliably know pcritical so that we need to col-
lect more relevant experimental data in order to strongly
narrow down the range of possible values of (A,Ea).

Such a Bayesian approach could also be applied to the
example of the coin mentioned in the introduction 1. If we
know absolutely nothing about the coin (except that it can-
not land on edges), we would believe that p(heads) = 0.5
while also knowing that this value is extremely unreliable
so that ambiguity-averse individuals would be unwilling to
bet any amount of money on either outcome. If we saw the
relative frequency of heads during 10,000 tosses oscillate
in a very narrow interval around 0.5, we would believe that
p(heads) = 0.5 and that this value is strongly reliable so
that ambiguity-averse individuals would have no problem
participating in bets. As shown by (Feduzi, 2010), Keynes
wanted both the weight of the argument and the balance of
evidence (the precise probability value in his framework)
to play a role in decision-making but was unsure about how
to achieve this because of the stopping-rule problem.

If applied consistently, this variety of Bayesianism could
in this specific situation account for the difference between
ignorance and knowledge. It would also provide us with
an explanation of Ellberg’s paradox (Ellsberg, 1961) that
completely respects the intuitions of the betting agents.
However, it deviates so strongly from the precise Bayesian
orthodoxy that it deserves to be considered a form of im-
precise probability which fully recognises that probability
can have different degrees of reliability.

That being said, this solution (which basically relies
on some sorts of second-order probabilities) would not
work in other situations. As Walley (1996) showed, in
problems involving a multinomial distribution (such as
guessing the colour of the next marble drawn from a urn),
inferences based on a uniform prior depends on how the
possibility space is defined and partioned. This is very
problematic, as we do not have a priory any more reason to
suppose that p(red) = p(yellow) = p(green) = p(black)
than to assume that p(red) = p(non− red) or p(yellow) =
p(non− yellow) and that we cannot automatically assume
that the probability is uniform with respect to the simplest
partition Kelly (2011).

4. Conclusion and Outlook

To the best of our knowledge, the evaluation of explosion
and more specifically thermal runaway probabilities mostly
occurs through the use of Bayesian networks based on the
opinions of experts and on frequency data while represent-
ing uncertainty through a single probability distribution.
What is more, while chemical kinetic parameter values are
one main source of epistemic uncertainty, no effort has
been made to transfer their uncertainties into predictions of
explosion, so far as we know. In this pioneering work, we
aimed at filling this gap by conducting a study combining
aleatory uncertainty (the values of the initial temperature
T0) and epistemic uncertainty (the values of the parameters
A and Ea) to predict the distribution of the critical time tc
before the thermal runaway gets completely out of hand.

After an introduction in Section 1, we presented our
methodology in Section 2 by detailing the physical system
and the underlying differential equations, the computation
of the PDF of tc for given values of A and Ea, the choice
of the priors, the experiments used to update the priors,
and how to compute f (tc) given a joint PDF of (A,Ea). In
Section 3, we presented our results along with their inter-
pretation. Situation A corresponds to complete ignorance,
Situation B to strong ignorance, situation D to very good
knowledge, and situation C to insufficient knowledge. Our
imprecise Bayesian method relying on 6 crude priors al-
lows us to recognise that we know pcritical in situation D
but are very ignorant in situation A and B. It is much harder
to decide how accurate pcritical is in situation C based solely
on the differences between the posteriors.

A Bayesian method considering only one prior but also
a degree of accuracy for the various probabilities could po-
tentially also capture the crucial distinction between knowl-
edge and ignorance. However, it would strongly deviate
from the precise Bayesian orthodoxy and would be a the-
ory of imprecise probability in its own right. It would also
fail in more complex situations such as those involving
multinomial distributions.

There are several aspects we intend to explore in future
works:

• The thermal runaway model we used is a huge sim-
plification of reality. In addition to considering the
thermal self-reinforcement of the reaction, the model
should also include the chain reactions involving free
radicals and the competition between ramification and
chain termination reactions that can lead either to an
explosion or to the end of the overall reaction (Warnatz
et al., 2017). Ultimately, we shall also consider the
complex interactions between chemistry, mass trans-
fer, velocity fields, and heat transfer through complex
CFD (Computational Fluid Dynamics) simulations
(Seok et al., 2013).
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• We considered only an homogeneous gas-phase reac-
tion. Considering liquid-gas or solid-gas explosions
would be very relevant for safety engineers as this type
of scenario is more likely to be encountered in the in-
dustrial world. One example is dust explosion which
can have disastrous consequences (Eckhoff, 2005).
The simulation of such heterogeneous reactions would
be computationally much more demanding (Murillo
et al., 2013; Ermoline et al., 2013; Williams, 1979).

• The uniform priors we considered are very simple and
as we saw, they are not good at identifying the level
of inaccuracy in cases of partial ignorance (situation
C). It would be interesting to find out whether our
approach would be better at distinguishing different
degrees of ignorance by using a class of Gaussian
priors also characterised by different coefficients of
correlation. However, it does not appear possible to
obtain analytical versions of the posteriors, especially
not if we use more realistic and complex models. In
complex situations involving many parameters, we
would then be left with no other choice than to rely on
the MCMC (Markov-chain Monte-Carlo) algorithm
to approximate the posteriors. Given the very long
duration of each CFD simulation, we would also need
to develop new surrogate models that are sufficiently
trustworthy over a wide range of conditions.
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Appendix A: Delay time distributions

We consider a container filled with gaseous propane C3H8 in a closed room of constant volume 
initially at atmospheric pressure. We assume that the room is adiabatic, which means that all heat 
losses can be neglected.
Through a leak, a stoichiometric mixture of air-propane is formed in the room. Because of some 
incident, the ambient temperature jumps from 293.15 K (20 °C) to an initial temperature  
following a normal distribution: . We have

 and . As a consequence, we can always consider 
that the initial temperature belongs to the interval [ ] in order to 
develop an approximation for the critical time. 

We decided to describe the system through the theory of thermal explosion of Semenov [1]. 
According to it, the reaction progress leads to an increase in temperature which itself spawns an 
increase in the reaction rate that causes the temperature to rise ever faster (thermal runaway). 
Following this theory, the system can be described by the following equations: 

 ,  and

. 
 and  (mol/cm3) are the concentrations of propane and oxygen, respectively,   (kg/cm3) 

is the volumetric mass of the gaseous mixture,  (kcal/(kg·K)) is its thermal capacity at constant 
volume, T (K) is the temperature, t (s) is the time,   (kcal/mol) is the molar reaction energy, r 
(mol/cm3/s) is the reaction rate, A is the pre-exponential factor, Ea (kcal/mol) is the activation 
energy, R = 1.987E-03 kcal/(K mol) is the ideal gas constant, and a and b are reactant coefficients.

According to Westbrook and Dryer [2], the following parameter values can be employed:

Parameter  (mol, cm,s)  (kcal/mol) a b

Values 8.6E+11 30.0 0.1 1.65
They used laminar flame speeds at atmospheric pressures to calibrate them. 

Further in the study, we shall assume that the parameters are uncertain and that
 (mol, cm,s) and  kcal/mol, for example because of 

analogies with other global reactions. We consider a stoichiometric mixture at atmospheric pressure 
(p = 1 atm = 101325 Pa),  which means we have the following mole fractions:
  0.0406, ,  0.7565.

We are interested in how quickly the mixture reaches the critical temperature1 Tc = 766 K beyond 
which it would be impossible for someone to intervene to stop the explosion [3]. Let tc be the 
critical delay time defined as .

 is a function of the kinetic parameters A and Ea and of the initial temperature .
For several values of the kinetic parameters A and Ea, we computed ,

 and  for 40 random values of the initial temperature  
uniformly chosen in the interval [ ] with the chemical kinetic software Cantera [4]. 
The results are shown in Figure 1.

1 also called ignition temperature in a technical context.



Figure 1: tc as a function of (1/T0) for different (A, Ea) shown in the legend.

We can see that the logarithmic values of the delay time can be well approximated by a linear 
function of 1/T0: 

 with the coefficients 

 and

 . 

 and  also turn out to be well approximated by a 
bilinear function of log10(A) and Ea, as can be seen in Figure 2 and 3. They were obtained with a 
regular grid containing 30*30 values of (A, Ea). We used the results to create a piece-wise bilinear 
interpolation model of  and of  as a function of A and 
Ea. 

Let us suppose we want to approximate  for arbitrary values of A, Ea and  
belonging to the intervals defined above.
We start by predicting  and  with the piece-wise 
bilinear interpolation model.



We then compute the coefficients  and

 .

We finally have: .

Figure 2:  as a function of (A, Ea)

Figure 3:  as a function of (A, Ea)

The quality of the model has been tested by generating 3000 random values of (A, Ea) and  with
,  and  whereby U designates a 

uniform probability distribution.



We systematically computed  with Cantera and  with the two linear

 interpolation models and the relative difference  .

For more than 99.3% of the points, we have  5%.

We have max(r) = 12.32% which is reached for a very high delay time superior to 2E+08 s that 
would be completely unproblematic. Given the fact that we are not interested in numerical accuracy
but in understanding the behaviour of probabilistic approaches to thermal runaway hazard, we 
deemed that level of error to be acceptable. 

We now want to compute the probability density distribution of tc for the true parameter values  
= 8.60E+11 and  = 30. 

We first compute the coefficients 

 and 
 . 

We then have  with
. 

The cumulative probability distribution of  is given by 

where  is the cumulative probability distribution of the normal distribution.

Hence 

We can also compute the quantiles ,  and  (with ,  and
) and  which is the probability that the thermal runaway 

delay would be so small that it would be very hard for someone to step in. 

We have 



. 

We thus have , where  is a quantile of

.

This leads to . Likewise, we have 

 and .

Of course, these formula are also valid for any  and  .

We compared the analytical functions with an histogram obtained by generating 10,000 values of
 and computing the corresponding tc for ( ) via the two 

linear interpolations. We obtained the following results:

A = 8.6E+11  (mol, cm, s) - Ea = 30 kcal/mol

Analytical 28.84 55.04 108.68 0.2636

Numerical 28.94 54.94 107.72 0.2625

Figure 4: 

Probability distribution for A0 = 8.6E+11 and Ea0 = 30

We also computed the probability distribution for two other (A, Ea) chosen randomly. 



A = 6.14E+12 - Ea = 37.36 kcal/mol

Analytical 3109.14 7071.60 16797.92 7.75E-08

Numerical 3099.12 7069.12 16815.32 0

Figure 5: Probability distribution for A = 6.14E+12 and Ea = 37.36

A = 3.06E+12 - Ea = 34.82 kcal/mol

Analytical 625.17 1336.97 2976.44 8.66E-05

Numerical 625.34 1340.69 2990.27 9.00E-05



A = 2.99E+13 - Ea = 43.18 kcal/mol

Analytical 1.24E+05 3.24E+05 8.86E+05 0

Numerical 1.24E+05 3.20E+05 8.84E+05 0

Figure 6:

Probability distribution for A = 3.06E+12 and Ea = 34.82



Figure 7: Probability distribution for A = 2.99E+13 and Ea = 43.18

Tests performed with other parameter values led to an equally satisfying agreement, thereby 
validating the analytical formula. 
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Appendix B: priors

In order to perform the imprecise Bayesian analysis, we decided to use sixth priors which are 
uniform with respect to the following variables:
- first prior: log10(A) - Ea
- second prior: A – Ea
- third prior: 1/log10(A) - Ea
- fourth prior: 1/log10(A) – 1/Ea
- fifth prior: 1/A – Ea
- sixth prior: A – 1/Ea

Let us pose . Let us first consider the univariate priors ,  , , ,

,  which are uniform with respect to the indexed variables. We shall express the 

corresponding cumulative distribution functions and then the pdf with respect to x and Ea.

We straightforwardly have  and

.

For , we have  

→ 

For , we have  → ,

 .

For , we have

 

 →  → 



  → . 

For the first prior (uniform with respect to log10(A) and Ea), we have 

For the second prior (uniform with respect to A and Ea), we have 

For the third prior (uniform with respect to 1/log10(A) and Ea), we have 

For the fourth prior (uniform with respect to 1/log10(A) and 1/Ea), we have 

For the fifth prior (uniform with respect to 1/A and Ea), we have 

For the sixth prior (uniform with respect to A and 1/Ea), we have 



The six priors are shown in the following figures. 

Figure 1:  - 
          

Figure 2:  - 

Figure 3:  - 

The integrals of the priors were computed over   mol/m3/s and
 .

Prior

Integral 1.00100075 1.00100422 1.00100064 1.00114586 1.00100054 1.00114796





Appendix C: virtual experimental data

We created “experimental” data allowing us to determine posterior probability distributions of A 
and Ea. 
We considered a constant-volume reactor at atmospheric pressure with a very diluted mixture of 
propane and oxygen:  = 1E-05,   = 5E-05 and    =  0.99994.
Under such a high dilution, the temperature remains nearly constant so that analytical expressions 
of the profile of  are available. It has been rigorously verified that they are virtually 
identical to the numerical results of Cantera. 
Using the “true” values  = 8.60E+11 and  = 30.00 kcal/mol, we generated mole fraction 
profiles of C3H8 at four different temperatures in the range [1135; 2249] K. We used the model 
described in subsection 2.1 of the article and in appendix A.
We then randomly chose several time points  and generated normally distributed noise in such a 
way that  and 

.   is the relative standard deviation. The profile of propane  

has always been computed with  and . 

We considered four situations: 

A) we have no data whatsoever, we only know that  mol/m3/s and
 kcal/mol.

B) We have one profile of C3H8 with 6 time points measured at 1845 K with  = 25%.
C) We have two profiles of C3H8 with 6 time points measured at 1135 K and 2249 K with  = 25%.
D) We have four profiles of C3H8 with 10 time points measured at 1135 K, 1478 K, 1845 K, and 
2249 K with  = 6%.

The different profiles are shown in the figures below. 

Figure 1:  = 1135 K. 



Figure 2:  = 1478 K.

 

Figure 3:  = 1845 K.

 



Figure 4:  =2249 K.

The likelihood of the experimental data given the parameters is: 

where m is the number of experiments,  is the number of time points for the i-th experiment and
 is the local standard deviation.

The log-likelihood is given by 

The log-likelihood for situation B, C and D can be visualised in the figures just below. They were 
all obtained with 300*300 values of A and Ea.

We can see that the likelihood function becomes sharper and sharper as more precise measurements 
are used to compute it, which is completely expected. 



Figure 5: Situation B  -  Situation C

Figure 6: Situation D

For each situation B, C and D, we obtained 6 posteriors based on the six priors mentioned in 
Appendix B. 

 is the 

posterior based on the first prior  and the experiment B.

 is the posterior based on the fourth prior  and the experiment C.

And so on. 



In situation B, log10(A) and Ea are strongly correlated in most posteriors and many values of 
(log10(A) , Ea) are equally compatible with the available evidence.



The range of probable parameter values is considerably smaller in situation C but this could still 
lead to inaccurate predictions.



The range of probable parameter values is very small in situation D in all posteriors, which means 
that the parameters are known with a high degree of accuracy.



Appendix D: Bayesian estimation of the delay time distribution

We are interested in how quickly the mixture reaches the critical temperature Tc = 766 K beyond 
which it would be impossible for a technician to intervene to stop the explosion. tc is the critical 
delay time defined as . As explained in appendix A, the initial temperature follows a 
normal distribution . We can limit ourselves to the interval 
[ ] as  < 2E-04.
The true values of the kinetic parameters are  = 8.6E+11 and  = 30.0. 

We suppose they are unknown to the safety engineer so that  and
 kcal/mol.  and  can be predicted with a high degree of 

accuracy thanks to piecewise bilinear interpolation. 
It is then possible to predict  through a simple linear interpolation: 

 with the coefficients 

 and

 . 

For A and Ea, the probability distribution of  is given by 

. 

We are interested in the quantiles ,  and  which are given by the following formula 

,  and 

We also want to know  which is the probability that the thermal runaway
delay would be so small that it would be very hard for a technician to step in. 
F is the cumulative probability distribution of  given by 

.

For a given (A, Ea), we can determine  and  such that  and
. 

We have 

. 

We thus have , where  is a quantile of

.

This leads to .  Likewise,  .  



The values of the probability density f(tc) will then be computed for n = 1000 values of tc in the 
interval [ ; ].
Given the joint distribution of the parameters (A, Ea) , the distribution of tc is given by 

.

whereby  might be either a prior distribution or a posterior distribution after taking the species
concentration profiles into account.
We compute it on the interval .

The true probability distribution of tc for  and  is as follows:

Figure 1: Probability distribution for A0 = 8.6E+11 and Ea0 = 30

8.6E+11  - 30

Analytical 28.86 55.08 108.79 0.2634

Numerical 28.94 54.94 107.72 0.2625

In what follows, f(tc) and its main features will be given in Situation A, B, C and D.



Situation A



Prior  (s)  (s)  (s)

A0, Ea0 28.86 55.08 108.79 0.2634

f0,1 34.29 2801.66 2.34E+05 0.2424

f0,2 7.85 649.06 5.45E+04 0.3260

f0,3 39.22 3201.74 2.68E+05 0.2348

f0,4 9.39 356.02 4.00E+04 0.3360

f0,5 149.45 1.21E+04 9.99E+05 0.1585

f0,6 1.80 69.51 8019.06 0.4476

[min; max] [1.80; 149.45] [69.51;1.21E+04] [8019.06;9.99E+05] [0.1585;0.4476] 

As could be expected, f(tc) and its features widely differ if the non-updated priors f0,i(A,Ea) are used
and none of the f(tc) are close to the true distribution obtained with  and .



Situation B



Posterior

A0, Ea0 28.86 55.08 108.79 0.2634

fB,1 322.64 5667.50 101985.48 0.0600

fB,2 46135.45 267339.01 1194153.91  0.0034

fB,3 234.54 3630.43 71792.60  0.0690

fB,4 108.43 1035.65 21514.09 0.1018

fB,5 35.05 114.69  604.56 0.2183

fB,6 26002.85 192780.68 959438.88 0.0069

[min;max] [35.05;4.61E+04] [114.69;2.67E+05] [604.56;1.19E+06] [3.4E-03;0.2183]

As can be seen in Appendix C: virtual experimental data (fischer21c-supp.pdf), the use of only 
one experiment at a single temperature is not enough to determine the two kinetic parameters A and 
Ea at the same time. A very large number of (A, Ea) values are equally probable.
Consequently, the probability distribution of tc obtained with most posteriors tends to be far off 
from the real one and the computed distributions themselves strongly disagree with one another.

file:///home/marc.fischer/Dokumente/C3H8_explosion_profiles/Verzugszeitenverteilung_Bayes/fischer21c-supp.pdf


Situation C



Posterior

A0, Ea0 28.86 55.08 108.79 0.2634

fC,1 22.56 44.03 88.39 0.3508

fC,2 23.74 46.62 94.41 0.3311

fC,3 22.49 43.86 87.99  0.3521

fC,4 22.24 43.32 86.77  0.3566

fC,5 21.57  41.83 83.22 0.3689

fC,6 23.45 46.00 93.02  0.3358

[min;max] [21.57;23.74] [41.83;46.62] [83.22;94.41] [0.3311;0.3689]

Situation C corresponds to two noisy experiments at two different temperatures.
As shown in Appendix C: virtual experimental data (fischer21c-supp.pdf), the region of probable
values of (A, Ea) is considerably smaller than in situation B. While the differences between the 
delay times and  are considerably smaller than in situation A and B, the delay times are 
systematically under-predicted whereas  is systematically over-predicted. This could be an 
artefact of the choice of the six prior distributions and could possibly be avoided by choosing a 
parametric family of priors instead. 

file:///home/marc.fischer/Dokumente/C3H8_explosion_profiles/Verzugszeitenverteilung_Bayes/fischer21c-supp.pdf


Situation D



Posterior

A0, Ea0 28.86 55.08 108.79 0.2634

fD,1 28.55 54.53 107.77 0.2672

fD,2 28.61 54.65 108.03 0.2664

fD,3 28.54 54.52 107.75 0.2672

fD,4 28.53 54.49 107.70 0.2674

fD,5 28.48 54.40 107.51 0.2680

fD,6 28.60 54.62 107.98 0.2666

[min;max] [28.48;28.61] [54.40;54.65] [107.51;108.03] [0.2664;0.2680]

In that situation, the six posteriors were computed from four experiments at four different 
temperatures with a low relative standard deviation   = 6%. The quantiles and  are almost 
the same. The very slight under-prediction of the delay times and over-prediction of  might 
stem from the numerical approximations used to compute  or from the fact that no parametric 
family of prior distributions was considered for this study. 
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