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• Large-scale model is developed for the dissolution of heterogeneous porousmedia,
taking dissolution history effect into account.

• A sequential algorithm is proposed for the solution of effective mass exchange
coefficient and effective permeability tensor.

• The large-scale model is validated for stratied and nodular systems.
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List of Symbols

Roman letters
� 	�Mapping vector, m
ceq 	�Thermodynamic equilibrium concentration of the dissolved solid, kgm−3

Cl , C∗
l
	� Darcy- and large-scale intrinsic average concentration of the dissolved solid, 

respectively, kgm−3

C̃l 	�Large-scale concentration deviation, kgm−3

D	� Diameter of the inclusions in the 2D geometry, m
Da , DaM	� Micro- and macroscale Damköhler number, respectively, dimensionless
Dr 	�Reference diffusion coefficient, m2 s−1

�l 	�Darcy-scale dispersion tensor, m2 s−1

�	� Gravitational acceleration, ms−2

H	� Height of the 2D unit cell, m
Kl 	�Permeability, m2

K0	� Permeability constant, m2

Ks 	�Mass exchange of the dissolving solid, kg m−3 s−1

�l , �∗
l
	� Darcy- and large-scale permeability tensor, respectively, m2

�d 	�Thickness of dissolution front, m
�h 	�Characteristic length of heterogeneity, m
�i, �l, �s 	�Pore-scale characteristic lengths, m
�� , �� 	�Darcy-scale characteristic length, m
L	� Large-scale characteristic length, m
Pl , P∗

l
	� Darcy- and large-scale intrinsic average pressure, respectively, Pa

Pe 	�Pressure at the inlet of the 2D nodular system, Pa
PeM 	�Macroscale Péclet number, dimensionless
r0 , R0	� Characteristic length of the REV used to define Darcy- and large-scale vari-

ables, respectively, m
� 	�Position vector, m
S, S∗	� Darcy- and large-scale solid mineral saturation, respectively, dimensionless
Ŝ , Ŝ∗	� Domain average of S and S∗ , respectively, dimensionless
S̃ 	�Large-scale soluble solid saturation deviation, dimensionless
t	� time, s
Ur 	�Reference velocity, ms−1

�l , �∗
l
	� Darcy- and large-scale intrinsic average liquid velocity, respectively, ms−1

V , V∞ 	�Total volume of REV for the Darcy- and large-scale volume averaging, 
respectively, m3

Vl, Vi, Vs 	�Volume of the liquid phase, the insoluble solid and the soluble solid within 
an REV, m3

�l,�∗
l
	� Darcy- and large-scale superficial average liquid velocity, ms−1

Greek letters
� , �∗	� Darcy- and large-scale mass exchange coefficient, s−1
�0 , �0,� , �0,�	� Mass exchange coefficient constant, s−1
�̂0 	�Averaged mass exchange coefficient constant within an REV, s−1



�l , �i , �s	� Volume fraction of the liquid phase, the insoluble solid and the soluble 
solid, respectively, dimensionless

�T , �∗
T
	� Darcy- and large-scale total porosity, respectively, dimensionless

�l 	�Dynamic viscosity, Pa s
�l , �s	� Density of the liquid phase and the soluble solid, respectively, kgm−3

� 	�Volume fraction of each region within a unit cell, dimensionless

1  Introduction

Dissolution of porous media is fundamental in many subsurface processes, such as karst 
formations (Guo et  al. 2016), salt solution mining (Cooper 2002), geological sequestra-
tion of CO2 (Hao et  al. 2019) and petroleum engineering (Golfier et  al. 2002) to cite a 
few among many other applications. Natural geological porous formations are hierarchical 
systems in general, with heterogeneities spanning over different scales and affecting disso-
lution processes significantly (Hao et al. 2019; Liu et al. 2019). For example, in the circum-
stances of geological storage of CO2 , the density-driven flow in heterogeneous formations 
may not always cause significant convective mixing and dissolved CO2 becomes immo-
bilized in low-permeability zones in layered systems, which reduces the risk of leakage 
(Agartan et al. 2015). It was also demonstrated that heterogeneity in groundwater velocity 
and non-aqueous phase liquid (NAPL) distribution plays a very important role in field-
scale simulation of NAPL release and dissolution (Christ et al. 2009; Farthing et al. 2012), 
with the orders of magnitude of field-scale mass transfer coefficients smaller than local 
mass transfer rates determined in the laboratory (Parker and Park 2004). Such examples 
are also available in the dissolution of rocks, with heterogeneity in terms of permeability, 
porosity, mineralogical distribution for instance affecting the dissolution patterns, the opti-
mal injection rate of acid solutions and the breakthrough time, in the context of improved 
oil recovery through acidizing (Golfier et al. 2002; Kalia and Balakotaiah 2009; Liu et al. 
2019; Panga et al. 2005). Therefore, further investigation of dissolution of heterogeneous 
porous formation is essential for various applications.

It is widely accepted that an accurate way to get deep insight into dissolution processes 
is to describe them at the pore-scale level, where the chemical–physical interactions take 
place (Békri et al. 1995; Luo et al. 2012; Soulaine et al. 2017, 2018). In pore-scale mod-
eling, the full physics of dissolution are considered and the governing equations are solved 
with specific boundary conditions at the fluid–solid interfaces. No assumption is made 
about the geometric features of the medium, and the movement of the fluid–solid inter-
face is treated explicitly (Luo et  al. 2012; Soulaine et  al. 2017). Great efforts have been 
made and various approaches have been proposed to solve dissolution problems at pore-
scale, including the arbitrary Lagrangian–Eulerian (ALE) framework (Luo et  al. 2012; 
Starchenko et  al. 2016), level set method (Olsson and Kreiss 2005; Olsson et  al. 2007), 
lattice Boltzmann method (LBM) (Chen et al. 2014; Kang et al. 2014), pore network mod-
els (PNM) (Varloteaux et  al. 2013; Békri et  al. 2015) for examples. Based on investiga-
tions at the pore-scale, knowledge has been gained for various problems, for instance the 
scale dependence of reaction kinetics, the influence of pore-scale heterogeneities on the 
fluid–mineral interaction and the change of permeability and porosity with dissolution 
process, etc (Hao et al. 2013; Kang et al. 2002, 2014). However, pore-scale modeling is 
challenging and computationally limited due to several reasons. Firstly, the microscopic 
information, for instance the spatial distribution of the fluid and the solid, is often difficult 



to obtain. Secondly, when considering a large-scale problem at decimetric to metric scales, 
which is concerned in practical applications, it is impractical and even impossible to take 
into account of the micrometer-sized pore-scale details. Further difficulties include explicit 
treatment of the moving interface and handling of non-differentiable surfaces which may 
be created by the dissolution process, etc (Luo et al. 2012; Vignoles et al. 2010; Soulaine 
et  al. 2018). Therefore, there is a great need to formulate dissolution problems at larger 
scales.

Darcy-scale (macroscale) models filter pore-scale details and represent them by several 
macroscale effective parameters, which are obtained by solving corresponding “closure 
problems” available from the upscaling technique. There is an extensive literature concern-
ing about the upscaling of the transport equations for a given chemical species. The early 
fundamental works dealt with passive dispersion in porous media (Taylor 1953, 1954; Aris 
1956) , i.e., advection and diffusion, while they did not consider interaction at the phase 
interfaces. This problem was later investigated by different upscaling techniques (Brenner 
and Stewartson 1980; Eidsath et al. 1983; Mei 1992), which led to the classical macroscale 
dispersion theory and the proposition of local closure problems used to calculate the dis-
persion tensor components for various representative unit cells. Later, the theory was used 
in the investigation of active dispersion (Quintard and Whitaker 1994a; Bousquet-Melou 
et  al. 2002; Coutelieris et  al. 2006; Guo et  al. 2015), i.e., transport with interface mass 
transfer. The resulting Darcy-scale models involves an effective mass exchange term com-
bining the transport to/from the interface with the actual boundary condition at the inter-
face (thermodynamic equilibrium, chemical reaction), as reported in Guo et al. (2015). For 
the sake of simplicity, the average mass exchange term is often estimated as a first-order 
expression in terms of difference between the Darcy-scale concentration and the thermo-
dynamic equilibrium concentration, multiplied by a mass exchange coefficient (Quintard 
and Whitaker 1994a; Coutelieris et al. 2006; Guo et al. 2015; Luo et al. 2014). Two major 
difficulties have to  be overcome in practical applications of such models: (i) dissolution 
history must be taken into account in the effective parameter correlations and (ii) unstable 
dissolution patterns may develop such as wormhole formation (Golfier et al. 2002; Panga 
et al. 2005; Kalia and Balakotaiah 2007; Cohen et al. 2008; Szymczak and Ladd 2011; Liu 
et al. 2019).

The Darcy-scale model upscaled from the pore-scale equation is valid at a relatively 
small-scale (millimeter- or centimeter-scale), straightforward use of this Darcy-scale model 
to larger-scale problems without additional treatments are not appropriate. Indeed, appli-
cation of Darcy-scale description at real field-scale requires very fi ne spatial discretiza-
tion, which is computationally expensive and difficult. Fu rthermore, physical properties 
are scale-dependent (Hao et al. 2019). For example, the reaction rate coefficient measured 
in the field is several orders of magnitude smaller than that obtained at laboratory scale 
(Hao et  al. 2019; White and Brantley 2003; Banwart 1998). Therefore, it is essential to 
consider further upscaling of the Darcy-scale equations into larger scale, with different 
types of Darcy-scale heterogeneities taken into consideration. Theoretical development 
of large-scale models has been investigated by many researchers using various techniques 
(Bourgeat 1984; Quintard and Whitaker 1987, 1988; Kitanidis 1988; Säez et  al. 1989; 
Dagan 1989; Gelhar et  al. 1992; Renard and de Marsily 1997). The method of volume 
averaging will be adopted in this paper, following previous work published for the upscal-
ing of one-phase and two-phase flows and dispersion in heterogeneous porous media. In an 
early work (Quintard and Whitaker 1987), the authors dealt with the closure problems for 
the prediction of large-scale permeability tensor, considering the effect of significant het-
erogeneities. Later, many investigations of the large-scale mass and momentum 
transport 



equations were carried out for different situations, especially in terms of two-region (or 
two-medium) models (Chastanet and Wood 2008; Cherblanc et  al. 2007, 2003; Golfier 
et al. 2007; Ahmadi et al. 1998; Tran Ngoc et al. 2020). These works discussed the solu-
tions of various effective parameters appearing in the large-scale model under different 
assumptions and investigated the impact of different parameters, such as permeability con-
trasts and volume fraction of each region, on the macroscale effective parameters. More 
recently, Chabanon et al. (2017) have developed large-scale momentum transport equations 
for a three-region (porous–porous–solid) medium under local mechanical equilibrium con-
dition and discussed the dependence of effective permeability on several factors. However, 
very few studies consider mass and momentum transport with dissolution process. Among 
various investigations, Mabiala et  al. (2003) developed a simple large-scale model for 
NAPL dissolution and provided analytical solutions for the effective parameters. Assuming 
the large-scale flow is 1D, Golfier et al. (2004) upscaled the Darcy-scale dissolution model 
into a core-scale two-equation model for local mass equilibrium dissolution and into a one-
equation model for local mass non-equilibrium dissolution. Correlations for the effective 
parameters appearing in the two core-scale models were discussed in Golfier et al. (2006). 
In addition to such theoretical studies, Hao et al. (2019) used high-resolution simulation 
to calibrate centimeter-sized models to meter-sized models, with the latter maintaining the 
same high grid resolutions as the former one, from an empirical perspective.

While various large-scale models have been proposed for specific cases and different 
kinds of problems, large-scale model for fluid flow coupled with solid/mineral dissolution 
still remains an open problem. Therefore, we set the objective of this paper as develop-
ing a large-scale model for the dissolution of Darcy-scale heterogeneous porous media, 
without considerations of the mechanical deformations of the heterogeneous porous matrix 
and their consequences in the change of porosity and the mechanical stability (Laouafa 
et al. 2011; Prunier et al. 2009, 2009). The rest of the paper is organized as follows. We 
first apply large-scale volume averaging to the Darcy-scale equations to obtain a large-scale 
model provided several constraints are satisfied. After that, the algorithm to calculate the 
large-scale effective parameters are presented and the large-scale model developed in this 
paper is validated by comparing the results with direct numerical simulations, for condi-
tions compatible with the above mentioned constraints and beyond.

2 � Development of Large‑Scale Dissolution Models

We consider a heterogeneous system as schematically illustrated in Fig. 1, which is com-
posed of two types of rocks, � and � . Fluid flow creates a dissolution front with a charac-
teristic length scale denoted as �d , i.e., the zone where the dissolution process is active and 
materialized by variations of the rock properties, for instance porosity, permeability tensor 
and so on. The magnitude of �d has different possibilities in comparison with other char-
acteristic lengths, which will be discussed later. It is assumed that all porous rocks have 
some insoluble materials, so porosity is always lower than unity (i.e., there is no pure mac-
roscale fluid domain developing during dissolution). The pore-scale characteristic lengths 
are denoted as �� , where � = l, i and s for the liquid phase flowing into the pore space, the 
insoluble material and the soluble material, respectively. The Darcy- and large-scale char-
acteristic lengths are denoted as �� and �� , and L, respectively, as illustrated in Fig. 1. We 
use V to denote the total volume of the representative elementary volume (REV) used to 
define the Darcy-scale variables, and Vl , Vs and Vi are employed to represent the volumes of 



the liquid phase, the soluble and the insoluble solids within the REV, respectively. Assum-
ing that the domain is saturated with liquid, we have V = Vl + Vs + Vi . The actual medium 
porosity and the volume fractions of the soluble and insoluble solids are defined as

respectively. These definitions give

With the ongoing of dissolution process, �l may evolve from its initial value to the 
maximum value �T , where �T is the maximum or total porosity and it is equal to 1 − �i . 
It is convenient to define a soluble solid saturation as

which should be distinguished from the normalized concentration of the dissolved material 
with respect to its thermodynamic equilibrium value. Without entering into the classical 
discussion of the existence of REV or not, we assume an initial separation of the formation 
characteristic scales, i.e.,

(1)�l =
Vl

V
; �s =

Vs

V
and �i =

Vi

V

(2)�l + �s + �i = 1

(3)S = �s∕�T

(4)�𝛼 ≪ �𝜔,�𝜂 ≪ L

Fig. 1   Schematic illustration of the multi-scale features of a heterogeneous porous formation in the dissolu-
tion context



Considering the hierarchical structure schematically illustrated in Fig. 1, a first upscaling 
can be applied to the pore-scale model to obtain a Darcy-scale model based on the separa-
tion of scale assumption expressed by

where r0 is the characteristic size of the Darcy-scale REV as defined in Fig. 1. If constraint 
given by Eq. 5 is completed with the addition constraint �d ≫ r0 (the comparison between 
�d and ��,�� will be discussed later in this paper), upscaling can be achieved in the context 
of reactive porous media, for instance, by using the method of volume averaging (Quin-
tard and Whitaker 1999; Whitaker 1999; Golfier et al. 2002; Coutelieris et al. 2006; Guo 
et al. 2016). Only this first upscaling incorporates the boundary conditions at the various 
pore-scale interfaces into the averaged equations and all successive large-scale averaging 
procedures simply incorporate the influence of heterogeneities into the averaged equations. 
Whether the Darcy-scale models can be upscaled depends on a further analysis of the sepa-
ration of scale constraints, i.e., it requires to compare �d with the other large-scale charac-
teristic lengths of the problem.

• If we have

then sharp fronts develop and it is generally difficult to envisage an homogenized model in 
the large-scale REV (denoted as R0 ) of the heterogeneous medium, even if the separation 
of scales holds for the initial description of the heterogeneous system, i.e.,

• In the condition where

it is also necessary to model the problem at the Darcy-scale with an explicit representation 
of the heterogeneity.

• Finally, one may in principle obtain a homogenizable situation for large-scale
upscaling if

In such case, spatial variations of porosity induced by dissolution in each Darcy-scale 
domain, � and � , will stay small. Hence, the properties of each heterogeneous region are 
also approximately spatially uniform, even though they indeed evolve with time, and this is 
a good situation for developing a large-scale model, i.e., a model with effective properties 
incorporating the effect of the Darcy-scale heterogeneities and dissolution. The separation 
of scale assumption would read

Since dissolution will change the pore-scale size and structure, the associated local perme-
ability will change, and therefore, the momentum equation must also be upscaled in con-
junction with solute transport.

(5)�𝛼 ≪ r0 ≪ �𝜔,�𝜂

(6)�d ≪ �𝜔,�𝜂 ≪ L

(7)�𝜔,�𝜂 ≪ R0 ≪ L

(8)�𝜔,�𝜂 ∼ �d ≪ L

(9)�𝜔,�𝜂 ≪ �d ≪ L

(10)�𝛼 ≪ r0 ≪ �𝜔,�𝜂 ≪ R0 ≪ �d ≪ L



2.1 � Darcy‑Scale Model

Dissolution of interfaces involve many different thermodynamic and chemical reaction pro-
cesses. The Darcy-scale model used in this paper is developed from a pore-scale model 
with nonlinear reactions, which also covers the thermodynamic equilibrium condition, 
using the method of volume averaging (Whitaker 1999). Such an upscaling from pore-
scale to Darcy-scale has been extensively discussed in the literature and we refer the reader 
to related works (Guo et al. 2016, 2015; Whitaker 1999) for more information. What are 
the Dary- to large-scale upscaling technical difficulties? The fundamental problems are 
because Darcy-scale dissolution properties which change with time and exchange terms, 
in particular exchange coefficients, are heterogeneous. Of course, there might be additional 
features which will pose certainly tremendous difficulties in terms of upscaling: multi-
component aspects, other couplings. In this paper, we adopt one of the simplest problems 
that covers the two fundamental aspects described above. The Darcy-scale local non-equi-
librium mass balance equations can be summarized as:

for the solid phase,

for the liquid phase and

for the dissolved mineral, where �s and �l denote the densities of the dissolved mineral and 
the liquid phase, respectively, Ks denotes the mass exchange term of the dissolved mineral, 
�l denotes the Darcy-scale superficial average velocity, Cl denotes the Darcy-scale intrin-
sic average mass concentration of the dissolved mineral, �l denotes the active dispersion 
tensor. Even though Ks is in fact dependent on higher orders of concentration difference 
(

Cl − ceq
)

 , with ceq the thermodynamic equilibrium mass concentration of the dissolved 
mineral, a first-order estimation was widely adopted in the previous studies (Guo et  al. 
2016; Cherblanc et al. 2007; Gwo et al. 1996; Gvirtzman et al. 1988) because the accuracy 
is sufficient for many practical situations when considering the large number of uncertain-
ties (Cherblanc et al. 2007). In this paper, we also take

for the sake of simplicity and accurate expressions of the mass exchange term obtained by 
solving pore-scale closure problems with different boundary conditions were discussed in 
a previous work (Guo et al. 2015). Here, � is called the mass exchange coefficient, which 
is concentration-dependent and generally expressed as a constant, �0 , times a function of 
the solid saturation (eventually a dependency upon some other microscale dimensionless 
parameters such as Péclet number and Reynolds number), i.e.,

From Eqs. 11 and 12, we have

(11)
��s�s

�t
= Ks

(12)
��l�l

�t
+ ∇ ⋅

(

�l�l

)

= −Ks

(13)
�Cl�l
�t

+ ∇ ⋅
(

Cl�l

)

= ∇ ⋅
(

�l�l ⋅ ∇Cl

)

− Ks

(14)Ks = �
(

Cl − ceq
)

(15)� = �0 �
�

(S)



with the assumption of constant liquid density. The filtration velocity within each 
region must also be described by a macroscale equation. Starting with the pore-scale 
Navier–Stokes equations, assuming that the Reynolds number is small enough and dissolu-
tion slow enough in comparison with viscous relaxation, it can be shown that the macro-
scale momentum balance equation has the form of a Darcy’s law (Whitaker 1986)

where �l is the permeability tensor depending on the position (i.e., the rock type at the 
given position), Pl denotes Darcy-scale intrinsic average pressure and � denotes gravita-
tional acceleration. Since dissolution will change the pore-scale structure, it is clear that 
�l depends on the dissolution history (Békri et al. 1995; Golfier et al. 2006; Luquot and
Gouze 2009). In this paper, we adopt the assumption classically made in geochemistry 
that the historical dependence of the permeability with dissolution can be approximated 
through a direct dependence of permeability with the pore volume fraction, i.e., depend-
ence with saturation in our problem.

Two important dimensionless numbers, namely the Darcy-scale Damköhler num-
ber ( DaM ), which tells whether the macroscale flow is controlled by the mass exchange 
or diffusion at the reference scale �h and the Darcy-scale Péclet number ( PeM ), which 
shows the competition of mass transport between convection and diffusion, are defined 
by

and

respectively. Here, Ur and Dr represent the reference velocity and reference diffusion coeffi-
cient, respectively. �h is taken as the characteristic length of the heterogeneities for hetero-
geneous formations with repeated pattern or L for a problem which is not susceptible of an 
intermediate upscaling (i.e., continuously varying heterogeneities, with correlation lengths 
up to L).

Various issues encountered in large-scale averaging, in particular the question of scale 
separation, are discussed in Supplementary Information. As a conclusion of the discussion, 
we summarize the assumptions made to implement large-scale averaging as following:

• Fluid density and viscosity are locally constant. For the most widespread soluble rocks
in nature, the density variation of saturated solution of carbonate rocks or gypsum com-
pared to freshwater are smaller than 3%. Larger density variation may take place for the
dissolution of halite (NaCl); however, because the solution is far from saturation (rock
solubility) in the uniform dissolution regime, the component of the liquid phase will
not change too much; therefore, it is reasonable to assume that the fluid density and
viscosity are unchanged within an REV.

(16)∇ ⋅ �l = −Ks

(

1

�l
−

1

�s

)

(17)�l = −
�l

�l

⋅
(

∇Pl − �l�
)

(18)DaM =
�0�

2

h

Dr

(19)PeM =
Ur�h

Dr



• Fluid flow is at low Reynolds number such that inertia terms may be neglected in the
upscaling problem,

• Dissolution is described by the local non-equilibrium case,
• Mass exchange coefficient depends only on saturation,
• Dissolution rate is slow, so the total mass balance equation may be approximated by

∇ ⋅
(

�T (1 − S)�l

)

= 0 (a kind of generalized Boussinesq approximation which is accept-
able for low-solubility material or cases for which the water density does not change sig-
nificantly (Abriola and Pinder 1985)),

• Dispersion and diffusion are neglected compared to advection (which corresponds to many
situations encountered in hydrology) because the concentration deviation is close to zero,
which will be explained in detail later.

These assumptions enable us to simplify the Darcy-scale model introduced above into the fol-
lowing form 

Here, effective properties such as �T , � , �l depend on position to reflect the Darcy-scale 
heterogeneities. The main unknown variables are the continuous fields Cl and Pl , and the pos-
sibly discontinuous field S, for which the governing equation has no fluxes. Normal fluxes are 
also continuous through inter-region boundaries; therefore, heterogeneities (and inter-region 
interfaces) are dealt with in the sense of distributions (Marle 1982; Gray et al. 1993; Quintard 
and Whitaker 1994b).

2.2 � Large‑Scale Volume Averaging

Large-scale volume averaging can be developed with a general averaging scheme involving a 
convolution product (Quintard and Whitaker 1994b; Davit and Quintard 2017). For the sake 
of simplicity, we simply use in the notations a basic kernel that leads to large-scale averages 
defined as

for the averaged total porosity, with braces used to denote large-scale averages instead of 
the brackets used for Darcy-scale averages. The large-scale saturation, S∗ , can be defined as

(20a)∇ ⋅
(

�T (1 − S)�l

)

= 0

(20b)�T (1 − S)
�Cl

�t
+ �T (1 − S)�l ⋅ ∇Cl = −�

(

Cl − ceq
)

(20c)�T
�S

�t
=

1

�s
�
(

Cl − ceq
)

(20d)�l = �T (1 − S)�l = −
1

�l

�l ⋅
(

∇Pl − �l�
)

(21)
{

�T
}

=
1

V∞
∫
V∞

�T dV

(22)
{

�TS
}

=
{

�T
}

S∗



and this can be used to define the large-scale concentration, C∗
l
 , and intrinsic velocity, �∗

l
 , 

as

The spatial deviations for concentration and saturation are defined as

Note that C̃l and S̃ have completely different behaviors. Taking the stratified system shown 
in Fig. 2a for example, since the stratified domain is initially saturated with the dissolved 
mineral at thermodynamic equilibrium concentration while solid saturation S is dependent 
on rock type (as discussed in Supplementary Information), the concentration deviation is 
zero for a uniform Cl-field and S̃ has initially the crenelated shape, as represented in Fig. 3.

(23)
{

�T (1 − S)Cl

}

=
{

�T
}

(1 − S∗)C∗
l

(24)
{

�T (1 − S)�l

}

=
{

�T
}

(1 − S∗)�∗
l

(25)Cl =C
∗
l
+ C̃l

(26)S =S∗ + S̃

Fig. 2   Schematic illustration of the stratified system (a) and the nodular system (b), with �
h
= H = 0.05m 

and D = 0.03m . Dashed rectangles are used to indicate unit cells

Fig. 3   Sketch of the multiple-
scale dissolution problem and the 
REV-scale approximations



Through the derivation as provided in Supplementary Information, we obtained the cou-
pled Darcy-scale/large-scale problem for the case of small Damköhler numbers, which can 
be approximated by the following equations 

where �∗ = {�(S)} is not expressed yet under a closed form, i.e., in terms of averaged var-
iables. When considering the case of constant mass exchange coefficient in each region 
within the REV, �∗ is perfectly defined as �∗ = {�} and the averaged equations have a com-
pletely closed form, i.e., involving large-scale averaged values only. In most cases, how-
ever, � is not constant and depends primarily upon the local value of S in a nonlinear way 
as well as on the rock type. Since the time evolution of S̃ features history/memory effects, 
the properties to be homogenized are not only space-dependent but also time-dependent 
through a dissolution history function of the considered process.

2.2.1 � Approximate Mass Balance Equations

Here we propose to estimate S̃ and hence the mass exchange coefficient and other trans-
port properties for the case of small Damköhler numbers in an approximate manner using 
Eqs. 27b and 27c. Combining these equations, we obtain

or

which can be used to build, assuming an arbitrary evolution of the large-scale saturation, a 
large-scale correlation for �∗.

An explicit first-order approximation of this ordinary differential equation would read

where n and n + 1 refer to dissolution stages. It is important to notice that time does not 
explicitly appear in this equation. Since Sn+1 depends only on the saturation fields and a 
given evolution of the large-scale saturation in the previous step, this feature can be used to 
build �∗(S∗) through the following sequence: 

1. Assume the initial saturation in the medium S0 is known, which also determines S
0

∗.
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2. Assume a given large-scale saturation dissolution increment, �S∗ : then S∗
n+1

= S∗
n
− �S∗

(since S0 is the maximum value, the sequence is a decreasing sequence)
3. Compute Sn+1 using Eq. 30, Note at this point that, whatever the evolution history of S∗ , 

there is a direct relation between S and S∗ . This was made possible by the assumption
that concentration deviation was negligible within the REV, an assumption itself linked
to the small value of the Damköhler numbers.

4. As a consequence, all Darcy-scale properties are determined, in particular �(Sn+1) and
Kl(Sn+1)

5. Compute �∗(S∗
n+1

) =
{

�
(

Sn+1
)}

6. Compute �∗
l
(S∗

n+1
) , if necessary

7. Iterate until large-scale saturation is zero.

The large-scale equations describing the mass balances would read: 

2.2.2 � Upscaling Darcy’s Law

From the algorithm outlined above, S∗ is bijectively associated with Darcy-scale values of 
S at each dissolution step. As a consequence, the Darcy-scale values of the relative perme-
ability are also specified. Therefore, we only need to average, for each value of S∗ , a prob-
lem corresponding to 

This is the classical problem of upscaling heterogeneous permeability fields, and there 
is an intense literature on the subject (Sánchez-Vila et  al. 1995; Renard and de Marsily 
1997). From upscaling techniques point of view, this problem has already been treated and 
leads to a large-scale Darcy’s law of the form (see for instance Refs. (Bourgeat 1984; Quin-
tard and Whitaker 1987, 1988; Säez et al. 1989))

where �∗
l
(S∗) is the large-scale permeability at the given large-scale saturation and P∗

l
 is

the large-scale intrinsic average pressure. Following the cited literature, this effective per-
meability is computed by solving an intermediate local problem for a mapping vector �
such that
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For periodic unit cells, � is a continuous field determined by the following closure problem: 

For non-periodic unit cells, Eq. 35c cannot be used, and one reverts to various types of 
problems and boundary conditions, like permeameter conditions as discussed in Renard and 
de Marsily (1997), Guibert et  al. (2016). A large variety of estimates and bounds are also 
available in Renard and de Marsily (1997).

To conclude, a large-scale modeling would involve, firstly, solving the various closure 
problems to provide tables for �∗(S∗) and �∗

l
(S∗) and, secondly, solving the specific large-

scale initial boundary value problem described by Eqs. 31 and 33, with appropriate initial and
boundary conditions, using the large-scale properties computed at step #1 above.

3 � Validation of Large‑Scale Models

We have shown how to develop a fully homogenized large-scale model including history 
effect, and this involved the important assumption that the diffusive and convective Dam-
köhler numbers must be small enough. In this section, we test the proposed approach by con-
sidering two organized systems as shown in Fig. 2, with one being a stratified system and the 
other being a 2D nodular system. For the computations of these two systems, without losing 
generality, we use pure gypsum dissolution in water as an example while it could also be hal-
ite and carbonates, etc. The parameters used are presented in Table 1 and the computations 
were performed with the finite element software COMSOL Multiphysics®. In the large-scale 
model, the effective total porosity and effective initial soluble solid saturation are obtained by
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Table 1   Properties of the liquid, 
the solid and the porous media

Parameter Value

�l 1000 kgm−3

�s 2310 kgm−3

Dr 10−9 m2 s−1

ceq 2.5 kgm−3

�T 0.35 in � region, 0.25 in � region
S(t = 0) 0.1 in � region, 0.15 in � region
K0 10−11 m2 in � region, 10−12 m2 in � region
Kl K0(1 − S)3 in � region, K(1 − S)2 in � region



where �� , �T ,� and S� represent the volume fraction of �region within a unit cell, the total 
porosity and the initial solid saturation in �  region, respectively. Their counterparts in � 
region are denoted as �� , �T ,� and S� , respectively.

For both the stratified and the nodular systems, initially they have thermodynamic equi-
librium concentration of the dissolved mineral. Then freshwater with zero concentration of 
the dissolving mineral flows into the system from the left boundary and flows out at the 
right boundary. For the stratified system, the filtration velocity is imposed as Dirichlet 
boundary condition. As a consequence, the filtration velocity �∗

l
 for this 1D problem is

constant and equals to the entrance filtration velocity. Therefore, there is no need to work 
out the problem of the momentum equation and we only need to solve the coupled equa-
tions 20b, c for the Darcy-scale model and 31b, c for the large-scale model. Thus, the only 
unknown effective parameter is �∗(S∗) . To illustrate a more complex situation for the nodu-
lar system, Dirichlet conditions were imposed for the Darcy-scale pressure at the inlet 
( Pl = Pe ) and outlet ( Pl = 0) boundaries. As dissolution occurs, the variation of the local 
permeability will generate a change in the Darcy-scale and large-scale filtration velocities 
which must be calculated when solving the large-scale problem. Therefore, �∗

l
(S∗) has also 

to be determined as explained in Sect. 2.2. In addition to mass balance equations, momen-
tum Eqs. 20d and 33 are also essential to be solved for the Darcy- and large-scale models,
respectively. When solving large-scale Darcy’s law in the numerical simulations, the fol-
lowing boundary conditions were adopted: P∗

l
= Pe at the inlet and P∗

l
= 0 at the outlet.

Taking the same Dirichlet conditions for the two scales leads to a small error on the order
of O

(

�hPe

L

)

 when comparing the Darcy-scale and large-scale pressure fields. This error
decreases with the number of unit cells in the large-scale simulation.

3.1 � Calculation of the Large‑Scale Effective Parameters

As schematically depicted in Fig.  3, saturation S and concentration Cl are both varying 
slowly and can be estimated approximately as constants within an REV in the case of small 
DaM (constant by rock type for saturation). Since there is a correlation between Darcy-scale 
mass exchange coefficient � and local saturation S, � can also be considered as a constant in 
each heterogeneous region � and � , respectively, at a given point in the dissolution history. 
We obtain effective parameters in the large-scale model by solving closure problems for the 
deviation of local saturation S̃ , i.e., Eq. 30, which can be used to build �∗(S∗) and �∗

l
(S∗) 

through the sequence provided in the last section. A python code has been developed to
solve for the closure problems and compute �∗(S∗) and �∗

l
(S∗) , the algorithm of which is

schematically illustrated in Fig.  4 for the REV presented therein. More specifically, the 
effective solid saturation S∗ is in a decreasing trend from its initial value with dissolution 
going on (as indicated by the black arrow in the top figure of Fig. 4). Using Eq. 30, a corre-
lation is obtained between S∗ and the corresponding values of S in � and � regions, respec-
tively. Consequently, Darcy-scale parameters �(S) and Kl(S) can be obtained since they are 
functions of S. Finally, large-scale parameters �∗(S∗) and �∗

l
(S∗) are obtained by solving 

“closure problems” as explained in Subsection 2.2.
We performed computations with different values of �0,� and consequently different �0,� 

and obtained, respectively, the correlations of the large-scale effective mass exchange coef-
ficient �∗(S∗) and the large-scale permeability K∗

l
(S∗) with large-scale soluble solid satu-

ration S∗ . The results of �∗(S∗)∕�̂0 as a function of S∗ are presented in Fig. 5a, where we 

(37)S∗ =
(

���T ,�S� + ���T ,�S�
)

∕�∗
T



have �̂0 = ���0,� + ���0,� with �0,� and �0,� denoting �0 in �− and �−region, respectively. 
We indeed observe the decrease in �∗(S∗)∕�̂0 with the decrease in the solid saturation as 
expected. In addition, because of the symmetry of the unit cells and the isotropy of the 
Darcy-scale permeability, the closure problem gives a spherical �∗

l
 with �∗

l
(S∗) = K∗

l
(S∗)�. 

The values of K∗
l
(S∗) are plotted in Fig. 5b. With the ongoing of dissolution process, poros-

ity is increased with the decrease in the solid saturation, and this leads to larger permeabil-
ity. The correlations shown in Fig. 5 will be employed later in the large-scale computations.

Fig. 4   Illustration of the algorithm for the a priori calculation of large-scale effective properties for the cor-
responding REV

Fig. 5   Normalized large-scale 
mass exchange coefficient (a) 
and effective permeability (b) 
as a function of large-scale solid 
saturation

(a)

(b)



3.2 � Comparison Between Large‑ and Darcy‑Scale Models

After getting solutions for large-scale effective parameters �∗(S∗) and K∗
l
(S∗) , we carry out 

large-scale numerical simulations for the two systems mentioned above. The ranges for the 
characteristic velocity ( Ur ), the corresponding Darcy-scale Péclet number ( PeM ) and Dam-
köhler number ( DaM and DaM∕PeM ) are presented in Table 2, with Ur the infiltration veloc-
ity in the 1D case and the average velocity in the 2D case. Three values of PeM are used 
for each system to illustrate the behaviors of the large-scale models in different conditions. 
The influence of large-scale mass exchange coefficient is investigated in terms of various 
DaM and DaM∕PeM . Figure S2 in Supplementary Information shows that the thickness of 
the dissolution front depends on the value of DaM at low PeM numbers and the value of 
DaM∕PeM at high PeM numbers. However, for the 2D nodular system, it is difficult to plot a 
similar diagram like Fig. S2 for the stratified system, because it is hard to have a fully dis-
solved REV even with sharp dissolving interface, which will be explained later.

3.2.1 � Stratified System

For the stratified system, the comparison of saturation between Darcy- (DNS) and large-
scale (LS) results with PeM = 0.5, 5 and 50 is presented in Fig. 6. The comparison of the 
normalized concentration of the dissolved solid between Darcy- and large-scale results are 
plotted in Fig. 7. An overall comment is that the results obtained from Darcy- and large-
scale models agree very well with each other. We have shown in Fig. S2 in Supplementary 
Information that the ordering of the various scales (in particular the front thickness �d ver-
sus �� and �� ) depends on DaM and DaM∕PeM . The good agreement of the results even at 
high Damköhler numbers with sharp dissolution front (e.g., Fig. 6c, d and h) shows the 
robustness of the large-scale model developed in this paper. Specifically, one may find that 
when PeM is fixed, increasing DaM leads to the sharpening of the dissolution front (see each 
column of Fig. 6), while when DaM is the same, increasing PeM leads to more diffusive dis-
solution front (see each row of Fig. 6). These phenomena are determined by the competi-
tion between mass transport and mass exchange rate.

When the characteristic time of mass transport is smaller than that of mass exchange, 
the injected liquid is penetrating deep into the porous medium, with a thick dissolution 
front and vice versa. Comparing Figs. 7a–c, one may find that the thickness of the disso-
lution front in terms of concentration distribution is highly dependent on DaM∕PeM . The 
decrease in the dissolution front thickness with increasing DaM∕PeM is much more pro-
found when DaM∕PeM < 2750 , before sharp dissolution front forms at DaM∕PeM = 2750 . 
Then, further increase in DaM∕PeM only leads to negligible variation of dissolution front 
thickness because the dissolution process is limited by mass transport. The comparisons in 
different graphs of Figs. 6 and 7 also show that for a certain DaM∕PeM , the dissolution rate 

Table 2   Parameters used for the two systems

Parameter Stratified system Nodular system

Ur (m/s) 10−8 10−7 10−6 3.67 × 10−9 3.67 × 10−8 1.85 × 10−7

PeM 0.5 5 50 0.2 2 10
DaM 138-137500 138-137500 138-137500 1-688 14-688 14-688
DaM∕PeM 275-275000 28-27500 3-2750 7-3437 7-344 1-69
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Fig. 6   Comparison of S between Darcy- and large-scale results for various Da
M

 and Da
M
∕Pe

M
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(a–d) Pe
M
= 0.5 , t = 109 s, (e–h) Pe

M
= 5 , t = 108 s and (i–l) Pe

M
= 50 , t = 107 s

Fig. 7   Comparison of normal-
ized concentration between 
Darcy- and large-scale results. 
(a) Pe

M
= 0.5 , t = 109 s, (b) 

Pe
M
= 5 , t = 108 s and (c) 

Pe
M
= 50 , t = 107 s

(b)

(c)

(a)



is proportional to PeM because increasing PeM by one or two orders while decreasing the 
dissolution time by the same magnitude leads to similar position of the dissolution front 
(see DaM∕PeM = 275 and 2750 for example).

The robustness of the large-scale model is largely due to topological effects: The flow 
being one-dimensional, the field characteristic lines are also 1D. The sharp front corre-
sponding to local equilibrium dissolution moves through the REV with a constant direc-
tion and no rock type is free from dissolution. As a consequence, the Darcy-scale con-
centration changes from zero to equilibrium concentration within the REV when crossing 
the dissolution interface. Therefore, the large-scale average concentration is not equal to 
the equilibrium concentration and this calls for a large-scale non-equilibrium dissolution 
model. Interestingly, the proposed theory allows to build such a large-scale non-equilib-
rium model, even if the theoretical premises are not adequate. Now, if the characteristics 
develop in a 2D or 3D pattern, regions may be bypassed by the flow and dissolution front. 
Therefore, the large-scale average concentration will not also be equal to the equilibrium 
concentration. A large-scale non-equilibrium dissolution model is likely to be a good can-
didate for reproducing the large-scale averaged behavior, but the building of the history 
closure problems may be very complicated and rather different from the proposed theory. 
This will be indeed observed in the case of the nodular system presented below, when the 
chosen parameters go far beyond the model limitations.

3.2.2 � Nodular System

Similar study was carried out for the 2D nodular system and the comparisons between 
Darcy- and large-scale saturation are presented in Figs.  8a–c for PeM = 0.2 , 2 and 10, 
respectively. The results from DNS are averaged values of S in analogy to Eq. 37 within 
each unit cell as defined in Fig. 2b. Again, we find the good agreement between the Darcy- 
and large-scale results when the assumption of scale separation is fulfilled, i.e., DaM < 14 
for PeM = 0.2 and DaM < 138 for PeM = 2 and 10. When DaM is larger than these values, 
there tends to be some discrepancies between Darcy- and large-scale values with large-
scale models giving thinner dissolution front. Moreover, this discrepancy is smaller when 
PeM is small, which can be observed in Figs. 8a–c for DaM = 688 . In order to get more 
details about the saturation field, we plot in Fig. 9 the Darcy-scale saturation distribution 
corresponding to different cases of Fig. 8a. It is seen that, firstly, the dissolution front is 
more diffusive when DaM is small, while the increase in DaM leads to thinner dissolution 
front, as already indicated in Fig. 8a. When DaM is small, the dissolution process is lim-
ited by mass exchange and the saturation ratio between the two regions is small; there-
fore, large-scale models give satisfactory results compared to DNS. However, when DaM 
is larger, the dissolution rate is increased much more for the � region (the matrix) than 
for the � region (the inclusions), because the former holds a larger initial volume fraction 
of the liquid phase ( �T (1 − S) = 0.315 for � region versus �T (1 − S) = 0.213 for � region) 
and it is easier for the fluid to flow through � region, which leads to a larger gradient of the 
concentration difference and consequently faster mass exchange. That is why we see nearly 
fully dissolved condition in � region while only slightly dissolved condition in � region
in the first couple of unit cells when DaM ≥ 69 . Moreover, the obstacle of the upstream
inclusions makes the fluid difficult to reach the zones between the neighboring inclusions, 
where dissolution is insufficient. This effect is more profound when DaM is larger, while 
the large-scale model failed to catch this. Therefore, we see in Fig.  8 that, in coherence 



Fig. 8   Comparison of saturation 
between Darcy- and large-
scale results for various Da

M
 

and Da
M
∕Pe

M
 , respectively. 

(a) Pe
M
= 0.2 , t = 109 s, (b) 

Pe
M
= 2 , t = 2 × 108 s and (c) 

Pe
M
= 10 , t = 107 s
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Fig. 9  Darcy-scale saturation distribution corresponding to Fig. 8a, t = 109s , Pe
M = 0.2



with our discussion on the scale separation problem, the discrepancy between Darcy- and 
large-scale models grows with increasing DaM. 

As mentioned above, the dissolution front in the large-scale model is thinner than in 
DNS, which underestimates the saturation on the left half of the dissolving zone while 
overestimates the saturation on the right half. In order to find out whether the overestima-
tion and underestimation of S by the large-scale model can be compensated, we compared 
the averaged saturation within the whole domain, and they are denoted as Ŝ and Ŝ∗ in DNS 
and large-scale model, respectively. The error of the large-scale value is defined as

and the corresponding results are presented in Fig.  10 for the different cases shown in 
Fig. 8. It is observed that the relative error for DaM < 200 are smaller than 3% for all the 
cases, while when DaM > 200 , the discrepancy remains small for PeM = 0.2 but increase 
dramatically with DaM for PeM = 2 and 10. At DaM = 688 , ES goes up to about 8% of Ŝ for 
PeM = 10 . This is again consistent with what we have reported previously that the large-
scale model is more suitable for the low DaM condition, when the variation of parameters 
within each unit cell is small and smooth, as shown in Fig. 3.

4 � Conclusion

In this paper, we have considered flow in heterogeneous porous media made of soluble 
and insoluble materials. Modeling the dissolution of such a system requires to take into 
account the multiple scales involved: (i) pore-scale, (ii) Darcy-scale, (iii) the scale of the 
heterogeneities, (iv) the domain scale (reservoir, aquifer, etc.). This paper addressed the 
problem of upscaling from Darcy- to large-scale, i.e., the scale of an REV locally repre-
sentative of the heterogeneous porous medium. A study of the Darcy-scale equations 
allowed us to discuss the constraint necessary to develop a fully closed Darcy- to large-
scale upscaling. Such constraint, characterized by the existence of a dissolution front larger 
than the heterogeneity scale, is only fulfilled below a critical diffusive Damköhler number 
for low Péclet numbers and below a critical advective Damköhler number for large Péclet 
numbers. Even under these conditions, the resulting problem involves coupled Darcy- and 

(38)ES =
Ŝ∗ − Ŝ

Ŝ
× 100%

Fig. 10   Relative error in terms of 
average solid saturation between 
Darcy- and large-scale models



large-scale equations, and features history effects. However, under the constraints imposed 
on the Damköhler numbers and assuming that mass exchange coefficients depend only on 
saturation, it was possible to represent the impact of the dissolution history through a bijec-
tive relationship between the Darcy- and large-scale saturation. This allowed to compute a 
priori, before solving actually the large-scale problem, the effective properties needed in 
the large-scale simulations.

A sequential algorithm was provided to illustrate how to obtain the effective mass 
exchange coefficient and th e eff ective permeability tensor in the  large-scale model, by 
solving the corresponding closure problems. Large-scale effective p arameters w ere fi rst 
obtained following the above mentioned algorithm and then used in the large-scale mod-
eling of one stratified and one nodular system. For each system, three PeM and various DaM 
conditions were considered to investigate the limit of the large-scale model in terms of 
DaM and DaMPeM . For 1D flow in the stratified system, the large- and Darcy-scale results 
highly agree with each other, even in the case of high DaM with sharp dissolution front. 
This demonstrates the robustness of the large-scale model for such kind of simple systems. 
This robustness may be attributed to a topological effect: in this 1D case, the flow of the 
dissolving fluid is forced through all regions, which maintains the same potential for disso-
lution everywhere in the domain, i.e., no bypassing of slowly dissolving areas. For the nod-
ular system, the results comparisons are also satisfactory in the condition of relatively low 
DaM , i.e., when homogenization conditions are fulfilled. When DaM is large, the large-scale 
model failed to capture all the details of the Darcy-scale model. Large-scale results give 
a much thinner dissolution front at similar position compared to the Darcy-scale model, 
which can be related to the bypassing of slowly dissolving areas.

We addressed the fundamental question of the homogenization conditions to be fulfilled 
for the construction of a large-scale dissolution model including the effect of Darcy-scale 
heterogeneities. The computational results validated the large-scale model we developed 
for the dissolution of porous media with Darcy-scale heterogeneities in the case of a simple 
dissolution problem. Under these assumptions, two important problems could be resolved: 
the question of the length-scale separation necessary to develop a fully closed upscal-
ing methodology and historical aspects that prevent some sort of decoupling between 
the Darcy- and large-scale problems. The good agreement between DNS and large-scale 
results in the condition of 1D sharp dissolution front is interesting from a fundamental 
point of view as well as for practical applications. However, limitations of the applicability 
of the proposed theory must not be overlooked, in particular if one or all constraints are 
not satisfied. In the paragraph below, we review some of the difficulties that could emerge 
when departing from the initial dissolution problem considered in this paper.

The case of large Damköhler numbers is obviously the first difficulty. The fac t tha t 
proper homogenization conditions are not fulfilled does not prevent the system to have 
some sort of “homogenized” behavior. For instance, heuristic large-scale models have been 
proposed in the case of 1D large-scale flow for a 2D or 3D core affected by  wo rmhole 
dissolution (Golfier et al. 2004, 2006). The question of coupling between developing dis-
solution instabilities and Darcy-scale heterogeneities, which is likely to be very important 
if the assumption of low Damköhler number is removed, is also largely an open question. 
Difficulties may arise for the homogenization process, even for low Damköhler numbers, 
for instance if the mass exchange coefficient depends st rongly on ve locity. In th at case, 
the decoupling between dissolution and the momentum balance problem is not guaranteed. 
The case of a multi-component system requires also some attention. Finally, the case of 
a different driving force to express the Darcy-scale mass exchange term, in particular the 
reactive case, must also be considered in future work.
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