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Abstract. This study provides a comprehensive assessment
of NO2 changes across the main European urban areas in-
duced by COVID-19 lockdowns using satellite retrievals
from the Tropospheric Monitoring Instrument (TROPOMI)
onboard the Sentinel-5p satellite, surface site measurements,
and simulations from the Copernicus Atmosphere Monitor-
ing Service (CAMS) regional ensemble of air quality models.
Some recent TROPOMI-based estimates of changes in atmo-
spheric NO2 concentrations have neglected the influence of
weather variability between the reference and lockdown pe-
riods. Here we provide weather-normalized estimates based
on a machine learning method (gradient boosting) along with
an assessment of the biases that can be expected from meth-
ods that omit the influence of weather. We also compare the

weather-normalized satellite-estimated NO2 column changes
with weather-normalized surface NO2 concentration changes
and the CAMS regional ensemble, composed of 11 mod-
els, using recently published estimates of emission reduc-
tions induced by the lockdown. All estimates show similar
NO2 reductions. Locations where the lockdown measures
were stricter show stronger reductions, and, conversely, loca-
tions where softer measures were implemented show milder
reductions in NO2 pollution levels. Average reduction esti-
mates based on either satellite observations (−23 %), surface
stations (−43 %), or models (−32 %) are presented, show-
ing the importance of vertical sampling but also the horizon-
tal representativeness. Surface station estimates are signifi-
cantly changed when sampled to the TROPOMI overpasses
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(−37 %), pointing out the importance of the variability in
time of such estimates. Observation-based machine learning
estimates show a stronger temporal variability than model-
based estimates.

1 Introduction

Nitrogen dioxide (NO2; together with NO, a constituent of
NOx =NO+NO2) is a very well-established cause of poor
air quality in the most urbanized and industrialized areas of
the world. NO2 is harmful for living organisms by long-term
atmospheric concentration exposure. It also plays a major
role in urban ozone formation and secondary aerosols, which
are also harmful for living organisms at high levels in the
lower atmosphere (Lelieveld et al., 2015; IPCC, 2014). Ac-
cording to the European Environment Agency (EEA, 2020a)
the main European anthropogenic NOx sources are road
transport (39 %), energy production and distribution (16 %);
commercial, residential and households (14 %); energy use in
industry (12 %); agriculture (8 %); non-road transport (8 %);
and industrial processes and product use (3 %). With an at-
mospheric lifetime typically below 1 d, NOx is relatively
short-lived and is mainly controlled by photochemical re-
actions. The majority of NOx therefore does not get trans-
ported far downwind from its sources (Seinfeld and Pandis,
2006). Thus, near-surface NOx concentrations are high over
cities and densely populated areas and low otherwise. Be-
sides emissions, the variability in NOx is strongly driven
by meteorological conditions, especially atmospheric trans-
port, vertical mixing, and solar radiation, affecting the level
of accumulation close to the emission sources (Arya, 1999).
For example, increased wind speed and a higher planetary
boundary layer height will increase the dispersion of NOx

from the emission sources. It is this short lifetime, which is
partly modulated by atmospheric conditions such as tempera-
ture and radiation combined with localized emission sources,
that makes NO2 an excellent proxy for detecting emission re-
ductions, from both surface and satellite measurements.

The worldwide outbreak of the coronavirus disease
(COVID-19), which arose in late 2019 in China and spread
around the world in early 2020, led many countries to take
action to slow down the infection growth rate of the virus.
The so-called lockdowns severely restricted or banned move-
ments of people, closed most public places. and limited jour-
neys to essential work commutes. Some measures started in
China in late 2019, with stricter lockdowns in January 2020.
In Europe, lockdown measures were implemented on var-
ious dates during February and March 2020. These lock-
downs drastically reduced traffic and also activity levels in
most industries (Guevara et al., 2021; Le Quéré et al., 2020).
These sectors represent a large share of NOx emissions
(51 % according to EEA, 2020a). Studying NO2 concentra-
tion changes during the lockdown is therefore very impor-

tant to assess the impact of such activity-level reductions on
a population’s exposure to pollution. The COVID-19 lock-
down is a unique opportunity to assess the impact of fu-
ture pollution reduction measures, in particular, the impact
of drastic reductions on the road transport sector using com-
bustion energy.

The lockdowns were expected to have large effects on ur-
ban NO2 air pollution levels in conjunction with other mod-
ulating factors (i.e. weather conditions). The first quarter of
2020 had specific and highly variable meteorological condi-
tions. Storm Ciara crossed over Europe in the second week
of February, followed by Storm Dennis, which crossed Eu-
rope a week later. Both extratropical storms generated strong
winds over the northern half of Europe (above 45◦ N) from
9 until 18 February 2020. Strong winds, yet milder than dur-
ing storms Ciara and Dennis, were also generated by storms
Karine and Myriam over the Iberian Peninsula, the south-
ern part of France, and the northern part of Italy in the
first week of March. Moreover, February and March 2020
displayed stronger positive temperature anomalies over Eu-
rope in comparison with February and March 2019 (https://
surfobs.climate.copernicus.eu/stateoftheclimate, last access:
January 2021). Such weather anomalies, however, did not
persist during the second quarter of 2020. Accounting for
the effect of such meteorological variations is very important
to assess accurately the effect of COVID-19-related mobil-
ity restrictions on air pollution. Different approaches can be
used to assess the pollution changes based on different types
of data, such as satellite observations, surface site observa-
tions, and air quality models.

Several studies used the recently launched (October 2017)
Tropospheric Monitoring Instrument (TROPOMI; Veefkind
et al., 2012) onboard the Copernicus Sentinel-5 Precursor
(S5P) satellite to highlight the NO2 reductions caused by the
COVID-19 lockdowns. The substantial interannual variabil-
ity in meteorological conditions together with the young age
of the instrument prevented the estimation of a representa-
tive climatological baseline to which NO2 levels observed
during the lockdown period could be compared. As a result,
satellite-based studies using TROPOMI comparing before-
and after-lockdown periods (e.g. Wang et al., 2020) or com-
paring the lockdown period with its 2019 equivalent (e.g.
Bauwens et al., 2020; Nakada and Urban, 2020; Zambrano-
Monserrate et al., 2020) have given little to no weight to the
synoptic meteorological conditions and how they could po-
tentially flaw the emission change estimates.

In contrast, Schiermeier (2020) mentioned the “weather
factor” early on in the COVID-19 crisis, which can strongly
affect the pollution levels. And studies such as Le et
al. (2020) showed 2019 and 2020 TROPOMI NO2 compar-
isons but acknowledged the impact of weather anomalies
on pollution levels. It is only very recently that a weather-
normalization technique has been applied to estimate NO2
changes due to the COVID-19 restrictions across cities in
the US based on TROPOMI (Goldberg et al., 2020). Yet,
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such analyses place insufficient importance and provide
insufficient clarity about the fact that satellite data used in
such analyses are conditioned by the cloud coverage, revisit
frequency, and quality flag of the satellite observations.
Ignoring or not acknowledging such information can also
lead to flawed satellite-based estimates and provide mislead-
ing information (https://atmosphere.copernicus.eu/flawed-
estimates-effects-lockdown-measures-air-quality-derived-
satellite-observations, last access: January 2021).

Several studies have investigated lockdown impacts us-
ing surface measurement sites. For example, Wang and
Su (2020) showed that lower emissions from motor vehi-
cles and secondary industries were most likely responsible
for the observed decreases in NO2 concentrations in China
during January–March 2020. Collivignarelli et al. (2020)
showed using surface station measurements that major NO2
reductions occurred in Milan, a city that showed a rapid
increase in cases early in the European COVID-19 crisis
(February 2020) and was one of the first cities to be put
into lockdown in Europe. Past studies such as Carslaw and
Taylor (2009) showed the usefulness and the importance of
weather-normalization techniques for air pollution applica-
tions based on surface observations, such as the local air
traffic activity impact on NO2 predictions. This was fol-
lowed more recently by Grange et al. (2018) and Grange and
Carslaw (2019), who used machine learning techniques to
perform weather normalization for analysing trends and de-
tecting the impact of policy measures on air quality. Built
on this previous work, several studies made use of machine
learning to estimate the impact of the COVID-19-related mo-
bility restrictions on air pollution levels, taking into account
the confounding effect of the meteorological variability. Us-
ing machine learning (ML) models fed with ERA5 reanal-
ysis meteorological data, Petetin et al. (2020) highlighted a
strong reduction in surface NO2 concentrations across most
Spanish urban areas during the first weeks of lockdown. Sim-
ilarly, Keller et al. (2021) assessed the NO2 pollution changes
using worldwide surface measurements showing country-
dependent variations in reductions.

Finally, air quality modelling systems offer a valuable tool
for representing the evolution of pollutants in the atmosphere
according to changes in emissions, physical processes, and
weather variability. The Copernicus Atmosphere Monitoring
Service (CAMS) produces daily European air quality fore-
casts and analyses using an ensemble of 11 models, ensuring
unique reliability and quality (Marécal et al., 2015). Using
emission scaling factors to account for lockdown measures,
such an ensemble of models can be used to estimate lock-
down reductions in NO2 pollution (amongst other pollutants)
and account for the weather variability at the same time (Co-
lette et al., 2020; Guevara et al., 2021).

This paper aims to provide a comprehensive and compar-
ative assessment of the impact of the first European COVID-
19 lockdown on NO2 pollution levels over major European
urban areas using satellite observations, surface in situ ob-

servations, and air quality models. We firstly illustrate how
misleading it can be to ignore the influence of the weather
variability when assessing the lockdown-induced changes
in NO2 with TROPOMI. Then, in order to quantify these
changes, we use ML-based weather-normalization methods
for estimating the “business-as-usual” (BAU) NO2 pollu-
tion levels that would have been observed without any lock-
down measures, based on both TROPOMI NO2 tropospheric
columns (Sect. 2) and surface in situ observations (Sect. 3).
NO2 changes are then investigated with the CAMS regional
ensemble (Sect. 4). We compare and discuss the three differ-
ent approaches in Sect. 5 followed by conclusions in Sect. 6.

2 TROPOMI NO2 column estimates

2.1 Dataset and analysis periods

We use the operational Copernicus S5P TROPOMI NO2
level 2 product, for which data have been available since
28 June 2018. These observations are tropospheric columns
(from the surface to the top of the troposphere) with a pixel
resolution of 5.5 km by 3.5 km since 6 August 2019 and 7 km
by 3.5 km before. The instrument can have an up-to-daily re-
visit at 13:30 mean local solar time (LST) assuming clear-
sky conditions. The quality flag (qa) provided with the re-
trieval is used to select only good-quality data (qa > 0.75),
which removes cloud-covered scenes, errors, and problem-
atic retrievals (Eskes and Eichmann, 2019). The TROPOMI
data are then binned on a regular 0.1◦× 0.1◦ grid to per-
form statistical analyses and to facilitate the processing of
time series for the locations of interest, i.e. large European
cities in this study (see Sect. 2.2), as well as the compari-
son with other datasets such as the 0.1◦× 0.1◦ CAMS re-
gional air quality models (Marécal et al., 2015) and the 9 km
resolution weather forecasts from the European Centre for
Medium-Range Weather Forecasts (ECMWF).

In this study we consider February, March, and April 2020
and 2019 to assess the changes in NO2 columns due to
COVID-19 restrictions over Europe. Although the lockdown
conditions and dates vary between countries, we consider the
15 March 2020 to be a representative starting date for the
European-wide lockdown given that most European coun-
tries implemented their nation-wide social distancing mea-
sures along the 2-week period from 9 March 2020 (Italy) to
23 March 2020 (United Kingdom, UK). Two periods of the
year are considered in this study: the pre-lockdown period
from 1 February to 15 March and the lockdown period from
16 March to 31 April. This study thus focuses on the most
stringent period of the first European lockdown (since many
countries then started to ease up their lockdown restrictions
from the beginning of May onwards).

In Fig. 1, mean TROPOMI NO2 tropospheric columns
are displayed for the pre-lockdown and lockdown periods
in 2020 and their equivalents in 2019. The comparison of
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Figure 1. Average maps of the TROPOMI NO2 tropospheric columns (mol m−2) for European pre-lockdown and lockdown periods in
2020 (a, b) and corresponding periods in 2019 (c, d). Grey areas indicate where the number of revisits is strictly below five.

pre-lockdown and lockdown averages for 2020 only shows
a decrease in southern Europe but no clear reduction at
more northern latitudes (i.e. the UK, the Netherlands, and
Germany). In the corresponding 2019 pre-lockdown period
much larger NO2 columns are seen than in 2020. During
this period of the year, the meteorological conditions over
northern Europe were significantly different between 2019
and 2020. A number of named extratropical cyclones (storms
Ciara, Denis, Karine, and Myriam), combined with a strong
positive anomaly in surface temperature, occurred over Eu-
rope during February and early March 2020, especially in
western and northern Europe. Such anomalies in wind and
temperature were not observed in 2019. Figure 2 shows the
distribution of 10 m wind speed, planetary boundary layer
(PBL) height, and 2 m temperature from the 9 km operational
forecasts from the ECMWF Integrated Forecasting System
(IFS) in both 2019 and 2020 for the pre-lockdown and lock-
down periods at the S5P overpass times. Details on how
the PBL height is calculated can be found in the IFS doc-
umentation (part IV, chap. 3 in https://www.ecmwf.int/en/
elibrary/19748-part-iv-physical-processes, last access: Jan-
uary 2021). Before 15 March, these parameters show very
different distributions with much lower values in 2019 than
in 2020, i.e. less circulation and less vertical diffusion un-

der colder conditions. These differences in meteorological
conditions explain the increase in NO2 tropospheric columns
in 2019 compared to 2020. Conversely, during the post-
15 March period, the meteorological distributions are more
similar, showing much smaller differences. This illustrates
the need for accounting for the meteorological effect when
assessing the changes in NO2 tropospheric columns associ-
ated with the lockdown.

2.2 Non-weather-normalized changes in TROPOMI
NO2 tropospheric columns

Changes in NO2 tropospheric columns associated with the
lockdown measures can be estimated by comparing NO2 lev-
els observed during the lockdown period in 2020 with a given
baseline. In this section, we compare the results obtained
with two different baselines: (1) the NO2 levels observed dur-
ing the pre-lockdown period in 2020 (hereafter referred to as
the “before–during” approach), (2) the NO2 levels observed
during the same period of the year in 2019 (hereafter referred
to as the “year-to-year” approach). We focus our study on
the largest European urban areas for which the city popula-
tion exceeds 0.5 million inhabitants (according to the pop-
ulation database provided by https://simplemaps.com/data/
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Figure 2. Probability density functions of 10 m wind speed (m s−1; a, b), planetary boundary layer (PBL) height (m; c, d), and 2 m temper-
ature (K; e, f) from the ECMWF operational forecasts for European periods before (a, c, e) and after 15 March (b, d, f), comparing 2020 to
2019. Distribution is computed for urban areas above 0.5 million inhabitants between 45–60◦ N, 10◦W–20◦ E, at the S5P overpass times. N

is the sample size for each distribution that can be multiplied by the relative frequency (in %) to obtain the absolute frequency.

world-cities, last access: January 2021), resulting in a total
of 100 locations. Assessing the changes in NO2 tropospheric
columns from satellite observations is more challenging over
rural areas as the NO2 levels are much lower than over urban
areas. Because of the much lower NO2 tropospheric-column
values over rural areas, the relative estimates of pollution
reduction are very sensitive to small changes in the tropo-
spheric columns and therefore also to instrument noise. We
choose the observations with footprints closest to the Euro-
pean city centres and with more than five data points per

pre-lockdown and lockdown period. If this condition is not
met, the location is discarded from the analysis. The before–
during estimate corresponds to the difference between the
pre-lockdown and the lockdown period median estimates.
Figure 3 shows changes calculated for 2020 (Fig. 3b) and the
equivalent for 2019 (Fig. 3a) for comparison. This method
shows drastic NO2 reductions by more than 75 % in 2020
for most of the large southern European urban areas. Reduc-
tions are, however, not obvious over northern European ur-
ban areas and show strong variations from one location to
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another. For example, over the UK and Belgium, some ur-
ban areas show increases well above 30 %, while other urban
areas show reductions even though the same lockdown mea-
sures were applied nationwide. Applying the same method
over 2019, a similarly strong decrease in NO2 levels over
many major European urban areas is visible. Such reductions
in 2019 are not expected in relation to COVID-19 lockdown
measures. Therefore, such a before–during type of satellite-
based estimates does not provide a robust methodology for
assessing the effects of the COVID-19 lockdown on Euro-
pean NO2 pollution levels.

The year-to-year approach has been more widely used in
scientific publications and web news articles and consists
of comparing observations from 2020 to observations from
2019 over the period of interest. Figure 4 shows such year-to-
year estimates, comparing the median values between 2020
and 2019, for the pre-lockdown (Fig. 4a) and lockdown
(Fig. 4b) periods. During the lockdown, an overall reduc-
tion is seen all over Europe, with more moderate reductions
over southern Europe compared to the before–during esti-
mates (see Fig. 3b). Changes over northern Europe do not
show strong variations between the various urban areas, as
was visible in the before–during method. An overall decrease
is seen over most European locations, with the strongest re-
ductions in European countries (e.g. France, Spain, or Italy),
where lockdown measures were more stringent (according to
the Oxford Coronavirus Government Response Tracker strin-
gency index; Hale et al., 2021). However, looking at the pre-
lockdown estimates, northern Europe also shows drastic neg-
ative changes that are larger than during the lockdown period.
Such changes in pollution levels across Europe should not be
expected if only the impact of emission changes was con-
sidered. The year-to-year method thus appears to be strongly
dependent on the interannual NO2 variability, where meteo-
rology plays a crucial role. Although it respects the seasonal-
ity of NO2, this method could still lead to large errors when
assessing differences in NO2 levels and more generally the
pollution level reductions due to the COVID-19 lockdown.

2.3 Weather-normalized changes in TROPOMI NO2
tropospheric columns

2.3.1 Methods

Weather-normalization methods account for weather vari-
ability to more accurately estimate the net changes in NO2
induced by the lockdown in urban areas. Previous studies
have used meteorological and air pollution predictors to build
simplified models for the simulation of satellite observations
or to generate predictions of atmospheric composition (e.g.
Worden et al., 2013; Barré et al., 2015). In this study, we
use a novel approach for the simulation of TROPOMI satel-
lite observations under BAU conditions, i.e. in the absence
of lockdown restrictions, based on the gradient boosting ma-
chine (GBM; Friedman, 2001) regressor technique. GBM is

a popular decision-tree-based ensemble method belonging to
the boosting family. For the predictors, we use the follow-
ing weather and air quality variables from the ECMWF and
CAMS operational forecasts at 9 km and 0.1◦ resolutions,
respectively: 10 m wind speed and direction, PBL height,
2 m temperature, surface relative humidity, geopotential at
500 hPa, and NO2 surface concentrations from the CAMS
regional ensemble forecasts. The NO2 surface concentrations
used here are obtained from the CAMS operational regional
forecasts, which are based on business-as-usual emission in-
formation and are therefore different from the simulations
presented in Sect. 4. In the CAMS regional forecast product,
there is also no assimilation of observations to constrain the
forecasts. Therefore, the NO2 surface concentrations used to
train and make model predictions do not include lockdown
effects and are independent of the air quality model pollution
change estimates provided in Sect. 4. Additionally, the fol-
lowing time and location variables were also included in the
set of predictors: latitude, longitude, population, Julian date
(number of days since 1 January), and weekday (to reflect
expected weekend and weekday effects). Quite similar ML-
based approaches have already been successfully applied to
in situ surface air quality (AQ) observations (e.g. Grange et
al., 2018; Grange and Carslaw, 2019; Petetin et al., 2020).
We use data from 1 January to 31 May 2019 as a training
set and apply the model to 2020 to generate simulations of
BAU NO2 tropospheric columns. For validation purposes,
we have randomly split the input data in a 90 % and 10 %
share for training and testing, respectively. Hyperparameter
tuning (see Appendix A for details) was performed using a
grid search method with fivefold cross-validation and using
the ranges indicated by Petetin et al. (2020). In contrast to
Petetin et al. (2020), who trained one ML model per surface
air quality monitoring station, only one single ML model is
trained here for all cities. This choice is motivated by the
small size of the available training dataset (about 10 000 data
points; see Table 1). After the hyperparameter tuning and
evaluation of the model, the BAU observation simulations
have been generated using 100 % of the January–May 2019
dataset to use the maximum number of data points possible.

2.3.2 Results

Detailed scores of the performance of the gradient boosting
regressor with respect to TROPOMI observations, such as
mean bias (MB), normalized mean bias (nMB), root mean
square error (RMSE), normalized root mean square error
(nRMSE), and the Pearson correlation coefficient (PCC), can
be found in Table 1. In order to check for obvious cases
of overfitting (i.e. when the GBM model is fitting the data
used for training too closely and is thus lacking generaliza-
tion skills regarding new data), results are shown for both
training and testing datasets. The statistics for the training
set and the testing set show similar results, such as low bias,
good correlation, and significant RMSE values. The statisti-
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Figure 3. Before–during estimates of TROPOMI tropospheric NO2 column change (%) for urban areas above 0.5 million inhabitants in
2019 (a) and 2020 (b). The diameter of the circles is proportional to the population count in each urban area.

Figure 4. Year-to-year estimates of TROPOMI tropospheric NO2 column change (%) for urban areas above 0.5 million inhabitants in
2019 (a) and 2020 (b). The diameter of the circles is proportional to the population count in each urban area.

cal performance obtained for the training set indicates that
there is no clear sign of overfitting in the predictions. Since
TROPOMI data are only available from mid-2018 onwards,
the training set is relatively small. For this reason, the predic-
tions are featuring significant RMSE values and will have a
large random error. The RMSE values stay, however, within
a similar range as for the surface site air quality ML pre-
dictions, as shown in Sect. 3 and Table 2. The low mean
bias and high correlation values indicate that the main BAU
NO2 tropospheric-column variability is represented without
large systematic errors. Subtracting the simulated BAU NO2
columns from the actual observed NO2 columns during the
lockdown period (from 16 March to 30 April 2020) gives us
an estimate of the reductions in the NO2 background levels
over the urban areas considered in this study. Figure 5 pro-
vides an example of a time series over Madrid that shows the
behaviour of the GBM against the real observations for 2019
(the training period) and 2020 (the actual simulation period).
In 2019, the GBM predictions follow the variations seen in
the observations but do, however, also show differences, be-
ing either above or below the observations. In 2020, simi-
lar behaviour is observed until the lockdown date, when the
GBM predictions show consistently higher values than the
observations but still follow the same variations as the obser-

vations. This shows that the GBM predictions based on BAU
predictors perform realistically and account for the variabil-
ity in the BAU scenario. This therefore provides a method
to assess the pollution changes due to lockdown restrictions
using satellite data more robustly than the before–during or
year-to-year methods.

Figure 6 shows the equivalent estimates as in Figs. 3 and
4 for the pre-lockdown and lockdown periods using the ML-
based BAU estimates as the baseline. The estimates of the
NO2 changes are based on the median value of the real obser-
vation minus the simulated BAU observation distributions.
As shown in Table 1, the GBM performance shows large
RMSE values, which can sometimes result in significant out-
liers due to the small training set used. We choose to dis-
play the median to avoid the influence of potential outliers
in the estimates as much as possible. The pre-lockdown ML-
based estimates do not show as strong of an overall reduc-
tion as in the year-to-year (Fig. 4) or before–during (Fig. 3)
estimates. A summary of the average and the standard de-
viation of the set of median estimates across all the consid-
ered European urban areas is provided in Table 2 for each
of the satellite methods. While both year-to-year and before–
during methods showed substantial changes (24 % and 30 %,
respectively) in NO2 during the periods outside lockdown
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Table 1. Performance of the machine learning simulations of NO2 tropospheric columns over all European urban areas included in the
dataset. The training set and testing set cover January–May 2019 and are randomly sampled (90 % and 10 %, respectively) over that period.
Shown are the mean bias (MB), normalized mean bias (nMB), root mean square error (RMSE), normalized root mean square error (nRMSE),
Pearson correlation coefficient (PCC), and the number of data points (N ).

MB nMB RMSE nRMSE PCC N

(10−6mol m−2) (%) (10−6mol m−2) (%)

S5P training set 0.00 +0.02 1.4 45.68 0.87 9634
S5P test set −0.04 −1.30 1.68 56.38 0.79 1071

Figure 5. Example of a time series over Madrid illustrating the performance of the machine learning NO2 column predictions for February–
March–April 2019 (a) and the same period in 2020 (b).
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Figure 6. TROPOMI-based estimation of tropospheric NO2 column change (%; relative to the BAU predictions) for urban areas with at least
0.5 million inhabitants, computed using the ML-based weather-normalization method for the pre-lockdown and lockdown periods (a and b,
respectively). The diameter of the circles is proportional to the population count in each urban area.

Table 2. Scores over all European urban areas included in the
dataset for the different TROPOMI NO2 tropospheric-column-
change estimates. Mean and standard deviation are calculated for
the median estimates of all urban areas considered in the study; i.e.
the standard deviation is a metric of the inter-urban-area spread.
Dates are in dd/mm.

Mean Standard
(%) Deviation

(%)

Before–during (2019) −40 47
Before–during (2020) −25 62
Year-to-year (01/02 to 15/03) −26 31
Year-to-year (16/03 to 30/04) −18 16
Machine learning (01/02 to 15/03) −8 16
Machine learning (16/03 to 30/04) −23 16

(i.e. in 2019 or before the lockdown in 2020) when low to
no reduction should be expected, the ML-based weather-
normalization method provides changes closer to 0 %, which
are considered to be more realistic.

The weather-normalization method is not devoid of uncer-
tainties and can, in particular, be affected by trends in NO2
levels. With a known trend seen in European NOx emissions
of around 2 % yr−1 to 4 % yr−1 (EEA, 2020a) and only 1
year to train the data, the ML method potentially provides a
stronger-than-expected overall reduction of around 8 %. The
before–during and the year-to-year approaches also show
stronger reduction estimates on average during 2019 and the
pre-lockdown period, respectively. The latter two methods
also display a stronger standard deviation across cities than
the weather-normalization method, which suggests substan-
tial local biases due to the omission of the meteorological
variability.

When we consider the lockdown period, the weather pa-
rameter distributions are much more similar between 2019
and 2020 (Fig. 2) than is the case for the pre-lockdown pe-

riod, and on average, across Europe, the year-to-year and
weather-normalized estimates show results within the same
range in terms of mean (around −20 %) and variability
amongst the median estimates obtained for all urban areas
(around 16 %). This is, however, not the case for the before–
during estimates, which show much stronger variability be-
tween European urban areas (62 %). The before–during esti-
mates are therefore not reliable, and the year-to-year method
is very dependent on the differences in the meteorological
situations between 2019 and 2020. For this reason, the ML
estimates are the most reliable and will be used solely for
the rest of this study. Details of the ML estimates during the
lockdown provided in Fig. 6 are reported in the Table B1
in Appendix B. The NO2 tropospheric-column-change es-
timates (median values per urban area) show on average a
reduction of 23 %, but urban areas that are known to have
the most stringent measures (Hale et al., 2021) show much
stronger reductions, e.g. Madrid (60 %), Barcelona (59 %),
Turin (54 %), and Milan (49 %). Lighter reductions can be
observed in urban areas where less stringent measures were
taken, e.g. Stockholm (17 %). To check the robustness of
these results, equivalent estimates are provided using surface
stations and air quality models in Sects. 3 and 4 and will be
compared in Sect. 5.

3 Surface station estimates

3.1 Methods

We have estimated the impact of the COVID-19 lock-
down on surface NO2 pollution in European areas using the
methodology introduced by Petetin et al. (2020), applied to
up-to-date (i.e. partly non-validated real-time) hourly NO2
data from the EEA AQ e-reporting (https://www.eea.europa.
eu/data-and-maps/data/aqereporting-8, last access: January
2021). We first selected the urban and suburban background
stations located within 0.1◦ from the city centres and ap-
plied the quality assurance and data availability screening
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described in Petetin et al. (2020), using the GHOST (Glob-
ally Harmonised Observational Surface Treatment) metadata
(Bowdalo et al., 2021). A total of 164 stations in 77 urban
areas was selected. At each station (independently), we es-
timated the BAU NO2 mixing ratios that would have been
observed during the lockdown period under an unchanged
emission forcing. This was done using GBM models fed with
meteorological inputs (2 m temperature, minimum and maxi-
mum 2 m temperature, surface wind speed, normalized 10 m
zonal and meridian wind speed components, surface pres-
sure, total cloud cover, surface net solar radiation, surface
solar radiation downwards, downward UV radiation at the
surface, and PBL height) taken from the 31 km horizontal
resolution ERA5 reanalysis dataset (Hersbach et al., 2020) in
addition to other time features (date index, Julian date, week-
day, hour of the day). The ERA5 reanalysis dataset is a con-
sistent model version over time but at coarser resolution in
comparison to the ECMWF high-resolution operational fore-
casts used in the TROPOMI estimates (31 km versus 9 km).

All GBM models were trained and tuned with data for the
past 3 years (2017–2019) and tested with data from 2020 be-
fore the lockdown. Petetin et al. (2020) showed that such du-
ration for training the GBM models is generally sufficient for
capturing the influence of the weather variability on surface
NO2 mixing ratios. As discussed in more detail in Petetin et
al. (2020), the date index feature here allows the limitation
of the potential issues related to the presence of trends in the
NO2 time series (between a 2 % and 4 % decrease per year;
EEA 2020a). If a substantial trend exists, the GBM models
will put more importance on this feature, which in practice
will force the model to make NO2 mixing ratio predictions
(in 2020) in the range of the values observed during the last
part of the training dataset, ignoring the oldest training data.
Thus, given the long-term reduction in NO2 resulting from
policy measures across Europe, considering longer training
periods is not expected to improve the performance of the
GBM models. In contrast to Petetin et al. (2020), who pre-
dicted BAU NO2 at a daily scale, the ML models developed
here are predicting NO2 at an hourly scale (in order to get
results collocated in time with TROPOMI overpasses; see
also below). We then deduced the weather-normalized NO2
changes due to the lockdown by comparing observed and
ML-based BAU NO2 mixing ratios.

3.2 Results

Table 3 shows the overall performance of the GBM models
in the training and test data sets. Statistical results are similar
to the TROPOMI NO2 GBM model. Biases are low, correla-
tion is high, and there is a significant RMSE. As explained in
Sect. 2.3.2, statistical scores in the training set and the test
set suggest that there is no apparent sign of overfitting in
the predictions showing reasonable performance. Note that
the RMSE and PCC are deteriorated compared to the statis-
tics obtained over Spain in Petetin et al. (2020), mainly due

to the fact that we are working with hourly estimates here.
This is demonstrated by similar results as those of Petetin et
al. (2020) that are obtained over this set of European cities
when predicting NO2 at the daily scale (for the test dataset:
nRMSE= 28 %, PCC= 0.88, N = 11 082).

For a stricter comparison with the results discussed in
Sect. 2, we provide two different estimates to assess the satel-
lite sampling effect: (i) using all hourly values or (ii) filtered
according to the S5P satellite overpass time (13:30 LST) and
“qa” filtering (clear sky only). Figure 7 displays relative
change estimates, showing the median of the distributions for
each European city above 0.5 million inhabitants. Overall,
the estimates for both sampling strategies are broadly con-
sistent, with NO2 reductions of around 37 % and 43 % on
average for the hourly sampling and the S5P overpass sam-
pling, respectively (Table 3). The surface station estimates
also show geographical variations similar to the satellite esti-
mates, with larger reductions corresponding to locations with
more stringent lockdowns (i.e. Spain, Italy, and France) and
less stringent lockdowns (i.e. Sweden, Germany). For exam-
ple, Madrid shows reductions of 61 % and 60 % using the
hourly surface stations and the satellite overpass time sam-
pled surface stations, which are very similar to the satellite
estimates. In contrast, Stockholm shows very small reduc-
tions of 8 % and 3 %, respectively. These latter values are dif-
ferent from the satellite-based estimates (reduction of 17 %)
and point out some uncertainty regarding the estimates in this
area.

Northern Europe (particularly Germany, Poland, and the
UK) displays larger NO2 reductions with the estimates at
satellite overpass time. This points out a possible dependence
on the time of the day in the emission and pollution reduc-
tions. In general, those relative NO2 changes based on the
surface in situ observations are larger than the ones based
on satellite NO2 tropospheric columns. These two points are
further discussed in Sect. 5.

4 CAMS regional ensemble model estimates

4.1 Methods

Model estimates have been calculated using the CAMS Eu-
ropean regional air quality forecasting framework, which is
an ensemble of 11 models (Marécal et al., 2015). These
models are used to calculate multi-model median values,
which are the best-performing quantity on average com-
pared to individual models. Using such a multi-model ap-
proach is useful to minimize the imperfections in each
model formulation. Operational evaluation and validation
of the CAMS European ensemble against independent ob-
servations are performed and delivered routinely and can
be accessed at https://atmosphere.copernicus.eu/index.php/
regional-services (last access: January 2021).
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Figure 7. Weather-normalized estimation of NO2 changes (%; relative to the BAU predictions) using surface observations during the lock-
down period using business-as-usual (BAU) simulated observations as the baseline for urban areas with at least 0.5 million inhabitants.
Panel (a) shows the estimates using full hourly datasets, and panel (b) shows the estimates using the S5P-sampled overpass time dataset. The
diameter of the circles is proportional to the population in each urban area.

Table 3. Performance of the ML predictions of hourly NO2 surface mixing ratios over all European urban areas included in the dataset.

MB nMB RMSE nRMSE PCC N

(ppbv) (%) (ppbv) (%)

Surface station training set (2017–2019) 0.0 0.0 5.53 40.88 0.84 4 048 696
Surface station test set (1 Jan–15 Mar 2020) +0.95 +7.02 6.24 45.87 0.80 268 960

Two sets of model hindcasts have been conducted using
two different emission scenarios: BAU emissions and re-
duced COVID-19 lockdown emissions. The emission inven-
tory used for the BAU reference simulation is the same that is
used in the daily regional air quality forecasts of CAMS for
Europe, i.e. the CAMS-REG-AP dataset (v3.1 for the refer-
ence year 2016; Granier et al., 2019). It is compiled by TNO
(Netherlands Organisation for Applied Scientific Research)
under the CAMS emission service, based on official emis-
sions reported by the countries to the EU (National Emis-
sions reduction Commitments (NEC) Directive) and United
Nations Economic Commission for Europe (UNECE; Long-
range Transboundary Air Pollution (LRTAP) Convention–
European Monitoring and Evaluation Programme (EMEP);
Kuenen et al., 2014). The spatial resolution of the emissions
is 0.1◦× 0.05◦ but re-gridded to 0.1◦× 0.1◦ to match the
models’ grid. The alternative emission scenario, correspond-
ing to the lockdown period, was derived by combining the
original CAMS-REG-AP inventory with a set of country- and
sector-resolved reduction factors (Guevara et al., 2021). For
the present work, time-invariant emission reduction factors
were used by country and for three activity sectors: manu-
facturing industry, road transport, and aviation (landing and
take-off cycles), which are reduced on average by 15.5 %,
54 %, and 94 %, respectively. These sectors were considered
to be the most affected by changes in activity during lock-
down (Le Quéré et al., 2020).

The reduction factors were computed from collections of
near-real-time activity data, such as Google Community Mo-

bility Reports (https://www.google.com/covid19/mobility/,
last access: January 2021) for road transport, airport statis-
tics from Flightradar24 (https://www.flightradar24.com/data/
airports, last access: January 2021) for aviation, and electric-
ity load information from the European Network of Trans-
mission System Operators for Electricity (ENTSO-E; https:
//transparency.entsoe.eu/, last access: January 2021) for the
industry sector. Results from Guevara et al. (2021) showed
that during the most severe lockdown period (23 March to
26 April), estimated surface emission reductions at the Eu-
ropean level were most important for NOx (33 %), with road
transport being the main contributor to total reductions in all
cases (85 % or more). Italy, France, and Spain were the coun-
tries that experienced major NOx emission reductions (down
to 50 %), a result that is in line with the strong lockdown re-
strictions implemented by their respective governments. In
contrast, Sweden, for example, showed reductions of only
15 % (on NOx) due to the implementation of national rec-
ommendations instead of a state-enforced lockdown. More
details about the emission scaling procedure using the data
and methodology from Guevara et al. (2021) can be found
in Colette et al. (2020), where the resulting country and ac-
tivity sector-dependent reduction factors are provided for the
EU28 countries plus Norway and Switzerland. Values of the
emission reduction factors per country within the European
regional modelling domain and per activity sector are pro-
vided in Appendix C. For the main contributing sector, road
transport, the largest reductions in emissions are observed in
countries where lockdown restrictions were more stringent
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(according to the Oxford Coronavirus Government Response
Tracker stringency index; Hale et al., 2021), such as Italy
(75 %), Spain (80 %), and France (76 %).

All the models operated with the same set-up as the CAMS
regional operational production. The modelling domain cov-
ers Europe at 0.1◦× 0.1◦ resolution. The meteorological and
chemical boundary conditions are obtained from the Inte-
grated Forecasting System (IFS) of the ECMWF, which is
the same system that provides part of the dataset for the
ML-based estimations (see Sects. 2 and 3). The baseline
simulation was using the BAU anthropogenic emissions as
described above, and the lockdown scenario was using the
lockdown-adjusted inventory, modulated by country and ac-
tivity sectors. From the two sets of 11 model simulations,
the median at each grid point is calculated from an ensemble
simulation (as is routinely done for the operational CAMS
predictions; Marécal et al., 2015). Differences between the
BAU ensemble and the lockdown scenario ensemble are then
used to calculate NO2 reduction estimates.

4.2 Results

Figure 8 displays the relative change estimates for each Eu-
ropean urban area defined in Sect. 2.2. The estimates are
calculated using the median of the full hourly distribution
(Fig. 8a) and of the distribution at qa-filtered S5P overpass
times and dates only (Fig. 8b) for each urban area. As ex-
pected, urban areas in more stringent lockdown countries (i.e.
Spain, Italy, France) show the largest reductions (e.g. down
to 60 % in Madrid; see Fig. 9), whereas urban areas with less
stringent lockdown measures (i.e. Germany, Poland, Swe-
den) show smaller reductions (e.g. around 16 % in Stock-
holm; see Fig. 8). The time sampling difference (hourly ver-
sus S5P overpass) does not affect the model estimates much;
only differences of a few per cent are seen for most of the
European urban areas. On average, over the set of median
estimates for each urban area, the difference is small, with
30 % for hourly estimates and 32 % for S5P-sampled esti-
mates. This is expected as the emission reduction estimates
used to generate the lockdown scenario ensemble are set con-
stant over time (daily and hourly). This point is further ex-
panded in the next section, where model estimate results are
compared to the other types of estimates.

5 Comparison of the three different types of estimates

In Table 4 and Fig. 9 we summarize the results of this study.
Table 4 shows the average reduction in all the median esti-
mates together with the inter-urban-area variability over Eu-
rope. Figure 9 shows the distribution of the NO2 changes
estimated for the lockdown period per urban area. This fig-
ure provides estimates equivalent to box plots where the me-
dian and the interquartile range are displayed. For clarity, we
chose to display only urban areas that have more than 1 mil-

Table 4. Scores over all European urban areas included in the study
for the different NO2 change estimates: based on surface obser-
vations, model estimates, and TROPOMI observations. Mean and
standard deviation are calculated for all resulting urban-area esti-
mates; i.e. the standard deviation is a metric of the inter-urban-area
spread.

Mean Standard
(%) deviation

(%)

Surface stations (hourly) −37 15
Surface stations (S5P sampling) −43 19
CAMS model ensemble (hourly) −30 11
CAMS model ensemble (S5P sampling) −32 12
TROPOMI −23 16

lion inhabitants. The values of each estimate for all urban
areas considered in this study are given in Table B1 in Ap-
pendix B.

The three types of weather-normalized estimates agree
on identifying stronger reductions where more severe lock-
down measures were implemented. As shown in Sect. 2,
satellite-based estimates show a relationship between NO2
tropospheric-column reductions and the extent and gener-
alization of restrictive measures in each country. A simi-
lar relationship is observed for surface sites and model es-
timates (Sects. 3 and 4). The largest NO2 reduction estimates
of around 50 % to 60 % for both surface and tropospheric
columns are found in Spanish, Italian, and French urban
areas. In countries that implemented softer lockdown mea-
sures, urban areas show smaller reductions, e.g. Germany,
Netherlands, Poland, and Sweden. Although significant dis-
crepancies exist between the satellite-, surface-, and model-
based estimates in urban areas such as Naples (Italy), Sofia
(Bulgaria), and Katowice (Poland), the three methods pro-
vide an overall consistent picture. It is remarkable to note
that this result contributes to establishing the usefulness of
satellite-based estimates for urban air quality and not only
for atmospheric pollution in general. Having a range of three
different types of estimates helps to provide estimates of pol-
lution changes across Europe with a certain level of certainty.
When all the estimates agree, it is more likely that the values
of reduction due to the lockdown implementations are reli-
able. Conversely, if the different types of estimates show dis-
crepancies, less confidence should be given to the reduction
estimates. In Fig. 8, Madrid, Turin, and Milan, to mention
a few urban areas, show consistency between the different
types of estimates, expressing more certainty in the results.
In other locations such as Sofia, Athens, and Budapest, strong
discrepancies indicate that the estimates could be uncertain.
Average scores in Table 4 show that surface station observa-
tions provide stronger reduction estimates and that satellite-
based estimates provide weaker reduction estimates. Model
estimates are mostly in between and show much less spread
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Figure 8. Air quality modelling estimates of surface NO2 changes (%; relative to the BAU predictions) during the lockdown period in urban
areas with at least 0.5 million inhabitants. Panel (a) shows the estimates using full hourly datasets, and panel (b) shows the estimates using
the S5P-sampled overpass time dataset. The diameter of the circles is proportional to the population in each urban area.

within a given urban area (bars in Fig. 9) and less variation
between urban areas (standard deviation in Table 4). The ori-
gin of such differences can vary and is detailed below.

Machine learning estimates that are observation-based
(satellite and surface stations) show more spread compared
to the model estimates. In Fig. 9 the interquartile ranges for
the observation-based ML estimates are much larger than for
the model estimates. Such large ranges show that there is
a strong spread in the ML-based estimates that is not seen
in the model-based estimates. Model estimates are based
on country-dependent emission reduction or scaling factors
that are constant over time. The variability is induced by the
changes in atmospheric conditions but not by changes in the
emissions. The estimates from the ML approach can repre-
sent the transition into the lockdown where emissions gradu-
ally decreased. This contributes to the increased spread seen
in the ML estimates. Scores from ML estimates (see Tables 1
and 3) also show significant RMSE that can add noise to the
time series and add to the resulting spread of the distribu-
tions. A stronger spread in TROPOMI estimates is likely due
to the small training set used. Disentangling the noise and
the actual variability would need to be done carefully in fu-
ture work.

All the different estimates presented in this study are con-
sistent in their spatial scale, using 0.1◦× 0.1◦ TROPOMI-
averaged pixels that match the CAMS forecasts and surface
stations within a 0.1◦ range from the city centre. Some of
the smaller urban areas considered in this study likely have a
footprint that is smaller than 0.1◦, meaning that high pollu-
tion levels from the urban area are mixed with low pollution
background levels. This could cause the pollution changes
in the gridded estimates to be weaker than expected in cer-
tain urban areas (e.g. Katowice, Budapest, Glasgow, etc.).
Also, even if the urban and suburban background stations
are selected, the in situ surface observations sample the pol-
lution levels within a 0.1◦× 0.1◦ pixel given their location.
This sampling might not be exactly representative of the av-
erage pollution footprint within the same pixel. This aver-

age is the information given by the models or the satellites.
These representativeness issues contribute to creating dis-
crepancies between the type of estimates and hence generate
uncertainty. The differences seen in Fig. 9 between surface
station estimates and gridded estimates (models and satel-
lites) point out such possible representativeness issues. Rep-
resentativeness is a difficult and important topic and deserves
further research as it would require careful examination of
the stations’ locations in specific urban areas and also using
higher-resolution modelling than 10 km.

Satellite overpass times (13:30 LST) and the presence of
clouds in the measurement pixel can potentially influence
the reduction estimates from the TROPOMI data. We con-
sidered 1.5 months to compute the satellite reduction esti-
mates. Overall, the sample size (valid S5P overpasses) in
Fig. 9 ranges between 14 (Sevilla) and 37 (The Hague). Also
in Fig. 9, surface sites and model estimates are displayed for
hourly and S5P-sampled estimates. Smaller or larger samples
cannot really explain discrepancies between all the different
estimates. Results, however, can be affected when the sam-
ple size becomes statistically very small and if shorter time
periods (e.g. 1 or 2 weeks) are considered for satellite reduc-
tion estimates. Very small samples over the 6-week period
were not considered in this study to avoid this effect. The
sampling effect also shows greater changes in the surface
station estimates than in the model estimates. As mentioned
above and seen in Fig. 9, the surface station estimates pro-
vide more variability that accounts for hourly variations. The
model estimates have fixed emission scaling factors for the
entire lockdown period. The surface station estimates show
more sensitivity to the time sampling than the model esti-
mates. On average (see Table 4), the S5P overpass sampling
changes the estimates by around−6 % for surface station es-
timates and only by −1.5 % for model estimates. This sug-
gests that the lockdown-induced reduction estimates depend
upon the time of the day, i.e. those times when the road trans-
port activity peaks.

https://doi.org/10.5194/acp-21-7373-2021 Atmos. Chem. Phys., 21, 7373–7394, 2021



7386 J. Barré et al.: Estimating lockdown-induced European NO2 changes

Figure 9. Comparisons of the lockdown-induced NO2 change estimates (%; relative to the BAU predictions) using different methodologies
for European urban areas above 1 million inhabitants. Horizontal lines represent the interquartile ranges (over the temporal variability), and
the ticks are the median values using the full distribution per urban area. For readability, urban areas are ranked using the average between
all median estimates.

Finally, the reduction estimates for tropospheric NO2
columns displayed in Fig. 9 are generally not as strong as
the NO2 surface estimates (observations and model). Some
exceptions can be seen in certain Spanish (e.g. Barcelona,
Madrid) and Italian (e.g. Milan, Turin) urban areas, where
column estimates are close to the surface estimates, but over-
all column reductions are weaker. With all urban areas con-

sidered, the satellite estimates show around 23 % reduction
on average, which is 10 % to 20 % less than the model and
surface station estimates (see Table 4). This can be expected
as NO2 surface site measurements do not directly translate
to the TROPOMI NO2 tropospheric column, which is the in-
tegrated NO2 content from the surface to about 200 hPa alti-
tude. Due to the short lifetime of NO2 (around 12 h), only

Atmos. Chem. Phys., 21, 7373–7394, 2021 https://doi.org/10.5194/acp-21-7373-2021



J. Barré et al.: Estimating lockdown-induced European NO2 changes 7387

small lockdown-induced changes to the free-tropospheric
NO2 contents are expected. Changes are mainly expected
near the surface and within the PBL. Therefore, the differ-
ent nature of the vertical sampling is likely to contribute to
the differences between the relative reduction estimates from
tropospheric columns versus surface concentrations. Further
work will be needed to quantitatively link the tropospheric-
column and surface-level variations, including sampling the
model estimates using an observation operator commonly
used in data assimilation and inverse-modelling systems.
This important work will be carried out in a further study.

6 Conclusions

In this paper, we first show the importance of accounting
for weather variability in satellite-based estimates of NO2
changes due to the COVID-19 lockdown. While focusing on
Europe and using the TROPOMI instrument, we show that
the satellite estimates based on direct comparisons between
different time periods without accounting for weather vari-
ability can be flawed and should not be used for this kind
of assessment. To account for weather variability in satellite
estimates, we use a recently developed methodology based
on the gradient boosting machine learning technique. This
methodology has proven to be efficient with surface sites to
estimate lockdown-induced changes over Spain (Petetin et
al., 2020). We extended those surface estimates over Europe
to compare with the satellite estimates. Finally, we included
estimates of NO2 changes using the 11-model CAMS re-
gional ensemble, using emission reduction factors represen-
tative of the lockdown period. By providing and comparing
the three different methodologies, we provided a comprehen-
sive and complementary assessment of NO2 pollution level
changes during the COVID-19 European lockdown. These
assessments of pollution changes, when activity levels of key
emitting sectors are significantly reduced (i.e. road transport
and industry) in lockdown conditions, also provide crucial
information to accurately quantify the benefits of the poten-
tial implementation of air quality policies for these emission
sectors.

Main results show a consistent tendency of stronger re-
duction in NO2 where more stringent lockdown measures
were implemented. On average, the three types of estimates
show a reduction of 23 %, 43 %, and 30 % for satellite, sur-
face stations, and model estimates, respectively. Differences
are explained by the different nature of the methods used,
i.e. observation-based versus model-based, horizontal and
vertical sampling, variability representation and time sam-
pling. By providing an array of different methods, we pro-
vide an indication of how reliable the pollution reduction
estimates are for the various urban areas considered in this
study. Accurately quantifying the pollution changes is also
important for the impact of these pollution reductions on
the COVID-19 pandemic itself. Several studies have inves-
tigated the correlation between the high level of COVID-
19 mortality and atmospheric pollution (e.g. Contincini et
al., 2020; Ogen, 2020; Achebak et al., 2020). Feedbacks
are then to be expected between the effects of short-term
air pollution exposure on COVID-19 mortality and lock-
down measures. Beyond the quantification of the impact of
COVID-19-related restrictions on pollutant concentrations,
the observation-based weather-normalization methodology
used in this study is of general interest for assessing the im-
pact of any type of emission changes (e.g. regulation and pol-
icy) on air quality (Grange et al., 2018; Grange and Carslaw,
2019) in the future.
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Appendix A: Gradient boosting regressor tuning

We have used TROPOMI data from 1 January to 31 May
2019 to train our machine learning simulator. We used the
gradient boosting regressor function included in the scikit-
learn Python library. For validation purposes, the dataset
has been split between a training set (90 % of the total
dataset) and a test set (10 % of the total dataset) using the
train_test_split function. The hyperparameter tuning is then
performed using the training set to generate the simulators
and the test set to find the best fit. Similarly to Petetin et
al. (2020), the learning rate is fixed at 0.05, and the num-
ber of features (max_features) is set to “sqrt”. In addition,
the tuning of the gradient boosting regressor was done for
the following hyperparameters using the grid search method:
the subsample (subsample: from 0.3 to 1.0 by 0.1, with the
best value of 0.9), the number of trees (n_estimators: from
50 to 1000 by 50, with the best value of 400), and the min-
imum sample in terminal leaves (min_samples_leaf: from 1
to 30, with the best value of 22). We use the default fivefold
cross-validation. We then test the final results on the test set
in order to ensure there is no overfitting.

Links to the Python libraries and functions:

– Scikit-learn Python

https://scikit-learn.org/stable/index.html
(last access: January 2021)

– Gradient boosting function

https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.GradientBoostingRegressor.html
(last access: January 2021)

– Grid search hyperparameter tuning

https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html
(last access: January 2021)

– Random dataset splitting

https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.train_test_split.html
(last access: January 2021)

Atmos. Chem. Phys., 21, 7373–7394, 2021 https://doi.org/10.5194/acp-21-7373-2021

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


J. Barré et al.: Estimating lockdown-induced European NO2 changes 7389

Appendix B

Table B1. Lockdown-induced NO2 change estimates for each European urban area considered in this study.

Urban area Country TROPOMI N Model Model Surface station Surface station
estimates revisits estimates estimates (S5P- estimates estimates (S5P-

(%) (hourly; %) sampled; %) (hourly; %) sampled; %)

Amsterdam Netherlands −17 32 −18 −22
Antwerp Belgium −23 36 −21 −25 −33 −30
Athens Greece −11 28 −36 −36 −58 −67
Barcelona Spain −59 29 −43 −39 −49 −54
Bari Italy −20 33 −21 −18 −44 −28
Basel Switzerland −33 37 −31 −38 −33 −39
Belgrade Serbia 6 34 −20 −18
Berlin Germany −38 30 −22 −20 −31 −40
Bilbao Spain −21 19 −48 −50 −27 −15
Birmingham UK −17 28 −33 −38 −31 −31
Bonn Germany −5 35 −27 −29 −39 −62
Bordeaux France −22 28 −47 −50
Bradford UK −24 26 −31 −34
Braga Portugal −1 16 −43 −43
Bremen Germany −37 34 −18 −20 −37 −49
Brighton UK −22 31 −21 −24 −23 −27
Bristol UK −19 30 −40 −44 −38 −39
Brussels Belgium −29 32 −38 −44 −38 −43
Bucharest Romania −23 31 −34 −33
Budapest Hungary −16 34 −24 −26 −38 −64
Bytom Poland −12 30 −25 −22
Caerdydd UK −19 31 −36 −42 −58 −73
Catania Italy −30 26 −35 −35
Cologne Germany −25 36 −25 −25 −30 −53
Dortmund Germany −11 36 −24 −24 −29 −48
Dresden Germany −28 32 −22 −20 −29 −21
Dublin Ireland −35 26 −21 −21 −49 −59
Duisburg Germany −4 36 −18 −18
Düsseldorf Germany −11 36 −25 −26 −27 −49
Edinburgh UK −16 23 −28 −28 −39 −34
Essen Germany −3 36 −19 −18 −26 −33
Florence Italy −48 33 −47 −52 −53 −57
Frankfurt Germany −24 34 −24 −25 −33 −47
Gdańsk Poland −17 30 −11 −10 −23 −43
Geneva Switzerland −57 34 −47 −49 −37 −30
Genoa Italy −36 30 −27 −27
Glasgow UK −30 23 −27 −29 −46 −56
Gliwice Poland −23 32 −27 −25
Gothenburg Sweden −5 32 −10 −14 8 19
Hamburg Germany −36 32 −15 −17 −31 −40
Hanover Germany −19 33 −24 −25 −26 −29
Helsinki Finland −28 24 −25 −24 −26 −24
Katowice Poland −4 26 −24 −20 −39 −64
Kraków Poland −12 30 −21 −21 −37 −49
Leeds UK −11 25 −32 −34 −47 −47
Leipzig Germany −23 36 −22 −23
Lille France −17 34 −37 −41
Lisbon Portugal −22 20 −43 −50 −39 −40
Liverpool UK −4 29 −28
Liège Belgium 0 34 −34 −35 −37 −40
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Table B1. Continued.

Urban area Country TROPOMI N Model Model Surface station Surface station
estimates revisits estimates estimates (S5P- estimates estimates (S5P-

(%) (hourly; %) sampled; %) (hourly; %) sampled; %)

Łódź Poland −12 30 −29 −29 −24 −38
London UK −30 26 −29 −32 −27 −34
Lyon France −49 35 −48 −52
Madrid Spain −60 17 −56 −58 −61 −60
Manchester UK −27 26 −37 −40 −39 −45
Mannheim Germany −21 35 −23 −22 −33 −44
Marseille France −55 28 −41 −39
Milan Italy −49 29 −52 −59 −52 −50
Munich Germany −22 32 −27 −30 −21 −8
Málaga Spain 16 6 −50 −48 −63 −66
Naples Italy −35 29 −35 −34 −69 −82
Newcastle UK −30 22 −27 −30 −42 −54
Nice France −34 24 −38 −37 −59 −61
Nottingham UK −24 23 −35 −37 −45 −47
Nuremberg Germany −7 31 −27 −28 −39 −46
Oslo Norway −51 22 −20 −24
Palermo Italy −39 26 −22 −23
Paris France −29 34 −38 −43 −48 −53
Porto Portugal −24 17 −50 −51
Poznań Poland −26 31 −22 −22 −38 −56
Prague Czechia −4 32 −16 −18 −20 −25
Riga Latvia 5 30 −7 −7 −50 −84
Rome Italy −40 30 −46 −53 −49 −46
Rotterdam Netherlands −13 33 −21 −25 −27 −21
Rouen France −23 35 −40 −46
Saarbrücken Germany −24 38 −28 −27 −33 −37
Salerno Italy −32 26 −43 −48 −62 −57
Sarajevo Bosnia–Herzegovina −29 26 −23 −20
Sevilla Spain −40 14 −48 −51 −36 −39
Sheffield UK −20 27 −30 −32 −25 −21
Sofia Bulgaria −5 19 −35 −32 −46 −67
Southend UK −27 29 −11 −11 −30 −37
Stockholm Sweden −17 28 −17 −18 −8 −3
Stuttgart Germany −29 36 −27 −29 −7 −4
The Hague Netherlands −13 37 −21 −24 −26 −23
Thessaloníki Greece −32 27 −36 −36
Tirana Albania −24 26 −40 −41
Toulouse France −16 24 −48 −51
Turin Italy −54 28 −54 −60 −50 −52
Utrecht Netherlands −20 33 −25 −30 −28 −31
Valencia Spain −34 22 −35 −33 −63 −71
Vienna Austria −27 33 −21 −23 −34 −41
Vilnius Lithuania 32 26 −25 −24 −51 −66
Warsaw Poland −30 27 −25 −24 6 −14
Wiesbaden Germany −26 33 −30 −31 −31 −44
Wrocław Poland −28 34 −22 −21 −14 −27
Wuppertal Germany −13 36 −25 −25 −27 −39
Zagreb Croatia −16 32 −29 −30 −68 −81
Zaragoza Spain −8 27 −45 −49 −47 −49
Zürich Switzerland −13 36 −40 −43 −35 −44
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Appendix C

Table C1. Reduction factors (%) by country and activity sector corresponding to the lockdown period over the modelled European domain.

Country GNFR_B_Industry GNFR_F_RoadTransport GNFR_H_Aviation

Albania −11.5 −77
Austria −54 −96
Belarus −19
Belgium −11.0 −63 −96
Bosnia–Herzegovina −43
Bulgaria −14.0 −48 −96
Croatia −21.5 −65 −93
Czechia −14.7 −41 −99
Germany −11.5 −42 −87
Denmark −17.3 −40 −97
Estonia −15.2 −37 −92
Finland −5.9 −53 −91
France −29.0 −76 −94
Georgia −75
Great Britain −21.0 −67 −88
Greece −14.9 −66 −91
Hungary −12.8 −50 −95
Ireland −12.6 −64
Italy −18.9 −75 −93
Latvia −12.7 −35 −99
Lithuania −13.4 −47 −100
Luxembourg −11.2 −62 −86
Macedonia −30.5 −49 −100
Malta −48
Moldova −21.5 −57
Netherlands −27.1 −56 −91
Norway −10.9 −38 −83
Poland −12.3 −53
Portugal −14.6 −73
Romania −10.2 −62 −100
Russia −38
Serbia −57
Slovakia −11.8 −51 −100
Slovenia −10.7 −50 −91
Spain −19.3 −80 −97
Sweden −12.4 −31 −95
Switzerland −47 −95
Turkey −87
Ukraine −23
Average (+ other) −15.5 −54 −94

https://doi.org/10.5194/acp-21-7373-2021 Atmos. Chem. Phys., 21, 7373–7394, 2021



7392 J. Barré et al.: Estimating lockdown-induced European NO2 changes

Data availability. The satellite data from the TROPOMI in-
strument can be accessed at https://doi.org/10.5270/S5P-s4ljg54
(Copernicus Sentinel-5P, 2018). The surface station air quality
measurements can be accessed from the AirBase database at
https://doi.org/10.2800/786656 (EEA, 2020b). The CAMS ensem-
ble of regional air quality forecast models can be accessed through
the Copernicus Atmosphere Monitoring Service https://atmosphere.
copernicus.eu/ (last access: January 2021).

Author contributions. JB prepared the manuscript with contribu-
tions from all the coauthors. VHP, RE, AI, JF, CPGP, and LaR pro-
vided guidance on the study. JB performed the study using satellite
data. HP performed the study using surface station measurements
using DB processing. AC coordinated and provided the dataset from
the CAMS regional ensemble of models. MaG provided scaling fac-
tors for emission inventories. Single model contributions were pro-
vided by FM, CG, JHC, MiG, AB, ST, EF, JS, JWK, JD, RT, LeR,
MA, OJ, MJ, and RK.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The research leading to these results has re-
ceived funding from the Copernicus Atmosphere Monitoring Ser-
vice (CAMS), which is implemented by the European Centre for
Medium-Range Weather Forecasts (ECMWF) on behalf of the Eu-
ropean Commission. We acknowledge support from the Ministe-
rio de Ciencia, Innovación y Universidades (MICINN), as part
of the BROWNING project RTI2018-099894-B-I00 and NUTRI-
ENT project CGL2017-88911-R; the AXA Research Fund; and
the 620 European Research Council (grant no. 773051, FRAG-
MENT). We also acknowledge PRACE and RES for awarding ac-
cess to Marenostrum4 based in Spain at the Barcelona Supercom-
puting Center through the eFRAGMENT2 and AECT-2020-1-0007
projects. This project has also received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement H2020-MSCA-
COFUND-2016-754433. Carlos Pérez García-Pando also acknowl-
edges the support received through the Ramón y Cajal programme
(grant no. RYC-2015-18690) of the MICINN. Modelling and satel-
lite data were produced by the Copernicus Atmosphere Monitoring
Service. We thank the three anonymous reviewers for their helpful
comments that improved this paper.

Financial support. This research has been supported by the Min-
isterio de Ciencia, Innovación y Universidades (MICINN), as part
of the BROWNING project RTI2018-099894-B-I00 and NUTRI-
ENT project CGL2017-88911-R; the AXA Research Fund; the
620 European Research Council (grant no. 773051, FRAGMENT);
PRACE and RES through the eFRAGMENT2 and AECT-2020-1-
0007 projects; the European Union’s Horizon 2020 research and
innovation programme (Marie Sklodowska-Curie grant agreement
H2020-MSCACOFUND-2016-754433); and the Ramón y Cajal
programme (grant no. RYC-2015-18690) of the MICINN.

Review statement. This paper was edited by Anja Schmidt and re-
viewed by three anonymous referees.

References

Achebak, H., Devolder, D., Ingole, V., and Ballester, J.: Re-
versal of the seasonality of temperature-attributable mortality
from respiratory diseases in Spain, Nat. Commun., 11, 2457,
https://doi.org/10.1038/s41467-020-16273-x, 2020.

Arya, S. P.: Air Pollution Meteorology and Dispersion, Oxford Uni-
versity Press, New York, USA, 1999.

Barré, J., Edwards, D., Worden, H., Silva, A. D., and Lahoz,
W.: On the feasibility of monitoring carbon monoxide in the
lower troposphere from a constellation of Northern Hemisphere
geostationary satellites (Part 1), Atmos. Environ., 113, 63–77,
https://doi.org/10.1016/j.atmosenv.2015.04.069, 2015.

Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., van
Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J.
P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus
Outbreak on NO2 Pollution Assessed Using TROPOMI and
OMI Observations, Geophys. Res. Lett., 47, e2020GL087978,
https://doi.org/10.1029/2020GL087978, 2020.

Bowdalo, D., Vradi, A., Jorba, O., and Pérez García-Pando,
C.: Globally Harmonised Observational Surface Treatment:
Database of global surface gas observations, in preparation,
2021.

Carslaw, D. C. and Taylor, P. J.: Analysis of air pol-
lution data at a mixed source location using boosted
regression trees, Atmos. Environ., 43, 3563–3570,
https://doi.org/10.1016/j.atmosenv.2009.04.001, 2009.

Colette, A., Schulz, M., Guevara, M., Raux, B., Mortier, A., Tsyro,
S., Benedictow, A., Hamer, P., Rouil, L., Meleux, F., Couvidat,
F., Geels, C., Gauss, M., Friese, E., Kaminski, J., Douros, J., Tim-
mermans, R., Robertson, L., Adani, M., Oriol, J., Kouznetsov, R.,
and Joly, M.: COVID impact on air quality in Europe, A prelim-
inary regional model analysis, ECMWF, Reading, UK, 2020.

Collivignarelli, M. C., Abbà, A., Bertanza, G., Pedraz-
zani, R., Ricciardi, P., and Carnevale Miino, M.: Lock-
down for CoViD-2019 in Milan: What are the effects
on air quality?, Sci Total Environ, 732, 139280–139280,
https://doi.org/10.1016/j.scitotenv.2020.139280, 2020.

Conticini, E., Frediani, B., and Caro, D.: Can atmospheric pollu-
tion be considered a co-factor in extremely high level of SARS-
CoV-2 lethality in Northern Italy?, Environ. Pollut., 261, 114465,
https://doi.org/10.1016/j.envpol.2020.114465, 2020.

Copernicus Sentinel-5P (processed by ESA): TROPOMI Level 2
Nitrogen Dioxide total column products, Version 01, European
Space Agency., https://doi.org/10.5270/S5P-s4ljg54, 2018.

EEA: European Union emission inventory report 1990–2018 under
the UNECE Convention on Long-range Transboundary Air Pol-
lution (LRTAP), European Environment Agency, Copenhagen,
Denmark, 2020a.

EEA: Air quality in Europe, AirBase database, European Environ-
mental Agency, https://doi.org/10.2800/786656, 2020b.

Eskes, H. and Eichmann, K.: Sentinel-5P Nitrogen Dioxide Level 2
Product Readme, KNMI, De Bilt, theNetherlands, 2019.

Atmos. Chem. Phys., 21, 7373–7394, 2021 https://doi.org/10.5194/acp-21-7373-2021

https://doi.org/10.5270/S5P-s4ljg54
https://doi.org/10.2800/786656
https://atmosphere.copernicus.eu/
https://atmosphere.copernicus.eu/
https://doi.org/10.1038/s41467-020-16273-x
https://doi.org/10.1016/j.atmosenv.2015.04.069
https://doi.org/10.1029/2020GL087978
https://doi.org/10.1016/j.atmosenv.2009.04.001
https://doi.org/10.1016/j.scitotenv.2020.139280
https://doi.org/10.1016/j.envpol.2020.114465
https://doi.org/10.5270/S5P-s4ljg54
https://doi.org/10.2800/786656


J. Barré et al.: Estimating lockdown-induced European NO2 changes 7393

Friedman, J. H.: Greedy function approximation: A gra-
dient boosting machine, Project Euclid, 29, 1189–1232,
https://doi.org/10.1214/aos/1013203451, 2001.

Goldberg, D. L., Anenberg, S. C., Griffin, D., McLinden, C.
A., Lu, Z., and Streets, D. G.: Disentangling the Impact
of the COVID-19 Lockdowns on Urban NO2 From Nat-
ural Variability, Geophys. Res. Lett., 47, e2020GL089269,
https://doi.org/10.1029/2020GL089269, 2020.

Grange, S. K. and Carslaw, D. C.: Using meteorologi-
cal normalisation to detect interventions in air qual-
ity time series, Sci. Total Environ., 653, 578–588,
https://doi.org/10.1016/j.scitotenv.2018.10.344, 2019.

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and
Hueglin, C.: Random forest meteorological normalisation mod-
els for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18,
6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018.

Granier, C., Darras, S., Denier van der Gon, H., Doubalova, J., El-
guindi, N., Galle, B., Gauss, M., Guevara, M., Jalkanen, J.-P.,
Quack, B., Simpson, D., and Sindelarova, K.: The Copernicus
Atmosphere Monitoring Service global and regional emissions,
ECMWF, Reading, UK, 2019.

Guevara, M., Jorba, O., Soret, A., Petetin, H., Bowdalo, D., Ser-
radell, K., Tena, C., Denier van der Gon, H., Kuenen, J., Peuch,
V.-H., and Pérez García-Pando, C.: Time-resolved emission re-
ductions for atmospheric chemistry modelling in Europe during
the COVID-19 lockdowns, Atmos. Chem. Phys., 21, 773–797,
https://doi.org/10.5194/acp-21-773-2021, 2021.

Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A.,
Phillips, T., Webster, S., Cameron-Blake, E., Hallas, L., Majum-
dar, S., and Tatlow, H.: A global panel database of pandemic poli-
cies (Oxford COVID-19 Government Response Tracker), Nat.
Hum. Behav., 5, 529–538, https://doi.org/10.1038/s41562-021-
01079-8, 2021.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G.,
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy,
S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloy-
aux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

IPCC: Intergovernmental Panel on Climate Change: Climate
Change 2013 – The Physical Science Basis: Working Group I
Contribution to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA,
1535 pp., 2014.

Keller, C. A., Evans, M. J., Knowland, K. E., Hasenkopf, C. A.,
Modekurty, S., Lucchesi, R. A., Oda, T., Franca, B. B., Man-
darino, F. C., Díaz Suárez, M. V., Ryan, R. G., Fakes, L. H.,
and Pawson, S.: Global impact of COVID-19 restrictions on
the surface concentrations of nitrogen dioxide and ozone, At-
mos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-
21-3555-2021, 2021.

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and De-
nier van der Gon, H. A. C.: TNO-MACC_II emission inven-
tory; a multi-year (2003–2009) consistent high-resolution Euro-
pean emission inventory for air quality modelling, Atmos. Chem.
Phys., 14, 10963–10976, https://doi.org/10.5194/acp-14-10963-
2014, 2014.

Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld,
J. H.: Unexpected air pollution with marked emission reductions
during the COVID-19 outbreak in China, Science, 369, 702–706,
https://doi.org/10.1126/science.abb7431, 2020.

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer,
A.: The contribution of outdoor air pollution sources to pre-
mature mortality on a global scale, Nature, 525, 367–371,
https://doi.org/10.1038/nature15371, 2015.

Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Aber-
nethy, S., Andrew, R. M., De-Gol, A. J., Willis, D. R., Shan, Y.,
Canadell, J. G., Friedlingstein, P., Creutzig, F., and Peters, G.
P.: Temporary reduction in daily global CO2 emissions during
the COVID-19 forced confinement, Nature Climate Change, 10,
647–653, https://doi.org/10.1038/s41558-020-0797-x, 2020.

Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta,
J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet,
B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier,
R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H.,
Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E.,
Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E.,
Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen,
J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I.,
Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Par-
mentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S.,
Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M.,
Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van
Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A re-
gional air quality forecasting system over Europe: the MACC-II
daily ensemble production, Geosci. Model Dev., 8, 2777–2813,
https://doi.org/10.5194/gmd-8-2777-2015, 2015.

Nakada, L. Y. K. and Urban, R. C.: COVID-19 pandemic:
Impacts on the air quality during the partial lockdown in
São Paulo state, Brazil, Sci. Total Environ., 730, 139087,
https://doi.org/10.1016/j.scitotenv.2020.139087, 2020.

Ogen, Y.: Assessing nitrogen dioxide (NO2) levels as a contributing
factor to coronavirus (COVID-19) fatality, Sci. Total Environ.,
726, 138605, https://doi.org/10.1016/j.scitotenv.2020.138605,
2020.

Petetin, H., Bowdalo, D., Soret, A., Guevara, M., Jorba, O.,
Serradell, K., and Pérez García-Pando, C.: Meteorology-
normalized impact of the COVID-19 lockdown upon NO2
pollution in Spain, Atmos. Chem. Phys., 20, 11119–11141,
https://doi.org/10.5194/acp-20-11119-2020, 2020.

Schiermeier, Q.: Why pollution is plummeting in some cities –
but not others, Nature, 580, 313, https://doi.org/10.1038/d41586-
020-01049-6, 2020.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and
physics: From air pollution to climate change, Wiley, Harvard,
USA, 2006.

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries,
J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool,
Q., Weele, M. van, Hasekamp, O., Hoogeveen, R., Landgraf,
J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B.,

https://doi.org/10.5194/acp-21-7373-2021 Atmos. Chem. Phys., 21, 7373–7394, 2021

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1029/2020GL089269
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.5194/acp-21-773-2021
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/acp-21-3555-2021
https://doi.org/10.5194/acp-21-3555-2021
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.1126/science.abb7431
https://doi.org/10.1038/nature15371
https://doi.org/10.1038/s41558-020-0797-x
https://doi.org/10.5194/gmd-8-2777-2015
https://doi.org/10.1016/j.scitotenv.2020.139087
https://doi.org/10.1016/j.scitotenv.2020.138605
https://doi.org/10.5194/acp-20-11119-2020
https://doi.org/10.1038/d41586-020-01049-6
https://doi.org/10.1038/d41586-020-01049-6


7394 J. Barré et al.: Estimating lockdown-induced European NO2 changes

Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA
Sentinel-5 Precursor: A GMES mission for global observations
of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.

Wang, Q. and Su, M.: A preliminary assessment of
the impact of COVID-19 on environment – A case
study of China, Sci. Total Environ., 728, 138915,
https://doi.org/10.1016/j.scitotenv.2020.138915, 2020.

Wang, Y., Yuan, Y., Wang, Q., Liu, C., Zhi, Q., and Cao, J.: Changes
in air quality related to the control of coronavirus in China: Im-
plications for traffic and industrial emissions, Sci. Total Environ.,
731, 139133, https://doi.org/10.1016/j.scitotenv.2020.139133,
2020.

Worden, H. M., Edwards, D. P., Deeter, M. N., Fu, D., Kulawik, S.
S., Worden, J. R., and Arellano, A.: Averaging kernel prediction
from atmospheric and surface state parameters based on multi-
ple regression for nadir-viewing satellite measurements of car-
bon monoxide and ozone, Atmos. Meas. Tech., 6, 1633–1646,
https://doi.org/10.5194/amt-6-1633-2013, 2013.

Zambrano-Monserrate, M. A., Ruano, M. A., and
Sanchez-Alcalde, L.: Indirect effects of COVID-19 on
the environment, Sci. Total Environ., 728, 138813,
https://doi.org/10.1016/j.scitotenv.2020.138813, 2020.

Atmos. Chem. Phys., 21, 7373–7394, 2021 https://doi.org/10.5194/acp-21-7373-2021

https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1016/j.scitotenv.2020.138915
https://doi.org/10.1016/j.scitotenv.2020.139133
https://doi.org/10.5194/amt-6-1633-2013
https://doi.org/10.1016/j.scitotenv.2020.138813

	Abstract
	Introduction
	TROPOMI NO2 column estimates
	Dataset and analysis periods
	Non-weather-normalized changes in TROPOMI NO2 tropospheric columns
	Weather-normalized changes in TROPOMI NO2 tropospheric columns
	Methods
	Results


	Surface station estimates
	Methods
	Results

	CAMS regional ensemble model estimates
	Methods
	Results

	Comparison of the three different types of estimates
	Conclusions
	Appendix A: Gradient boosting regressor tuning
	Appendix B
	Appendix C
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

