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Abstract 

Regulatory frameworks require information on acute fish toxicity to ensure environmental protection. 

The experimental assessment of this property relies on a substantial number of fish to be tested and 

it is in conflict with the current drive to replace in vivo testing. For this reason, alternatives to in vivo 

testing have been proposed during the past years. Among these alternatives, there are Quantitative 

Structure-Activity Relationships (QSAR) that require the sole knowledge of chemical structure to yield 

predictions of toxicities. In this context, the OECD QSAR Toolbox is one of the leading QSAR tools for 

regulatory purposes that enables the prediction of fish toxicities. The aim of this work is to provide 

evidence about the predictive reliability of the automated workflow for predicting acute toxicity in fish 

embedded within this toolbox. The results herein presented show that the logic underpinning this 

automated workflow can predict with a reliability that, in the majority of cases, is comparable to inter-

laboratory variability and, in a significant number of cases, is also comparable with intra-laboratory 

variability. Moreover, considerations on the toxic mode of action provided by the OECD tool proved to 

be helpful in refining predictions and reducing the number of prediction outliers.  
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1. Introduction 

Regulations on chemical toxicity aim at protecting the environment from the adverse effects 

caused by exposure to chemicals which can threaten the trophic chain in aquatic ecosystems 

(McCarty et al., 2018). In this respect, the protection of the trophic chain that, from algae leads to 

fish through intermediate organism (e.g., crustaceans), is of great importance for the preservation 

of ecosystems and, indirectly, it can also protect humans from dangerous intoxications (Barletta 

and Lima, 2019). Therefore, an understanding of toxic effects at representative trophic levels is of 

great importance in regulatory settings and fish represent one of the closest ecological sentinels 

to humans whose fish consumption is characterized by an ever-increasing growth-rate (FAO, 

2020). 

The regulatory importance of testing in fish can be illustrated by the European regulation REACH 

that requires acute fish testing for chemicals produced or imported in quantities larger than 10 

tons per year (EC, 2006). Fish acute toxicity is generally accomplished by following the 

recommendations reported in the OECD guideline 203 (OECD, 2019). According to this guideline, 

an in vivo test is carried out by exposing fish for 96 hours to estimate the concentration resulting 

in 50% of fish lethality (LC50). This experimental protocol requires, at least, 42 fish to be used in a 

single experiment if a full test has to be performed (Schug et al., 2020). 

A threshold approach has been developed to reduce the number of animals (OECD, 2010). This 

testing strategy recommends performing a limit test for fish acute toxicity at a threshold 

concentration (TC) corresponding to the lowest EC50 obtained in the algal growth test or the 

daphnia acute toxicity test. If no mortality occurs in the limit test, fish are less sensitive than the 

species from the other taxonomic groups and the TC is used as a surrogate of the LC50 value in 

hazard/risk assessment or for classification and labelling purposes. Computational approaches can 

also represent reliable alternatives to in vivo testing in fish (Netzeva et al., 2008). These 

computational methods, also known as in silico approaches, rely on Quantitative Structure-Activity 



Relationships (QSAR) that can rapidly predict biological properties (e.g., lethal concentrations) as 

a function of chemical structure (Cherkasov et al., 2014). The key-tenet of QSAR approaches is that 

similar chemicals induces similar (qualitatively and quantitively) effects in living beings (Cherkasov 

et al., 2014). One of the most simple and effective paradigms of a QSAR approach in ecotoxicity is 

represented by the seminal work of Könemann (Könemann, 1981) that successfully related a 

change in toxicological potency of chemicals in fish to a change in the octanol-water partition 

coefficient (Log P, a molecular property or descriptor) that characterizes chemical substances. In 

other words, Könemman showed that chemicals with similar Log P values are characterized by 

similar LC50 values.  

The QSAR paradigm is endorsed by one of the most widely used in silico tools in regulatory settings: 

the OECD QSAR toolbox (Dimitrov et al., 2016; OECD, 2020). The OECD QSAR Toolbox (hereafter 

referred to as “the Toolbox”) is a freely available in silico system which contains several databases 

to provide information on toxicological, ecotoxicological and physicochemical properties. The 

Toolbox enables users to group chemicals within categories based on mechanistic (i.e. similar 

mode of action) and structural similarities (e.g., same organic functional groups) and then predict 

toxicological properties thanks to the QSAR paradigm that translates into trend analysis and read-

across predictions (Dimitrov et al., 2016).  

The aim of the work described in this paper is to evaluate the predictive performance of the 

automated workflow (AW) for the prediction of LC50 at 96 hours for fathead minnow (Pimephales 

promelas). An AW is an algorithm that computes a QSAR prediction with a minimal interaction 

from the user. In the specific case of the AW for the prediction of acute toxicity in fathead minnow, 

the only action which is needed from a user is the identification (e.g., by CAS RN or by name) of 

the chemical for which an experimental LC50 is not available (hereafter referred to as “target 

chemical”). After the definition of the target chemical, the AW oversees the identification of 

appropriate chemicals that can be considered structurally and mechanistically similar to the target 



chemical (hereafter referred to as “structural analogs”) and that are associated with experimental 

LC50 values that will permit QSAR predictions.  

Knowledge about the reliability of this AW, is an important piece of information within regulatory 

contexts, since it provides an insight into what can be expected in terms of predictivity when 

replacing in vivo testing in fish with automated QSAR predictions yielded by the Toolbox. By 

providing information on this operational aspect, this article will increase the awareness of end-

users about what can be reasonably expected in terms of precision from the AW for the prediction 

of LC50 in fathead minnow.  

 

2. Materials and methods 

2.1 The AW for the prediction of LC50 in fathead minnow 

The AW used in this article is those implemented in the Toolbox v 4.3 (OECD, 2020). This AW is 

thoroughly described in Yordanova et al. (Yordanova et al., 2019) and it can be briefly summarized as 

follows: 

 

1) Input: the target chemical is defined by the user (e.g., by inputting its CAS RN). 

 

2) Profiling: identification of structural features and mode of action (MOA) that characterize the target 

chemical applies a series of computerized modules (known as profilers) whose role is to identify 

structurally and mechanistic feature that are relevant for aquatic toxicity. These profiling results 

are then used as query criteria for recognizing appropriate structural analogues.  

 

3) Data gathering: pertinent ecotoxicological databases are searched to retrieve a starting group of 

structural analogs that forms a broad initial category to be subsequently refined in terms of 

structural and mechanistic pertinence. 



 

4) Subcategorization: information associated with non-discrete chemical entities (e.g., chemical 

mixtures) and LC50 greater than water solubility is discarded. After these first steps, the AW 

iteratively applies profilers to further enhance the structural and mechanistic coherence of the 

initial category of structural analogs. 

 

5) Prediction: according to the number of identified structural analogs (NuA), this category of 

chemicals is then used to compute a LC50 prediction. If the number of structural analogs is greater 

than (or equal to) ten, a linear QSAR model that quantifies variations in LC50 values as a function of 

the octanol water partition coefficient Log Kow is defined and used to compute a prediction (i.e. 

prediction by “trend analysis). Otherwise, a prediction is computed by estimating the arithmetic 

mean of the LC50 values that characterize the structural analogs. This second form of prediction is 

commonly referred to as prediction by read-across (van Leeuwen et al., 2009).  

 

Before being communicated to the user, predictions are checked against criteria for acceptance 

(Yordanova et al., 2019):  

- Trend analysis: if the coefficient of determination of the linear regression R2 is ≥ 0.7 and NuA 

≥ 10 THEN accept trend prediction ELSE switch to read-across 

- Read-across: if the prediction corresponds to an interpolation and LC50 ≤ 2 log units OR log Kow 

≤ 2 log units AND NuA ≥ 5 THEN accept prediction and proceed with Report. 

2.2 Experimental data on acute toxicity to fathead minnow 

Experimental data on acute toxicity to fathead minnow were retrieved from the PubChem website and 

they correspond to the EPAFHM database (EPA, 2020). This database reports LC50 values for 617 

compounds that were determined after 96 hours flow-through exposures using 28 to 36 days old 



juveniles fathead minnows (Russom et al., 1997).  The chemicals that compose this database describe 

a cross-section of industrial organic chemicals (Russom et al., 1997).  

Exclusion of organometallic chemicals, inorganic chemicals, organic salts and mixtures gave rise to a 

dataset of 96 hours LC50 data for 553 discrete organic chemicals.  

 

2.3 Partition Around Medoids 

Given the large number of chemicals composing this database and the time required to obtain a 

prediction from the AW, the evaluation was carried out on a selected subset of chemicals. A 

structurally representative subset of chemicals was extracted from the EPAFHM database by using the 

Partition Around Medoids (PAM) algorithm (Wehrens, 2011).  

A medoid is identified as an object (chemicals in the case of this article) that occupies the center of a 

cluster of similar items, whose average dissimilarity to all the objects in the cluster is minimal 

(Wehrens, 2011).  The PAM algorithm was applied to chemical descriptors computed thanks to the 

freely available software PaDEL v 2.21 (Yap, 2011) and the function pam of the cluster package v 2.1.0 

(Maechler  et al., 2019) for the free software environment R v3.6.1 (R Core Team, 2019). The optimal 

number of medoids k was identified by retaining the number of medoids that maximize the average of 

all silhouette widths. The highest average silhouette width indicates the optimal achievable clustering 

over a range of possible values for k. In the case of the present work we analyzed k values ranging from 

2 to 150 and identified an optimal number of medoids equal to 145. 

Medoids were visualized thanks to a Principal Component Analysis (PCA) executed by using the 

function prcomp of the R package stats v3.6.1 on centered and scaled descriptors.   

 

2.4 Evaluation strategy 



In the framework of the analysis described in this article the AW was prompted by inputting the CAS 

RN of chemicals. Moreover, one extra requirement on the selection of structural analogs was imposed: 

data with qualifiers (e.g. LC50 greater than a certain threshold) were removed each time that the AW 

flagged their presence.  

Finally, it is important to highlight the fact that experimental data associated with the target chemical 

and present within the databases of the Toolbox were not considered when computing predictions by 

means of the AW. In other words, predictions were estimated as if experimental toxicities of target 

chemicals were unknown.  

 

 

3. Results and Discussion 

3.1 Identification of an evaluation set of structurally representative chemicals 

The PAM algorithm described in the methodological section identified a subset of chemicals composed 

by 145 substances that can be regarded as structurally representative of the entire database. Indeed, 

as shown on Fig. 1, the medoids (black triangles) span in the plane defined by the first two principal 

components of a PCA analysis. This dataset was adopted as an evaluation set and it is composed by 

145 chemicals whose LC50 values ranges from 0.0051 mg/L to 68900 mg/L. This evaluation set is 

available as Supplemental Information (Supplemental Table S1).  

 



 

Fig. 1. Principal Component Analysis of the evaluation database. The medoids (black triangles) span the chemical space 

covered by the database.   

 

3.2 Experimental variability of 96h LC50 values 

When evaluating QSAR models it is generally assumed that their level of precision has to be 

benchmarked against the level of experimental reproducibility that characterizes the endpoint that 

the model predicts for (Cappelli et al., 2015; Cassano et al., 2014; Mombelli, 2012). According to an 

analysis made by Hrovat et al. (Hrovat et al., 2009) the difference between available values for the 

minimum and maximum 96 h LC50 associated with the same chemical can in several case be larger than 

one logarithmic unit.  In the presence of such a large variability, all the QSAR predictions whose error 

is below a ten-fold factor could be regarded as reliable.  

Therefore, to have a more precise idea about variability thresholds against which to benchmark QSAR 

predictions we searched ecotoxicological literature to find evidence about the variability that 

characterizes acute toxicity studies with fathead minnow.  

The results of this bibliographic search, focusing on flow-through exposure, for consistency with the 

EPAFHM database are summarized in Table 1. Modes of toxicological action for organic chemicals and 



inorganic chemicals (e.g. metals) differ but metals and other inorganic chemicals are routinely used, 

as reference chemicals to assess the sensitivity of the test organisms whatever the type of chemical to 

be tested (Römbke and Ahtiainen, 2007). For this reason, we deemed appropriate to include also data 

on metals when estimating experimental variability. 

Studies on the variability of LC50 values generally report means and coefficients of variations of the 

underlying experimental data. Nevertheless, distributions of LC50 values are better described by log-

normal distributions (e.g., LC50 values cannot be negative). For this reason, equations 1 and 2 that 

define the mean (m) and variance (v) of the variable's natural logarithm, were applied as a function of 

the mean M and variance V of the data reported in the publications cited in Table 1 (Johnson et al., 

1994): 

 

𝑚 = ln (
𝑀2

√𝑀2 + 𝑉2
) (𝐸𝑞. 1) 

 

𝑣 = ln (1 +
𝑉

𝑀2
) (𝐸𝑞. 2) 

 

These equations were useful for the estimation of a variability ratio that we defined as the ratio 

between the 97.5th and 2.5th percentiles of the logarithmic distribution.  

 

Table. 1. Inter- and intra-laboratory reproducibility of 96h LC50 determined in fathead minnow by means of a flow-through 

exposure system. The variability ratio was estimated by computing the ratio between the 97.5th and 2.5th percentiles that 

characterizes the logarithmic distribution of 96h LC50.  



Chemical Average 

LC50 

[mg/L] 

CV% Variability 

ratio  

Type of variability Reference 

Silver (as silver nitrate) 7.49 10-3 40 4.5 Inter-laboratory (EPA, 2002) 

Endosulfan 0.96 10-3 46 5.6 Inter-laboratory (EPA, 2002) 

Phenol 26.5 9.0 1.4 Inter-laboratory (Walker, 1988) 

Pentachlorophenol 0.21 12 1.6 Intra-laboratory (Adelman et al., 

1976) 

Cadmium (as cadmium 

sulfate) 

7.18 59 8.5 Intra-laboratory (Pickering and Gast, 

1972) 

Hexavalent Chromium  

(as potassium 

dichromate) 

48 22 2.3 Intra-laboratory (Adelman et al., 

1976) 

Copper (as copper 

sulfate) 

108 16 1.9 Intra-laboratory (Lind et al., 1978) 

Nickel (as nickel 

sulfate) 

12.9 35.3 3.8 Intra-laboratory (Lind et al., 1978) 

 

An analysis of the references reported in Table 1 highlighted two investigations that we judged as being 

less reliable: the tests for phenol (Walker, 1988) and the tests for cadmium (Pickering and Gast, 1972). 

Indeed, the first study is characterized by a very narrow variability regardless of the heterogenous 

experimental conditions and also Environment-Canada highlighted this atypical issue (Environment-

Canada, 1990). As far as the tests for cadmium are concerned (Pickering and Gast, 1972), it must be 

noted that the reported important precipitations of the test substance and pH variations in the water 

could have impaired the pertinence of the generated data.  



For these reasons, we excluded data on phenol and cadmium when computing the geometric means 

of individual variability factors (Tab. 1) that defined the final intra and inter-laboratory variability ratios 

to be used as benchmarking references for the evaluation of the precision of QSAR predictions: 2.3 

(intra-laboratory fold-factor) and 5.0 (inter-laboratory fold-factor). 

 

3.3 Evaluation of the AW  

The AW generated a prediction satisfying its acceptability criteria for 122 chemicals (90 trend 

predictions and 32 read-across predictions) out of 145 (supplemental Table S1). The plot depicting the 

observed 96 h experimental values vs. the corresponding predicted values is reported in Fig. 2. The 

prediction error associated with nine predictions (squares in Fig. 2) lies beyond a ten-fold factor (these 

LC50 are largely overpredicted), 85.3% of the predictions are characterized by an error which is below 

the inter-laboratory variability factor and 59.0% of the predictions are characterized by an error which 

is below the intra-laboratory variability factor.  

The Concordance Correlation Coefficient (CCC) (Chirico and Gramatica, 2011)  that characterizes all the 

prediction reported in Fig. 2 is equal to 0.90. This coefficient assesses precision and accuracy of 

predictions and any deviation from the bisector line representing perfect predictions results in a value 

of CCC which is smaller than 1 (Chirico and Gramatica, 2011). The predictivity of QSAR models is 

generally benchmarked against this statistical indicator and QSAR models are usually regarded as valid 

if the CCC is equal to or greater than 0.85.  

Similarly, the coefficient of determination R2 that characterizes these predictions is equal to 0.83 and 

it is usually recommended to ascertain if this statistical indicator exceeds a value of 0.7 to consider 

QSAR models as valid (Chirico and Gramatica, 2011). Therefore, it appears that, according to generally 

adopted quality standards, the AW can be regarded as valid and characterized by a performance which 

is comparable to inter-laboratory variability for the majority of cases.  



 

 

 

Fig. 2. Experimental vs. predicted 96 h LC50 values for fathead minnow. The dotted lines represent the intra- and inter-

laboratory variability factors (2.3 and 5 respectively). Squares indicate extreme prediction outliers (error > 10-fold 

factor). The logarithmic values refer to concentrations expressed in mM on a linear scale. 

 

The evaluation was repeated by retaining only the structural analogs associated with data from the 

EPAFHM database (EPA, 2020) to have a better insight into a benchmarking with respect to intra-

laboratory variability. As described above, experimental data for the target chemicals were ignored 

when applying the AW. This second evaluation (Supplemental Table S2) was characterized by 96 

predictions satisfying the acceptability of the AW: 70 trend predictions and 26 read-across predictions.  

The plot depicting the observed 96 h experimental values vs. the corresponding predicted values for 

this second evaluation is reported in Fig. 3. The prediction error associated with seven predictions 

(squares in Fig. 3) lies beyond a ten-fold factor (six LC50 are largely overpredicted), 56.3% of the 

predictions are characterized by an error which is below the intra-laboratory variability factor.  

 



 

Fig. 3. Experimental vs. predicted 96 h LC50 values for fathead minnow. Predictions were obtained by only considering 

data from the EPAFHM database. The dotted lines represent the intra- laboratory variability factor (2.3). Squares indicate 

extreme prediction outliers error > 10-fold factor). The logarithmic values refer to concentrations expressed in mM on a 

linear scale. 

 

The Concordance Correlation Coefficient (CCC) and R2 that characterize the predictions depicted in Fig. 

3 are identical to what described for Fig. 2. Again, these performance indicators highlight the good 

predictivity of the AW. It is nevertheless interesting to observe that the fact of considering only data 

obtained within the same laboratory does not improve the predictivity of the AW. This fact suggests 

that the overall logic of the AW that predict as a function of heterogenous exposure conditions (e.g., 

flow-through, static, renewal) seems to yield predictions that are precise enough.  

QSAR models for acute toxicity in fish are known to display a good predictive performance but it is 

interesting to observe that more sophisticated QSAR approaches applied to the same fish species are 

characterized by a comparable (i.e. 0.74 < R2 < 0. 81) predictive performance in external validation (Jia 

et al., 2018; Niculescu et al., 2004; Toropova et al., 2012; Wang and Chen, 2020).  

 



3.4 Analysis of prediction outliers 

The Toolbox offers a convenient and self-contained way to assess modes of actions for aquatic toxicity 

by means of the “acute aquatic toxicity MOA profiler by OASIS” assign chemicals to different categories 

according to their acute toxic mode of action. Thanks to theoretical and empiric knowledge the 

following categories can be identified: Aldehydes, alpha-beta Unsaturated alcohols, Phenols and 

Anilines, Esters, Narcotic Amines, Basesurface narcotics and a final broad category named “reactive 

unspecified”.  

If this profiler (v3.3) is applied to the evaluated chemicals (Supplemental Table S3), it appears that 

extreme prediction outliers (i.e. prediction error > 10-fold factor) are characterized by a higher 

proportion of chemicals recognized as having an unspecific reactivity (Tab. 2). The chemicals 

characterized by this profile among the outliers are: Dibutyl fumarate, 2-Hydroxypropyl acrylate, 

Dicoumarol, 2,2,2-Trifluoroethanol, Rotenone, 1,1,1,3,3,3-Hexafluoro-2-propanol (for the first 

evaluation) and Dicoumarol, 2,2,2-Trifluoroethanol and Rotenone (second evaluation). 

The null hypothesis of a odds ratio being equal to one can be rejected at a 5% level of significance for 

the two evaluations (p-values equal to 8 10-4 and 0.02 respectively) according to a Fisher's Exact Test 

for count data.  

Table. 2. Two-way contingency tables describing the relationship between extreme prediction outliers and chemicals 

characterized by an unspecified reactivity.  

  Prediction 

outliers 

Other 

predictions 

Evaluation 1 Reactive 

unspecified 

6 15 

Other profiles 3 98 

    



Evaluation 2 Reactive 

unspecified 

3 7 

Other profiles 4 82 

 

These observations would suggest that the predictive performance could be improved by excluding 

chemicals that are characterized by a MOA profile flagging an unspecific reactivity. Twenty-one and 

ten chemicals are characterized by such a MOA profile in the framework of the first and second 

evaluation respectively. If these chemicals are removed, the predictive performance improves. More 

precisely, R2 increases to 0.90 and 0.87 for the first and second evaluation respectively. Similarly, CCC 

increases to 0.94 (first evaluation) and 0.93 (second evaluation). 

We deemed that the OASIS profiler provided a reliable and fast option for a preliminary assessment of 

mode of actions and we did not asses other profilers to avoid the so-called data dredging problem that 

would have resulted in an increased risk of highlighting false-positive findings (Smith and Ebrahim, 

2002). Moreover, the ready availability of the OASIS profiler within the Toolbox renders this 

assessment of easy application to all the users of the OECD tool.  

 

4. Conclusions 

The results herein presented and discussed suggest that the AW for acute fish toxicity is characterized 

by a predictive performance which is acceptable according to generally adopted quality criteria and 

comparable to the performance associated with published QSAR models. The fact that the majority of 

predictions are characterized by a predictive error that is lower than inter-laboratory variability adds 

support to these findings.  



Therefore, the selection of structural analogues performed by the AW and based on the 

characterization of the mode of action and structural similarity can be considered as particularly 

appropriate for predictive purposes.  

From a regulatory point of view, it should be noted that the AW enables the inspection and 

documentation, on a case-by-case basis, of the relevance of the toxicological data associated with each 

structural analogue. For example, a user could eliminate structural analogs associated with data 

considered to be of insufficient quality and to document this exclusion. In parallel, a user could also 

choose to treat multiple toxicological data associated with a given chemical by choosing the most 

conservative value by changing the default option which calculates the arithmetic mean of LC50.  

In conclusion, the presented results indicate that, if correctly supervised, the evaluated AW can 

provide predictions that are reliable and transparent. It is also interesting to note that our findings 

agree with the results detailed by Burden et al.  (Burden et al., 2016) that highlighted the regulatory 

pertinence and robustness of QSAR predictions for acute fish toxicity. It appears therefore that, if 

properly used, QSAR approaches can be a valuable tool for providing fit-for-purpose predictions in the 

framework of regulations on chemical toxicity 
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