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Abstract

Background: At a regional or continental scale, the characterization of environmental health inequities (EHI)
expresses the idea that populations are not equal in the face of pollution. It implies an analysis be conducted in
order to identify and manage the areas at risk of overexposure where an increasing risk to human health is
suspected. The development of methods is a prerequisite for implementing public health activities aimed at
protecting populations.

Methods: This paper presents the methodological framework developed by INERIS (French National Institute for
Industrial Environment and Risks) to identify a common framework for a structured and operationalized assessment
of human exposure. An integrated exposure assessment approach has been developed to integrate the multiplicity
of exposure pathways from various sources, through a series of models enabling the final exposure of a population
to be defined.

Results: Measured data from environmental networks reflecting the actual contamination of the environment are
used to gauge the population’s exposure. Sophisticated methods of spatial analysis are applied to include
additional information and take benefit of spatial and inter-variable correlation to improve data representativeness
and characterize the associated uncertainty. Integrated approaches bring together all the information available for
assessing the source-to-human-dose continuum using a Geographic Information System, multimedia exposure and
toxicokinetic model.

Discussion: One of the objectives of the integrated approach was to demonstrate the feasibility of building
complex realistic exposure scenarios satisfying the needs of stakeholders and the accuracy of the modelling
predictions at a fine spatial-temporal resolution. A case study is presented to provide a specific application of the
proposed framework and how the results could be used to identify an overexposed population.
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Conclusion: This framework could be used for many purposes, such as mapping EHI, identifying vulnerable
populations and providing determinants of exposure to manage and plan remedial actions and to assess the spatial
relationships between health and the environment to identify factors that influence the variability of disease
patterns.

Keywords: Inequities, Spatial, Exposure, Modeling, Integrated

Introduction
The World Health Organization in a recent report (2012)
[1] has identified environmental inequities as a priority
issue that needs to be addressed by the national govern-
ments of Europe. Reducing health inequities means identi-
fying and characterizing exposure in order to interpret
how they accumulate across a territory and to prioritize
interventions. As the health status of a population is the
result of complex interactions between several social, ter-
ritorial and environmental factors, all the related informa-
tion needs to be studied in order to assess it. At a regional
or continental scale, the characterization of environmental
health inequities (EHI) expresses the idea that populations
are not equal in the face of pollution. It implies an analysis
must be done in order to identify and manage areas at risk
of overexposure where increasing risk to human health is
suspected. The development of methods is a prerequisite
for implementing public health activities aimed at protect-
ing populations. Constructing tools to guide public action
in order to reduce the EHI requires evaluating phenomena
that are not always simple to comprehend and making the
available information reliable and representative, which
usually demands statistical processing [2].
In France, after more than 10 years of actions aimed at

preventing environmental health risks, the third national
plan for health and environment (PNSE 3, 2015–2019)
proposes a new EHI approach that is not only more ro-
bust and connected to the territories but also integrates
the scientific concept of exposome. The recently emerged
term of exposome [3] is used to describe these complex
exposures, considering all sources, routes, and - when pos-
sible - the interactions of stressors, that are likely to con-
tribute to a health alteration in individuals. The external
contribution to the human exposome is determined by
environmental exposure, also termed the eco-exposome
[4] and includes exposure from air, water, soil and food
exposure media. A coherent conceptual framework for ex-
posure assessment is needed to tackle EHI, one that per-
mits an estimation of the magnitude, frequency and
duration of exposure to chemicals, along with the number
and characteristics of the population exposed.
Quantitative exposure assessment for environmental

inequity characterization poses specific questions that
need to be addressed:
- Identification of contamination(s) source(s);

- Characterization of exposure mechanisms (pathways
and relevant routes);
- Prioritization of vulnerable populations or specific

susceptible groups (e.g. infants);
The contamination process is extremely complex and

varies through space and time, with localized multiple
sources at a larger scale. At a regional scale, to better
evaluate exposure to large chemical emissions, fate and
transport models could provide both an ability to account
for the pertinent spatial variability (e.g., around emissions
sources or highly populated areas) and temporal variability
during a specific time of contamination [5].
Exposure assessment to identify and characterize a ter-

ritorialized EHI depends on the availability of data. Ex-
posure assessment is generally complex due to a lack of
data and the inherent natural variability in exposure
levels, leading to uncertainty in the estimates [6]. The
temporal support also differs between the available data
(punctual measurements, annual averages, etc.) which
also requires additional treatment. Furthermore, they
often lack a common spatial support, therefore prelimin-
ary spatial analysis is required in order to homogenize
them or increase their resolution. The available data-
bases are often assembled for diverse objectives, and
often re-processed using statistical methods.
Spatialization and crossing these data pose several meth-
odological difficulties and can introduce uncertainties in
the cartography process carried out. For this reason, dif-
ferent methods and techniques are employed to specific-
ally treat environmental databases in order to take
benefit from all the available information and reduce the
uncertainties.
A global overview of the limited progress achieved in

the field so far has been established and reported in
Table 1, based on articles retrieved from the available
scientific literature regarding some aspects of the global
methodology. Some more background consideration is
reconsidered in the different next sections.
This paper presents the methodological framework de-

veloped by INERIS to identify a common framework for
conceptualizing and operationalizing environmental ex-
posures as an important step towards articulating a sci-
ence of EHI.
In order to build a calculation infrastructure able to

characterize the eco-exposome at the territorial level, it
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Table 1 Bibliography related to exposure modeling for a multilevel approach

References Type of assessment Main input data Model Major outcomes / breakthroughs

Bulle et al, 2019
[5]

Life cycle impact assessment Emission and exposure data IMPACT World+ Novel framework that includes recent
methodological advances in multiple
impact categories in a consistent way
by implementing the same modeling
structure of fate, exposure, exposure
response, and severity across
ecosystem quality and human health-
related impact categories.

Ciffroy et al,
2015 [6]

Integrated Risk Assessment Emission and exposure data MERLIN-Expo: fate and
exposure model, non-
spatial model

Key points for integration across the
human and environmental disciplines
is the move from environmental fate
and exposure estimations to the
internal dose in the exposure
assessment

Nieuwenhuijsen
et al, 2019 [7]

Environmental epidemiology;
exposure-wide association
study

Built environment, air pollution,
road traffic noise, meteorology,
natural space, and road traffic

Proximity models,
interpolation models,
Land Use Regression
models, dispersion
models

First large urban exposome study of
birth weight that tests many
environmental urban exposures. It
confirmed previously reported
associations for green space exposure
and generated new hypotheses for a
number of built-environment
exposures.

Vrijheid et al,
2020 [8]

Environmental epidemiology;
exposure-wide association
study

Indoor and outdoor air
pollutants, built environment,
green spaces, tobacco smoking,
and biomarkers of chemical
pollutants

Proximity models,
interpolation models,
Land Use Regression
models, dispersion
models

First comprehensive and systematic
analysis of many suspected
environmental obesogens
strengthens evidence for an
association of smoking, air pollution
exposure, and characteristics of the
built environment with childhood
obesity risk.

Juarez et al,
2014 [9]

Spatio-temporal and multilevel
approach for examining
exogenous and endogenous
source-exposure-disease
relationships

Natural, built, social and policy
environment variables

Spatial and multi-level
statistic approach

Retrospective and prospective
systems theory modeling and
methods, including advanced and
complex multi-level, spatial, Bayesian,
and high throughput mathematical
designs. Use of data-driven, graph
theory/combinatorial techniques and
analytics from computational biology
to identify relationships among the
myriad of environmental exposure
and population health data points.

Teeguarden
et al, 2016 [10]

Aggregate exposure
assessments

Emission, environmental
concentration, population
behavior and physiology

Aggregate Exposure
Pathway

Development of the Aggregate
Exposure Pathway concept as the
organizational framework for
exposure science, builds on the long
history of aggregate exposure
assessments as a key feature of the
field and recent technological
advances in computational exposure
modeling and informatics.

Bravo et al,
2012 [11]

Data sampling and data
reprensentativeness

Monitoring data, emission and
meteorological data

Community Multi-
Scale Air Quality
(CMAQ) modeling
system

Spatial and temporal resolution
improvement and uncertainty
reduction

Malherbe et al,
2002 [12]

Data sampling and data
reprensentativeness

Topsoil concentration data Statistical
(probabilistic) vs. non-
statistical (directed)
approaches

Procedure that could be followed to
design a soil sampling strategy for
human health risk assessment

Caudeville et al,
2012 [13]

Spatial human exposure Topsoil concentration data Geostatistic and
Modul’ERS model

Complex geostatical method used for
human exposure assessment

Chakraborty
et al, 2011 [14]

Environmental justice and
health risk disparities

Air concentration data,
ethnicities, cancer rate

Simultaneous
autoregressive (SAR)
models

Spatial regression models for
assessing environmental justice and
health risk disparities
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Table 1 Bibliography related to exposure modeling for a multilevel approach (Continued)

References Type of assessment Main input data Model Major outcomes / breakthroughs

Goovaerts, 2001
[15]

Spatial environmental
contamination

Topsoil and parental material
data

Several kriging models Modelling of uncertainty for single
continuous soil attributes. The issue of
assessing the goodness of such
models has rarely been addressed
and criteria similar to the ones
introduced here could be developed.

Jerrett et al,
2005 [16]

Spatial environmental
contamination

Emission, topology,
meteorological, air
concentation

Proximity models,
interpolation models,
Land Use Regression
models, dispersion
models

Review of the current state of
knowledge for intraurban air pollution
exposure assessment.

Cattle et al,
2002 [17]

Spatial environmental
contamination

Topsoil concentration data Kriging model Comparison of different inteprolation
methods applied for air pollution

Kanevski et al,
2009 [18]

Spatial environmental
contamination

Spatial environmental data Machine learning
models

Application of machine learning
methods for solving the problems of
spatial dimension. Most machine
learning literatures address on
algorithms and models for solving
non-spatial problems.

Van de
Kassteele et al,
2009 [19]

Spatial environmental
contamination

Emission, topology,
meteorological, air
concentation

External drift kriging
method

Combination of observations and a
deterministic dispersion
modeldescription to propose a
model-based geostatistical
interpolation procedure.

Breiman, 2001
[20]

Spatial environmental
contamination

14 variables about
physicochemical soil properties

Hybrid regression-
kriging fitted using
Random Forest
models

Application of machine learning
methods for solving the problems of
spatial dimension on environmental
thematic

Ioannidou et al,
2018 [21]

Integrated spatial human
exposure

Water, air, soil, food, behavorial
data

PLAINE and Modul’ERS Proposition of an aggregated
exposure assessment approach based
on on modeling and monitoring
network at a national scale. Adapted
method for each environmental
compartment are adapted for existing
monitoring networks

Guerreiro et al,
2016 [22]

Health impact Emission, topology,
meteorological, air
concentation

Chimere and kriging
model

Combining observations and
chemical transport models through
the use of spatial interpolation
methods at a continental scale

Ratola et
Jiménez-
Guerrero, 2015
[23]

Spatial environmental
contamination

Emission, topology,
meteorological, air
concentation

Chimere and
vegetation transfer
model

Combining venegetation
concentration observations and
chemical transport models through
the use of transfer model

Pennington
et al, 2005 [24]

Spatial human exposure Emission, topology,
meteorological, air
concentation

IMPACT Western
Europe

The model facilitates estimation of
concentration profiles of dispersed
contaminants and human intake at
the population level. The results are
presented in the form of intake
fractions, the fraction of an emission
that will be taken in by the entire
population.

Gerlowski et
Jain, 1983 [25]

Toxicokinetic modeling and
internal exposure

Physiological and exposure
data

Toxicokinetic model First review of physiologically based
pharmacokinetics to increase the use
of this modeling technique.

Quindroit et al,
2019 [26]

Toxicokinetic modeling and
internal exposure

Physiologicaln ingestion,
inhlation and dermal exposure
data

Toxicokinetic model Global model for pyrethroids in
humans using in vivo, in vitro and in
silico data.
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was necessary to solve several methodological issues: (1)
Define an integrated exposure assessment framework
that first requires different scientific limitations to be
overcome, such as the linkage of the global source-effect
chain, (2) provide statistical methods and numerical
tools that would allow spatial and temporal data from
existing environmental and populational databases to be
processed, (3) link, adapt or develop transport and trans-
fer models. Finally, a brief description of a key case study
that was investigated is proposed in order to illustrate
the integrated approach and the kind of assessments that
could be performed.

The integrated exposure assessment framework
Projects funded by the European Union under EU
Framework Programme FP7 and EU Horizon 2020 re-
lated their research to existing infrastructures and data
available in different European cohorts with the aim of
comparing health outcomes and exposure information
[7]. Moreover, they all invested dedicated specific efforts
to build an integrated exposure assessment framework
[8, 27–29].
The characterization of a territorialized exposome im-

plies the development of dynamic, multidimensional,
longitudinal approaches, and information systems that
require the adoption of transdisciplinary methods of data
analysis. To respond to the general objective, it is neces-
sary to integrate and combine various levels of data from
different environmental compartments and exposure
media. Data and information emerging from an expand-
ing field of exposure science can be integrated into the
exposome conceptual framework. This provides the ne-
cessary linkages between source and internal exposure
and helps to identify and compare relationships between
different levels at critical life stages, personal health out-
comes, and health disparities at a population level across
space, and time [9]. This framework could be a layered

structure that describes the elements of exposure path-
ways (Fig. 1), the relationship between those elements,
and how data describing the elements is stored and used
for selected outputs, such as exposure assessment,
exposure prediction, epidemiology or public health
decision making [10]. Refined aggregate exposure assess-
ment is data-intensive, requiring detailed information at
every step of the source-to-dose pathway. Integrated ex-
posure assessment requires 1) methodologies to allow
the aggregate exposure to be calculated systematically
and 2) computational research tools to estimate the ex-
posure from the different contributing sources.
In the context of mapping the environmental inequi-

ties enabling the identification of vulnerable individuals
and communities at risk in order to target public health
interventions, additional requirements are needed in the
exposure assessment processes compared with classical
risk assessment methodology.
The environmental inequities operate at different

scales (global, regional, local) and could not be captured
by studying a single medium, but by the integration of
varied contamination pathways: air, water, soil and food.
The design study should be able to:
- integrate the processes that take place at the inter-

face between the environmental contaminants of interest
and the organisms,
- characterize the principal exposure pathways,
- define realistic scenarios that integrate past and

present sources,
- describe the phenomena at a fine temporal and

spatial resolution.
Based on the needs described above, the research ob-

jectives are to bring together all the available informa-
tion within a coherent methodological framework for
assessing the source-to-dose continuum covering an ex-
tensive chemical space. An integrated exposure assess-
ment approach has been developed, one that is able to

Fig. 1 Example of a modeling framework to characterize an integrated EHI
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integrate the multiplicity of exposure pathways from
various sources, through a series of models leading up to
internal exposure. The main objective of our projects,
i.e. testing the feasibility of the methodology, has been
achieved. Our framework allows for several matters of
interest:
- identifying areas of potential overexposure by analyz-

ing the variations of the indicators in space,
- analyzing sources and environmental components

potentially associated with overexposure,
- explaining the variability of exposure inequities for

pollutants and study areas,
- estimating internal exposure and linking it with hu-

man biomonitoring data.
This approach involved implementing different

models, namely atmospheric dispersion modeling, spatial
analysis for processing environmental and population
data, a multimedia exposure model and a
physiologically-based pharmacokinetic (PBPK) model.
The models have been adapted and coupled to allow the
integration of the output data from an upstream model
as input data for the downstream model. The coupling
also allows the information on the sources of contamin-
ation, the quality of environmental media and the resi-
dent populations to be integrated on the same analysis
medium, namely the reference grid. A Geographic Infor-
mation System (GIS) thus provides the opportunity to
cross the estimated exposure with biological impregna-
tion data to provide interpretive elements of the envir-
onmental determinants of exposure. The coupling of
numerical and statistical models has established a scien-
tific and technical basis for integrating, data processing
and assessing the transfer of contaminants from the en-
vironment to populations. In that way, it is possible to
integrate all available data, despite their heterogeneity, in
a common spatial support. The reference grid selected,
allows local variations to be reflected as well as the inte-
gration of environmental monitoring databases in
France. The GIS modeling platform enables the coupling
and interoperability of all spatial data via the reference
grid on which the input data and the variables of interest
are discretized after processing.

In search of data and representativeness
Integrated data from existing environmental health
monitoring programs

Data used Many different approaches can be used for
quantifying environmental exposures: direct methods
(measuring, monitoring or biomonitoring) or indirect
methods, involving exposure estimations from measure-
ments and existing data, such as environmental monitor-
ing, questionnaires and exposure models. The quality
and usability of all environmental data should be

assessed before employing them in the health or risk as-
sessment processes, as many factors can bias environ-
mental sampling results [30]. Ideally, direct measures of
exposure (e.g., biomarkers or personal monitoring data)
for all key stressors related to health effects, throughout
the critical time-period of exposure, and in the popula-
tion of interest, would be necessary [31]. However, ex-
clusive use of biomarker data in exposure assessment to
characterize the EHI is currently not practicable when
considering a large number of diverse chemicals due to
analytical and resource limitations [32] specifically when
the assessment should cover a large territory and give
fine resolution. Environmental quality data are often
available at a fine administrative or resolution level and
enable environmental indicators to be built on a regional
or national scale. The processing of variables for the
identification and characterization of environmental in-
equities depends on the reuse of this type of data, which
are very diverse by nature regarding their initial intended
objectives. Determining how representative those mea-
sured levels of contamination are of other locations or
time frames is not always a simple task [33].
Health and environmental databases have been devel-

oped for several years. They evolve and are in full expan-
sion. Actions to identify and monitor the quality of the
environment for soils, water and air are conducted by
different agencies, institutes or observatories. The pro-
duction of this type of data and advances in computer
technology allow their reuse in conceptual frameworks
and with objectives different from those that prevailed
during their implementation. The emergence of quality
data and their integration into GIS make it possible to
conduct territorial analyses. These environmental data
reflect the actual contamination of the environment and
therefore the populations’ global exposure. The indica-
tors based on these data allow a characterization of the
population’s exposure and its evolution regarding the
implementation of public prevention policies. In the
context of reusing this type of data for the purpose of
expology, a database must be set up in which the vari-
ables are associated with the modes of exposure (con-
centrations in the environmental and exposure media
are present, eating behavior, space-time budget, etc.).

Data preprocessing The processing operations to be
performed usually consist of the following basic steps:
- the identification of data sources allowing the con-

struction of different variables,
- the acquisition of these data in view of the access

modalities, the financial, legal or human aspects,
- an analysis of the quality and representativeness of

the databases regarding the study’s objective (choice of a
database, validity and representativeness of the data)
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sometimes involving an approximation or the applica-
tion of simplifying assumptions,
- the preprocessing of databases: cleaning the data-

bases, rebuilding missing data,
- the construction of ad-hoc data where the appropri-

ate data sources are not available or exhaustive in rela-
tion to the study’s objectives,
- data transformation (homogenization, aggregation or

disaggregation of data).
The estimation of exposure requires knowledge of the

concentrations of the environmental components to
which an individual or a population is exposed. These
concentrations can be measured or modeled. A wide
range of data might potentially be mobilized for an inte-
grated assessment. The database selection or study design
definition should be guided to achieve the best comprom-
ise between data representativeness and method robust-
ness, consistent with the objectives of the study.

Environmental monitoring networks Characteristics of
air pollution (e.g., chemical components, particle proper-
ties) vary spatially [34] and may differ between areas
near and far from the monitors [11]. Automated moni-
toring networks operate in Europe providing detailed air
quality information on a regular basis. The soil routes of
exposure to humans are inhalation of dust and vapor
coming from soil contaminants, ingestion of contami-
nated soil particles (mainly for children) or contami-
nated food, and dermal absorption through the skin.
Once a site is considered as contaminated, it is necessary
to provide enough accurate data to minimize a lack of
statistical representativeness and increase the spatial
quantification. The time spent for evaluating the pres-
ence and extent of contamination can be reduced by an
adequate sampling plan [12] which can, at the same
time, reduce the project costs [35]. A soil monitoring
system could be a source of comparable and objective
data on the current state and evolution of soils. The
database of the soil monitoring system allows the cre-
ation and maintenance of data for each of the monitor-
ing sites of agricultural land as well as the preparation of
data for further processing through specialized programs
[36]. Position information provides a link to the GIS,
and thus opens the possibilities for further spatial ana-
lysis, the identification of risk areas and their assessment.
For example, in France, soil pollutant stocks and proper-
ties and most explanatory variables were derived from
the French National Soil Monitoring Network (Réseau
de Mesures de la Qualité des Sols or RMQS). The
RMQS surveys soils and their properties on a regular 16
km grid across the French mainland territory (around
2200 sites covering 550,000 km2) [37].
The Drinking Water Directive (80/778/EEC), and its

successor (98/83/EC, which comes into force in 2003),

aims to ensure that water intended for human consump-
tion is safe. In addition to microbiological and physico-
chemical parameters, a number of toxic substances such
as pesticides, polyaromatic hydrocarbons, cyanide com-
pounds, and heavy metals are to be monitored. This is
because the raw supply may be contaminated, for ex-
ample, with pesticides from agricultural land which have
leached into groundwater or from contamination within
the distribution system, such as lead from piping. In
France, 300,000 samples are tested each year. Indeed,
tap water is one of the most strictly controlled food-
stuffs. Each year, the health agencies carry out close on
12.3 million tests covering all of the country’s public
water and wastewater services (both publicly and pri-
vately managed). In 2013, more than 8.1 million tests
were carried out on services managed by private water
companies.
Work has been carried out by INERIS to identify en-

vironmental and spatialized databases for the purpose of
characterizing exposures by associating the main pro-
ducers and data managers identified [38, 39]. It allows
elements for the specification of environmental health
platforms to be proposed and to improve the integration
of data in the framework of building an environmental
health tracking information system. However, spatial
data used to characterize environmental exposures have
not always been initially collected and collated to meet
these objectives, resulting in use bias. Measuring fre-
quencies or spatial densities of sampling are not always
sufficient. The selection of a treatment method depends
on the problem to be solved and the quality of the data
available.

Statistical approaches to link and optimize data
representativeness

Spatial data properties The data available in a region
of interest characterize levels of contamination at very
specific locations, over a given spatial support (i.e. the
support on which the data is measured such as point,
surface or volume), and for a very specific time frames.
In order to construct exposure maps from spatialized
databases in the context of evaluating environmental in-
equities, it is necessary to develop methods for process-
ing and harmonizing the available data, with respect to
their specificities (missing values, limited number of ob-
servations, etc.) at the same resolution and support.
In the mathematical field of numerical analysis,

interpolation is a method of constructing new data
points within the range of a discrete set of known data
points. Recently, the increasing availability of spatial and
spatiotemporal data has pushed the development of
many spatial interpolation methods, including geostatis-
tics [13]. Spatial interpolation includes any of the formal
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techniques that study phenomena using their topological,
geometric, or geographic properties. Spatial dependence is
the co-variation of properties in a geographical space: Fea-
tures at nearby locations seem to be correlated. The fun-
damental principle is Tobler’s first law of geography: if the
interrelation between entities increases with proximity in
the real world, representation in geographical space and
evaluation using spatial analysis techniques are appropri-
ate [14]. These interactions are all stronger as the loca-
tions concerned are closer. In statistics, spatial
autocorrelation measures the correlation of a georefer-
enced variable with itself. It makes it possible to measure
the degree of similarity between neighboring observations.
This spatial dependence implies the infringement of the
assumptions made in the classical statistical techniques
which suppose independence between the observations.
Spatial dependence should also be considered as a source
of information. The analysis of spatial data structures
through geostatistical tools (variogram, autocorrelation
analysis) is often employed to characterize the different
scales of local, regional and global variability of the phe-
nomena studied [40].
Several more sophisticated methods of spatial analysis

can be applied to include additional information and
take benefit of spatial and inter-variable correlation to
improve data representativeness and characterize the as-
sociated uncertainty [15].

Spatial statistics For air, several methods for estimating
exposure to air pollutants exist, including monitor-based
approaches such as proximity-based assessments and
statistical interpolation, as well as land-use regression
and air quality modeling [16]. Using data from existing
monitoring networks remains popular, due to cost con-
siderations, data availability, and population coverage.
Such statistical methods are aimed at using multiple
types of information to inform exposure estimates and
allow an estimate of exposure to be made in areas far
from monitors. In addition to fused data, several other
approaches have been developed to estimate individual-
and population-level exposures, including various
interpolation methods, land use regression (LUR)
models, aerosol measurements obtained from satellites,
and source- and traffic-proximity analysis [11]. Stochas-
tic methods such as kriging are preferred [17]. An issue
commonly reported is the availability of data. Some da-
tabases include some limitation (as a limited number of
observations for instance) and therefore it is not possible
to assess the population’s exposure adequately. External
drift kriging is then widely used in air and soil quality
modeling, in order to combine different kinds of infor-
mation to include secondary information in the model.
Machine learning uses algorithms and statistical

methods to “learn” information directly from data

without relying on a predetermined equation as a model.
The algorithms adaptively improve their performance as
the number of samples available for learning increases.
Machine learning makes it possible, for example, to
build a metamodel from a dataset of deterministic model
outputs. The fundamental concepts of machine learning
and its usages in spatially distributed data are given in
Kanevskij et al. [18].

The PLAINE platform: the case of spatial exposure of
Benzo [a] Pyrene in France A GIS-based modeling
platform developed by INERIS for quantifying human
exposure to chemical substances (PLAINE: environmen-
tal inequities analysis platform [41]) aims to spatialize an
environmental indicator related to human health using
risk assessment methods and mapping environmental
disparities at a fine resolution. The main aim of the
PLAINE Project, developed in France, is to develop a
platform of environmental and health data. This plat-
form is developed for the systematic collection, integra-
tion, and analysis of data on emission sources,
environmental contamination, exposure to environmen-
tal hazards, and population and health. Ad-hoc method-
ologies are used to align the available data to the same
pixels. Spatial analysis and statistical methods are
employed to process (georeferencing, data controlling,
pre-processing, re-formatting) and assemble the data-
bases for the purpose of the study, using R and QGIS.
For example, atmospheric concentration data were col-
lected in France in the context of regulatory surveillance
for two years (2010 and 2011). An estimation of concen-
trations over France by the classical interpolation
method could lead to a misrepresentation of the spatial
distribution due to the limited number of observations.
To address this issue, auxiliary variables, in the context
of external drift kriging [19], were employed. The best
auxiliary variable to define linear drifts was found to be
the one that includes atmospheric emissions as well as
population and altitude. Measurements of PAH topsoil
concentrations are available through the French Soil
Monitoring Network. Qualitative data on the polluted
sites localization are integrated by processing distance-
to-polluted soil proxy. These, along with 14 variables
about physicochemical soil properties, were combined in
a hybrid regression-kriging and fitted using Random
Forest [20] models, and were shown to outperform the
traditionally used linear regression. Due to its hydropho-
bic nature, B [a] P is found in water in small concentra-
tions; therefore, the exact measurement cannot always
be reported. The observations under the detection limit
rate are quite high, which requires careful handling. A
complex multiple imputation method was developed in
order to extract the maximum information from the
available measurements without introducing too much
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bias in the results. This makes it possible to take advan-
tage of the temporal aspect and correlations between the
substance of interest and other PAH substances. The
spatial estimation of water concentrations was carried
out by taking into account the multi-annual data and
the network water distribution complexity using a boot-
strap based expectation-maximization algorithm. The
above methods permitted the construction of a repre-
sentative spatial database in a 9 km2 grid of reference for
the whole of France (550,000 km2) used to perform the
integrated exposure assessment [21].

Fate and transport models
Outdoor air dispersion modeling
Atmospheric chemistry and dispersion modelling have
experienced important improvements in the last two de-
cades. Nowadays, a large variety of modelling systems
and options exist, from simpler to more complex ones,
covering global or regional to urban and street level
scales.
Air quality models simulate the fluxes in atmospheric

concentrations of air pollutants and their deposition
onto the Earth’s surface by solving the transport equa-
tions that represent the emissions, advection, diffusion,
transformations and removal of those air pollutants and
the associated chemical species.
Contemporary air quality models can be grouped into

two major categories:

– models that calculate the concentrations of air
pollutants near a source (source-specific models).
The Gaussian models simulate the atmospheric
dispersion of non-reactive pollutants near the source
(steady-state approach). Lagrangian models are also
source-specific models, which treat atmospheric dis-
persion of reactive substances as a source-specific
process;

– Eulerian models that calculate concentrations of
reactive air pollutants over large areas ranging from
an urban area, to a region, a continent and the globe
(grid-based models).

Inputs to air quality models include the emission rates
of primary air pollutants and precursors of secondary air
pollutants, meteorology (three-dimensional fields of
winds, turbulence, temperature, pressure, boundary layer
height, relative humidity, clouds and solar radiation,
etc.), and boundary conditions (baseline or background
conditions). For grid-based models, an emission model
is used to translate an emission inventory into a spatially
distributed and temporally resolved grid structure.
As an example, INERIS used BaP as a tracer of the

carcinogenic risk associated with PAH. This has been
the subject of several recent studies using the CHIMERE

model at the European scale [21, 23]. The population ex-
posure estimate shows that 20% of the European popula-
tion is exposed to BaP background ambient
concentrations above the EU target value and only 7%
live in areas with concentrations under the estimated ac-
ceptable risk level of 0.12 ng.m− 3. Heavy metals have
also been addressed using the CHIMERE model [42],
modelling Pb, Cd, As, Ni, Cu, Zn, Cr and Se air back-
ground concentrations in Europe. Evaluation of the
model’s performance in order to reveal its ability to re-
produce observed levels shows that more recent annual
totals, information on snap activities for each metal,
higher spatial resolution and a better knowledge of the
temporal emission behavior are necessary to adequately
model these air pollutants.

Multimedia exposure models
Spatially resolved multimedia fate and multi pathway ex-
posure models facilitate the prediction of environmental
concentration distributions, the related levels of contam-
inants in different sources, and the fraction of a chemical
release that will be taken in by the entire human popula-
tion (the intake dose) at the regional or local scale.
When the spatial resolution of computations is low, vari-
ations in environmental characteristics usually tend to
average out, and adoption of roughly selected represen-
tative or characteristic values allows the correct orders
of magnitude of outputs to be depicted. Research is
starting to cope with spatially explicit models of fate and
transport with increasing resolution, and now a few
models with a resolution ranging from a few tens of a
km up to 1 km are available for calculations at the con-
tinental scale [24, 42]. However, the computational effort
associated with this modeling strategy is generally quite
high and limits routine applications when a large num-
ber of chemicals need to be evaluated.
A multimedia fate and exposure model called Modu-

l’ERS [43, 44] developed by INERIS is used to estimate
intakes from air inhalation and soil, tap water, marketed
food products, as well as eating locally produced fruits
and vegetables. Local foodstuff concentrations are esti-
mated using atmospheric deposition of particulate pol-
lutants, air (for POP) and soil concentrations. As
mechanistic and dynamic models for plants required
many input data that can be difficult to define (lack of
data, difficulty for estimating the magnitude of variability
and uncertainty of data and even anticipating the quali-
tative effect of variations in the input data on results),
the contributions of gaseous air and soil concentrations
to edible plant organs are estimated from bioconcentra-
tion factors, which are specific to the different categories
of fruit and vegetables cultivated in domestic gardens
and time averaged concentration during cultivation.
Therefore, the inputs of the model for media
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concentration estimates are georeferenced environmen-
tal databases (with a direct reuse of the treated data in-
corporated into the GIS for tap water and marketed
food products).
In the model used, attention was focused on the qual-

ity of the values used to define all inputs (exposure, en-
vironmental and chemical parameters). The available
data were systematically analyzed. For most of the pa-
rameters, all the data collected, together with their con-
textual information, as well as the selection criteria used,
are described in dedicated reports. Depending on the
level of knowledge, the quantity and the relevance of the
data available, the parameters are finally defined with a
point value, a range of values or a probabilistic distribu-
tion. The multimedia exposure model provides an exter-
nal exposure dose that could be integrated into a
physiologically-based pharmacokinetic (PBPK) model as
input data.

Physiologically-based pharmacokinetic models
PBPK models are a specific class of biokinetic models
based on the physiology and the anatomy of the individ-
uals. They can predict the kinetics and metabolism of
substances in the body. These models provide realistic
descriptions of xenobiotics’ absorption, distribution, me-
tabolism, and excretion processes. They describe the
body as a set of compartments corresponding to specific
organs or tissues (e.g., adipose, bone, brain, gut, heart,
kidney, liver, lung, muscle, skin, spleen, etc.). Between
compartments, the transport of substances is dictated by
various physiological flows (blood, bile, pulmonary venti-
lation, etc.) or by diffusion [25, 45]. The model structure
can be described by a set of differential equations, with
parameters representing blood flow rates, organ volumes
etc., for which information is available in the published
scientific literature or may be obtained in vitro [46]. Nu-
merical integration of that differential system computes
the quantity and concentration of the drug considered in
each compartment, as a function of time and the expos-
ure dose. Thus, those models offer a quantitative mech-
anistic framework to understand and simulate the time-
course of the concentration of a substance in various or-
gans and body fluids [47]. A stochastic whole-body
physiologically-based pharmacokinetic model over the
human lifespan has been developed by INERIS [47] and
integrated in the EHI context to predict the internal
concentration such as concentrations in blood but also
in other tissues or biological matrices (urine) from
multi-route exposure (inhalation, ingestion, dermal ex-
posure). Those models are used to link exposure with
biomarker data [26, 48] and have proven to be successful
in integrating and evaluating the influence of age or
gender-dependent changes with respect to the pharma-
cokinetics of xenobiotics throughout the lifetime [49].

Each model represents a different component of the
emission-environmental quality-exposure-internal dose
and effects continuum. This framework was thus de-
signed to allow internal exposure assessments for differ-
ent human populations (general population, pregnant
women, children at different ages, socio-economic sta-
tus, etc.) integrating exposure through multiple path-
ways. Integrated evaluations over the full chain were
tested on a case study presented in this issue. These
models can operate in different spatial-temporal scales,
which poses a challenge when coupling them in a coher-
ent framework and can result in structural uncertainty
and a deep time calculation problem.

Key illustrative case study
One of the objectives of the integrated approach was to
demonstrate the feasibility of building complex realistic
exposure scenarios satisfying the needs of stakeholders
and the accuracy of the modelling predictions at a fine
spatial-temporal resolution. This case study can be seen
as a reference case that provides a specific application of
the proposed framework and how the result could be
used to identify an overexposed population.
To illustrate the approach, contamination of the gen-

eral population is studied for a mixture of pyrethroids
(cypermethrin [50] and deltamethrin) in the Picardy re-
gion (Northern France). A cypermethrin and deltameth-
rin exposure assessment was carried out in 2013 over
the Picardy region in northern France. It is a moderately
densely populated region, with an area of 19,399 km2

and almost 2 million inhabitants - 3% of France’s total
population. Picardy is a region of field crops and one of
the major consumers of pesticides. According to the
French National Bank of Plant Protection Products Sales
by Authorized Distributors (BNV-D), about 12 tons of
cypermethrin and 6 tons of deltamethrin have been sold
in the region and spread over 1.3 million hectares of
agricultural land during this year, being used for cereal
and vegetable crops, orchards and vineyards [51].
Exposure to pesticides are characterized by a multipli-

city of exposure routes (food, water, soil, air) related to
their presence in all environmental media. For a fine
characterization of the environmental exposures, the
first prerequisite resides in the capacity to gather a data-
set, within the same analysis system, that combines
population behavior and the local contamination of the
environmental media at fine resolutions and over large
territories. Modeling the fate and transport of pyre-
throids between environmental components, exposure
media and the population required the integration of da-
tabases (Table S1) allowing the characterization of pollu-
tant sources in 2013 in Picardy, such as agricultural
spreading the meteorological parameters [52] and the
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environmental concentrations of substances in water
and food products [53–55].
An approach integrating and coupling models with en-

vironmental data has been developed [56] and applied to
this study (Fig. 2).
The models have been adapted to allow the integration

of the output data from an upstream model as input
data for the downstream model. One model assessed
ambient air concentrations and deposits (far-field) by
considering emission conditions either in particulate or
gaseous form and meteorological data (near-field). Then,
multimedia exposure models were used to estimate pol-
lutant transfers between each environmental component
(water, air, soil) to predict the exposure of pregnant
women resulting from the integration of all media con-
centrations [43, 57]. In addition to this local exposure,
the contribution of other exposure sources, e.g. non-
local food products, were modelled to be added to total
external exposure.

Input data

Agricultural data Annual quantities applied over agri-
cultural parcels in Picardy in 2013 were estimated with
data from the BNV-D [51]. Product sales extracted from
this database were spatially distributed under a method-
ology built by the French National Institute for Agricul-
ture, Food, and Environment (INRAE) according to the
land use (crop type) and the postal code of the purchaser
at field crop resolution. Based on data on the

agricultural spreading times provided by the departmen-
tal agricultural chambers, the quantities applied were
simulated at a tri-hour step.

Outdoor air Parameters including wind, temperature,
precipitation, humidity and cloudiness available at a 3-h
frequency were extracted from the meteorological sta-
tions of Dieppe, Lille, Caen, Rouen and Orly, these fram-
ing the target region and describing a representative
climate of northern France. Most notably for the atmos-
pheric dispersion statistical model, the database of the
Synop Essential network of surface stations of the World
Meteorological Organization (WMO) was used [52].

Non-local food Concentrations of cypermethrin and
deltamethrin in non-local, i.e. commercial, food products
came from the French Total Diet Study (EAT2) and
European Food Safety Authority’s measurement compi-
lations [53, 54]. Quantification frequencies of cyperme-
thrin and deltamethrin in commercial food products
were very low (both 0% for EAT2 study while 5.3 and
1.1% for the EFSA study respectively). Thus, two scenar-
ios were determined to frame exposure to commercial
products. The lower bound scenario (LB) is a minimalist
scenario for which the undetected values are considered
equal to 0 and the values detected but not quantified are
estimated equal to the limit of detection. The upper
bound scenario (UB) is a maximalist scenario for which
the undetected values are considered equal to the limit
of detection and the values detected but not quantified

Fig. 2 Conceptual scheme of the modeling approach used in this study. Environmental data (blue) are integrated into models (green) which
characterize the transfers of pesticide from the source to contamination of the target populations. The output data generated by these models
(white) are themselves integrated as input data for the following model. The external and internal exposure doses (yellow) are estimated at the
end of the modeling chain
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are estimated as equal to the limit of quantification. The
values used in the upper bound scenario correspond to
the maximum substance concentrations measured in
commercial food products.

Fate and transport modeling approach

Air concentrations and atmospheric deposits Based
on data from the BNV-D, departmental agricultural cham-
bers and the simulations of the quantities applied at a tri-
hour step, the distributions on soil, plant and air (drift) in
the first minutes after spreading were estimated from Pest-
LCI 2.0 (USEtox™) [58] combined with dynamiCROP [57]
for each crop in the Picardy region concerned with pyreth-
roid use. Air drift, as well as emission fluxes from soil and
plant volatilization, then fed the atmospheric model.
The large number of parcels, their heterogeneous

boundaries and the strong temporal variability of emis-
sions have directed the modeling approach towards a ma-
chine learning approach and the development of a
statistical metamodel. A database resulting from ADMS
(Numtech, version 5.2) simulations was thus constituted
based on emissions of one basic parcel and meteorological
parameters observed at surface stations. This database was
then used to learn the statistical model. Once the model
was calibrated and validated (Fig. S1), it was applied to all
parcels and provided atmospheric deposits and concentra-
tions of cypermethrin and deltamethrin either in the gas-
eous or particulate form at a three-hourly interval. The
form of the substance was assumed not to evolve after
emission and was considered to be a passive tracker.

Multimedia exposure model Multimedia exposure
modeling follows a mass balance approach and is based
on the resolution of differential equations with first-rate
kinetics. The modeling was performed with two

multimedia models, dynamiCROP for the assessment of
environmental transfers, and Modul’ERS to estimate
cypermethrin and deltamethrin daily exposure doses from
environmental components (water, air, soil and food).
Contamination of local food products cultivated in

vegetable gardens was estimated from atmospheric de-
posits on plants and root uptake from soil. Four crops
corresponding to the main food products self-consumed
were studied: apple, lettuce, potato and tomato. For each
crop, one plant model was used to integrate transfer
specificities (leaf, fruit, root, tuber). Transfers between
plant, air and soil were estimated from the dynamiCROP
model which was conveyed to the Python language to
reduce the large computing times generated by Excel
and MATLAB®. Pyrethroid concentrations were esti-
mated at harvest time. Lettuce being a crop harvested all
year round, all concentrations estimated each week of the
year were weighted according to the probability of har-
vesting based on the evolution of the leaf area index (LAI).
One model was provided for each crop studied (apple,

lettuce, potato, tomato) according to their specificities.
In each model, the calculation method of some parame-
ters was redefined from the initial model. The parame-
ters concerned were related to the biomasses (mass,
volume, area) of plant compartments (fruit, leaf, root,
stem), transfer coefficients between plant compartments
and flow rates (xylem, phloem). The initial model calcu-
lated these parameters considering average biomass
values over the year. The new calculation method con-
siders biomass values that change over time.
A percentage of self-consumption was defined from

INSEE data [59]. It corresponds to the difference be-
tween total food consumption per person and consump-
tion of commercial products. Four scenarios were
defined, based on the number of inhabitants per urban
unit (1) a municipality with less than 2000 inhabitants

Fig. 3 Mapping for urinary concentrations of 3-PBA in the general population. a Mean annual urinary concentrations (lower bound); b) Mean
annual urinary concentrations (upper bound)
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(2) between 2000 and 10,000 (3) between 10,000 and
100,000 (4) with more than 100,000 (Fig. S2).
Consumption of commercial food products was esti-

mated using concentration measurements from French and
European studies and mean dietary beverage consumption
from a French study. Aggregated multimedia exposure was
then assessed from ingestion and inhalation pathways. The
inhalation pathway was given as the sum of pyrethroid con-
centrations in their particulate and gaseous forms. The in-
gestion pathway was estimated considering weight, the
quantities of food products ingested, water consumption,
soil ingestion and a self-consumption factor characterizing
the ingestion of local food products (Fig. S3).

Toxicokinetic modeling and internal exposure To
model the pharmacokinetic behavior of cypermethrin and
deltamethrin as well as a common metabolite: 3-PBA, a
PBPK/PD model was used that has been developed by Quin-
droit et al. [26]. The model structure includes 23 tissue com-
partments for the parent compounds and one urinary
compartment for the metabolites. It gives estimations of
organ and blood concentrations of the parent compounds as
well as urinary excretion of 3-PBA. This model takes into ac-
count changes in physiology, metabolism and sensitivity to
toxicity over life-stages from childhood to adulthood and
multi-route exposure. It was parameterized from animal
in vivo experiments, in vitro human cells and in silico esti-
mates (QSAR models). Urinary excretion of 3-PBA was cali-
brated from experimental data on human volunteers.

Statistical analysis Pyrethroid exposure was assessed
over a weekly time period and a regular grid with a
spatial resolution of 4 km2. The regular grid constituted
a common spatial unit on which all the data were
described.

In order to construct exposure maps from spatialized
databases, several statistical methods were used to spe-
cifically address environmental, behavioral or popula-
tional databases to increase their representativeness
regarding the objectives of exposure characterization.
Data processing methods were adapted from the GIS-
based modeling platform PLAINE. Statistical and geo-
processing methods interfaced in a GIS were primarily
used to bypass the issues generated by data gaps and es-
timate exposure indicators in the areas of interest.
Since air inputs were the main environmental spatial de-

terminant considered in the modeling, a geostatistical ana-
lysis was conducted on atmospheric concentrations and
deposits to assess spatial autocorrelations. This analysis
was conducted in order to (1) better define a relevant grid
spatial resolution for reducing computation time and (2)
investigate the possibility of estimating exposure at a spe-
cific point (i.e. the located address of a cohort participant
to compare with a measured biomarker) using the initial
grid calculation. This analysis consisted of studying the
sample 2D-variogram and testing the spatial anisotropy.

Environmental inequality determinant analysis
Annual mean 3-PBA urinary concentrations, resulting
from the aggregation of inhalation and ingestion path-
ways, are comprised between 1.4 × 10− 6 and 8.6 × 10− 5

mg/L in the lower bound scenario. With the upper
bound scenario, the range of 3-PBA urinary concentra-
tions varies by 5% for the annual mean and fall between
2.5 × 10− 3 and 2.6 × 10− 3 mg/L (Fig. 3).
The contributions of each parent compound to 3-PBA

urinary concentrations vary depending on dietary as-
sumptions. Cypermethrin counts for 76% of total 3-PBA
urinary concentrations in the lower bound scenario and
reaches 98% in the upper bound scenario (Fig. 4). The

Fig. 4 Mean contributions of pyrethroids to cumulated 3-PBA urinary concentrations for the lower bound and upper bound scenarios
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significant contribution made by cypermethrin com-
pared to deltamethrin can be explained by higher con-
centrations in the environmental components and
commercial food products.

Conclusion
The exposome concept has been proposed as an emer-
gent exposure science paradigm for conceptualizing the
cumulative effects of environmental exposures across an
entire human life. The need for a risk manager to iden-
tify a population at-risk in the context of substantial data
deficiencies, which hinder the evaluation of cumulative
health risks, means there is an operational decline in the
concept at the territorial scale in the context of EHI
characterization. The characterization of the territorial-
ized exposome implies the development of dynamic,
multidimensional, longitudinal approaches, and informa-
tion systems that require the adoption of transdisciplin-
ary methods of data analysis. For example, integrated
approaches bring together all the information necessary
for assessing the source-to-human-dose continuum
using GIS, multimedia exposure and the toxicokinetic
model.
This framework could be used for many purposes,

such as:
- mapping EHI;
- identifying vulnerable populations and determining

exposure to manage and plan remedial actions;
- highlighting hotspots with significantly elevated ex-

posure indicator values to define environmental moni-
toring campaigns;
- assessing spatial relationships between health, socio-

economic and environment to identify factors that influ-
ence the variability of disease patterns or environmental
injustice.
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