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Abstract: A mini particle sampler (MPS) equipped with a transmission electron microscopy (TEM) grid enables 

convenient particle sampling to subsequent analysis. However, its sampling efficiency involves uncertainties, and 

accurate sampling efficiency is required for particle collection applications. In this study, the sampling efficiency 

uncertainties from measured data and models are quantified using Monte-Carlo methods. The Sobol variance-based 

sensitivity analysis is used to determine the contributions of parameters to the sampling efficiency uncertainties. The 

results reveal that the sampling efficiency uncertainties from experimental dispersion calibration and theoretical 

models are generally less than 1% and 9%, respectively. Most sampling efficiencies measured data are covered by 

the efficiency uncertainty range simulated by theoretical models. The pore size and flowrate contribute significantly 

to the sampling efficiency uncertainties, and require control to improve the precision of sampling efficiency. Besides, 

the Cunningham correction factor is also a sensitivity parameter. The utilization of proper models is crucial to support 

simulations for further process optimization. This study offers a quantitative method for nanoparticle collection 

efficiency analysis, which will help assess nanomaterials’ workplace exposure.  
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1 Introduction 

Using the TEM and related techniques to analyze airborne nanoparticles is a suitable approach for nanoparticle 

structure characterization [1, 2] and nano-exposure assessment [3-6]. Collecting particles directly onto TEM grids 

is an effective technique due to the direct microscopic analysis post-collection [7]. This approach to collect 

nanoparticles involves deposition mechanisms including electrostatic precipitation [8, 9], thermophoretic 

precipitation [10-12], and Brownian-diffusion [13, 14]. Recently, a low-cost, portable, and easy used instrument,  

TEM grid-equipped Mini Particle Sampler, was developed by Institute National de l’Environnement Industrial et 

des Risques (INERIS) and commercialized by the company Ecomesure, , as shown in Fig. 1 [15-17]. Researches on 

powder structure characterization [18-19] and nanomaterial exposure assessment [20-24] have validated the 

applicability of the MPS.  

However, when collecting airborne nanoparticles by MPS, an accurate sampling efficiency is expected for 

subsequent quantitative analysis and application. The fluctuations among samples and the associated uncertainties 

in the experimental dispersion calibration require checks. Besides, the sampling efficiency of TEM grids can be 

modeled by filtration mechanisms [15]. The involved parameters bring uncertainties due to the measurement errors, 

insufficient observation data, imperfections in the manufacturing process [25]. For example, the parameter “pore 

size” brings uncertainties since the pores are not strictly uniformly distributed with the nominal diameter. Moreover, 

these models imply assumptions, thereby accentuating uncertainty [25]. For example, the models assume different 

flow types and need to be carefully selected. Therefore, implementing uncertainty analysis in particle sampling is 

necessary.  
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Fig. 1. Concept diagram of the TEM grid-equipped MPS 

The Monte Carlo (MC) method is mostly used to compute the propagation of the random parameter uncertainties 

[26]. It is an advanced tool to facilitate the uncertainty analysis. Using the theory of probability, uncertain parameters 

can be described as variables for quantifying the sampling efficiency. Random samples of these parameters are 

generated according to their distributions. Each of these samples defines a deterministic problem, which is solved 

by generating an amount of data using a deterministic technique. Then, all these data are combined with statistics to 

access the output [27]. In addition, Sobol variance-based sensitivity analysis is used to indicate the contributions of 

the influence factors to the uncertainties. It is a global, variance-based method and can be used to explore how the 

output would be changed in response to variations in key parameters. This method is recommended by environmental 

regulations [28, 29]. Working within a probabilistic framework, it decomposes the variance of the model output into 

fractions attributed to individual parameters and the interactions between them. 

In this study, the collection efficiency uncertainty of the TEM grid is evaluated using the MC method. Uncertainties 

from measured data and models are compared. The Sobol variance-based sensitivity analysis method is used to 

quantify the contributions of parameters to the sampling efficiency uncertainties. The here study proposes the first 

approach to perform quantitative analysis in nanoparticle collection. 



4 

 

2 Nanoparticle sampling efficiency of the TEM grid 

2.1 Experimental sampling efficiency 

The experimental design for checking the TEM grid-equipped MPS sampling efficiency is shown in Fig. 2. A 

membrane dryer generated clean, dry, and compressed air. Stable polydisperse salt solid particles, e.g., NaCl particles, 

were generated out of a 0.2 mmol/L NaCl solution using an atomizer (PALAS AGK 2000) by spray . 0.8 bar applied 

pressure was selected. Waterdrops were removed by two dryers, and the extra airflow was emitted through a HEPA 

filter. Quasi-monodisperse particles were selected  

by an electrostatic classifier (3082, TSI) consists of an impactor, a neutralizer (3088), and a nano Differential 

Mobility Analyzer (DMA 3085A). The inertial impactor was used to remove large particles outside the instrument's 

measurement range. The neutralizer was utilized to establish an equilibrium charge state on the particles, with known 

percentages of particles carrying no charge, single charge, and multiple charges associated with positive and negative 

polarities entering the DMA [30, 31]. The DMA was used to remove the residuals of ultrapure water and choose 

particles within a narrow range of electrical mobility. Besides the mobility, particle diameters selected from the DMA 

also depend on the number of charges on the particles. That means singly charged particles with the chosen mobility 

diameter and bigger particles with multiply charges were selected. However, for particles smaller than 100 nm, the 

singly charged particles were much more than the multiply charged particles [32]. Thus most of the generated 

particles were monodisperse. Then the aerosolized particles were neutralized by another radioactive source (TSI 

3087) upstream of the filter to avoid electrostatic effects on the filtration [33, 34]. Valves were utilized for inducing 

the flow to two symmetrically placed MPS, one with a TEM grid installed. Finally, the particle number concentration 

was measured by a Condensation Particle Counter (CPC 3787, TSI). The experimental sampling efficiency Exp 

corresponding to the selected size was calculated based on the particle number concentration [35]: 

Exp = 1 − 𝐶with 𝐶without⁄ (1) 
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Where 𝐶with and 𝐶without are the particle number concentration downstream of MPS, and measured by CPCwith 

and without TEM grid, respectively.  

 

Fig. 2. Experimental set-up 

According to the standard NF EN 13205-2, assessing the aerosol sampler performance [36]. Here the particle 

electrical mobility diameters were set as 5 nm, 7 nm, 10 nm, 20 nm, 30 nm, 40 nm, 60 nm, 80 nm, and 100 nm. Tests 

for each size were repeated three times. The sampling time of each step was 40 s.  

2.2 Semi-empirical theoretical sampling efficiency  

Theoretical models were used to simulate the filter collection efficiency by investigating the sampling mechanisms. 

According to Fig. 1, the TEM grid consists of a “Quantifoil” type holey carbon film and a copper mesh. Pores are 

almost uniform in size, hence the Nuclepore model was picked. According to Ogura et al. (2014) [17], the majority 

of the particles were captured by the carbon film because the pore size of the carbon film (1-2 µm) was much smaller 

than that of the copper mesh (≥ 40 µm). The collection efficiency of the copper mesh can be ignored. Assume that 

the carbon film thickness is 𝐿f, the pore radius is 𝑟0, and the pore area is 𝐴0. The number of pores per surface unit 

of the carbon film is expressed as N0: 𝑁0 = 1 (𝑚 + 𝑛)2⁄ . Where m is the pore size and n is the pore distance. The 

ratio of the opening of the pore to the total filter surface is the porosity P: 𝑃 = 𝐴0𝑁0 = 𝜋𝑟0
2𝑁0 [ 

37, 38]. A cylindrical air stream with a radius 𝑟c passes through a unitary pore, 𝑟c = 𝑟0 √𝑃⁄  [37, 38]. Particles are 

collected onto the filter surface, or depositing on the wall of the filter pores. Distinct capture mechanisms were found: 

a) filter pore wall capture by Brownian diffusion, and b) interception; filter surface capture by c) Brownian diffusion, 

and d) impaction [39-41]. 
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For the sampling system, high flowrates are unallowed (> 1 L/min) due to the load limit of the TEM grid and CPC. 

Hence low Reynold numbers are found in the airflow field. It is given by:  

𝑅𝑒 = 𝑟c𝑈0 𝜐⁄ (2) 

Where 𝜐 is the kinematic fluid viscosity. The face velocity U0 is given by the flowrate Q and the section area of the 

filter: 

𝑈0 = 𝑄 (𝜋 4⁄ )𝑑f
2⁄ (3) 

𝑑f  is the diameter of the TEM grid, and the nominal value is 2 mm. 

Since the flow with a low Reynold number goes through thin circular pipe, the flow type can be considered as 

laminar flow. According to the flow conditions and TEM grids’ structural characteristics, theoretical models for 

calculating collection efficiency have been chosen. Considering that flow slip at the filter pore wall could affect the 

filtration mechanism, especially might enhance the sampling efficiency in the intermediate crossover regime 

between Brownian diffusion and direct interception [42], the model of Marre [42] to calculate the pore wall 

deposition: combined efficiency of pore wall diffusion and interception 𝐸DR was chosen [43]. 

𝐸DR =
4𝑦∗2

1 + 4𝑁𝐺
(1 + 2

𝑁𝐺

𝑦∗ ) (4) 

Here, 

𝑁𝐺 = 𝑁𝑔(1 + 𝑁𝑔 2⁄ ) (5) 

is a slip parameter 𝑁𝑔 (= 𝑙𝑔 𝑟0⁄ ) based parameter, and lg is the slip length. 

𝑦∗ =
ℎ2/3 + 𝑘2𝛤2 + (4𝑁𝑅𝑢𝑖 − 𝑢0)𝛤ℎ1/3

6𝛤𝑢𝑖ℎ1/3
(6) 

is the normalized distance with 

ℎ = 𝛤2 (54𝑢𝑖
2 − 𝑘3𝛤 + 6√81𝑢𝑖

2 − 3𝑘3𝛤𝑢𝑖) (7) 

𝑘 = 2𝑁𝑅𝑢𝑖 + 𝑢0 (8) 

and 
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𝑢0 =
2𝑁𝐺

1 + 4𝑁𝐺

(9) 

𝑢𝑖 =
1

1 + 4𝑁𝐺

(10) 

and 

𝑁𝑅 = 𝑁𝑟(1 − 𝑁𝑟 2⁄ ) (11) 

with 𝑁𝑟 (= 𝑟P 𝑟0⁄ ) the normalized particle size, 𝑟p is the particle radius.  

𝛤 is a γ - based parameter calculated as: 

𝛤 = 𝛾(1 − 0.469𝛾−1/3 − 0.069𝛾−2/3)
−3/2

(12) 

For 𝛾 >100, and 

𝛤 = 4 [
1 − 0.81904 exp(−3.6568𝛾−1) − 0.09752 exp(−22.3045𝛾−1) − 0.03248 exp(−56.95𝛾−1)

−0.0157 exp(−107.6𝛾−1)
]

−3/2

(13) 

For 𝛾 <100.𝛾 determines the importance of axial convection with respect to radial diffusion: 

𝛾 =
𝑈0𝑟0

2

𝐷𝐿f

(14) 

𝐷 is diffusion coefficient calculated by Stokes-Einstein equation [35,44]: 

𝐷 =
𝐾𝑇𝐶𝑐

6𝜋𝜂𝑟p

(15) 

Where K is the Boltzmann constant; T is the temperature; 𝜂 is the fluid dynamic viscosity. Cc is the Cunningham 

correction factor related to coefficients a, b, c, and 𝐾𝑛:  

𝐶𝑐 = 1 + 𝐾𝑛[𝑎 + 𝑏𝑒𝑥𝑝(−𝑐 𝐾𝑛⁄ )] (16) 

𝐾𝑛 is Knudsen’s number, a dimensionless number, defined as λ 𝑟P⁄ . 𝜆 is the fluid molecule mean free path.  

For the diffusion efficiency due to particle deposition on the filter surface 𝐸DS, the model of Manton [38] was 

selected: 

𝐸DS = 1 − 𝑒𝑥𝑝 {−
𝛼1𝒟2 3⁄

[1+(𝛼1 𝛼2⁄ )𝒟7 15⁄ ]
} (17)

Where 𝛼2 = 4.5, 𝒟 = 𝐷/𝑟c𝑈0 is the normalized diffusion coefficient, 𝛼1 is a parameter determined by the least-

squares fitting, which related to the filter porosity: 
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𝛼1  =  4.57 − 6.46𝑃 + 4.58𝑃2 (18) 

For impaction efficiency, the model of Pich [45] fits our sampling conditions. Laminar flow with parabolic 

streamlines and constant flow velocity in the flow direction are supposed in this model. It is calculated as: 

𝐸I =
2𝜀𝑖

1 + 𝜉
− (

𝜀𝑖

1 + 𝜉
)

2

(19) 

with 

ε𝑖 = 2𝑆𝑡𝑘√𝜉 + 2𝑆𝑡𝑘2𝜉𝑒𝑥𝑝 [−
1

𝑆𝑡𝑘√𝜉
] − 2𝑆𝑡𝑘2𝜉 (20) 

𝜉 =
√𝑃

1 − √𝑃
(21) 

Stk, the Stokes number is given by: 

𝑆𝑡𝑘 =
2𝐶𝑐𝑈0𝑟p

2𝜌p  

9𝜂𝑟0

(22) 

Where ρp is the particle density.  

The overall collection efficiency is calculated from the different sampling mechanisms as [35]: 

𝐸th = 1 − (1 − 𝐸DR)(1 − 𝐸DS)(1 − 𝐸I) (23) 

3 Uncertainty analysis of TEM grid sampling efficiency 

3.1 Uncertainty in the experimental dispersion calibration simulated by Monte Carlo 

In the tests, the responses of CPC 𝐶𝑑𝑜𝑤𝑛 and 𝐶𝑢𝑝 are fluctuant in three scans . The experimental dispersion due to 

fluctuations among samples requires calibration. The calibrated data can be modeled as samples drawn from a 

Multivariate normal vector whose parameters are inferred from the raw measured particle counts [46]. The 

uncertainty is described using the MC method with a 95% confidence region over the nine diameters. 30000 samples 

are selected. 

Let 
𝐶
→ be the 9×3 matrix of raw count samples containing 9-dimensional vectors (9 diameters) with 3 repeats: 

𝐶
→ = [

𝑟1𝑑p[1] 𝑟2𝑑p[1] 𝑟3𝑑p[1]

𝑟1𝑑p[2] 𝑟2𝑑p[2] 𝑟3𝑑p[2]
⋮

𝑟1𝑑p[9]
⋮

𝑟2𝑑p[9]
⋮

𝑟3𝑑p[9]

] (24) 
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Let 𝑅
𝐶
→  be a 9×9 empirical correlation matrix containing the pairwise Pearson’s linear correlation coefficient 

between each pair of columns in the matrix 
𝐶
→𝑇. It can be decomposed by singular value decomposition: 𝑅

𝐶
→ =

𝑈𝑅
𝐶
→

Σ𝑅
𝐶
→

𝑈𝑅
𝐶
→

𝑇 . 𝑈𝑅
𝐶
→

 is the orthogonal matrix or rotation matrix of the singular value decomposition of 𝑅
𝐶
→. Σ𝑅

𝐶
→

 is 

the diagonal matrix with non-negative real numbers known as the singular values of 𝑅
𝐶
→  on the diagonal. The 

measured samples 
𝐶
→̃ are modeled as: 

𝐶
→̃ = 𝜇

𝐶
→ + (𝑈𝑅

𝐶
→

∑ 𝓏

1
2

𝑅
𝐶
→

) ○ 𝜎
𝐶
→ (25) 

𝒵 is the Multivariate standard Gaussian distribution with  𝒵 ~ 𝒩(0,
𝐼9

⇒). 
𝐼9

⇒ is a 9-dimensional unit matrix, and 

○ is the Hadamard product. 𝜇
𝐶
→ and 𝜎

𝐶
→ are the 9-dimensional mean vector and standard deviation vector of 

𝐶
→, 

which are computed by: 

𝜇
𝐶
→[𝑖] =

1

3
∑

𝐶
→ [𝑟, 𝑖], 𝜎

𝐶
→[𝑖] = √

1

2
∑ (

𝐶
→ [𝑟, 𝑖] − 𝜇

𝐶
→[𝑖])

2
3

𝑟=1

, 𝑖 = 1, … , 9

3

𝑟=1

(26) 

3.2 Model uncertainty simulated by Monte Carlo 

Sampling efficiencies calculated by the theoretical models depend on parameters referring to filter properties, 

particle properties, flow conditions, and coefficients. All of these parameters are the sources of uncertainties. The 

combined uncertainties are propagated by the probability distribution of each parameter using the MC method with 

a 95% confidence region. 30000 samples are selected. Take the case of collecting NaCl nanoparticles by 1.2/1.3 

“Quantifoil” holey carbon film 400 mesh copper TEM grid (1.2 µm nominal pore size with 1.3 µm nominal pore 

distance) at a flowrate of 0.6 L/min. The sources of uncertainties and the associated statistical models are listed in 

Table 1. 

Table 1 List of the uncertainty sources and the associated modelings 

Sources Uncertainty model 

K Gaussian distribution with mean 1.380649 * 10-23 J/K  
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T Arcsine distribution with mean 300 K 

𝜂 Gaussian distribution with mean 1.85 * 10-5 kg/(m∙s)  

lg Uniform distribution with mean 1.126 * 69.3 nm 

Lf Uniform distribution with mean 0.02 µm 

r0 Uniform distribution with mean 0.65 µm 

N0 Uniform distribution with mean 0.1276  

P Uniform distribution with mean 2111.15 kg/m3 

U0 Uniform distribution with mean 2.9178 m/s 

Cc Multivariate Gaussian distribution with parameters identified from the literature 

(1) Boltzmann constant K 

The Boltzmann constant is used to calculate the diffusion coefficient. It is modeled as a Gaussian random variable 

with a mean of 1.380649×10−23 J/K. The relative standard uncertainties based on different independent 

measurements are less than 7.9 × 10−30 J/K, according to the 26th meeting of the General Conference on Weights 

and Measures (CGPM). 

(2) Temperature T 

Temperature is used to calculate the diffusion coefficient. 300 k was set in DMA. The temperature of aerosol passing 

through the TEM gird is modeled by an arcsine distribution (26.35+273.15 K, 27.35+273.15 K) [46, 47]. 

(3) Fluid dynamic viscosity η 

Dynamic gas viscosity is used to calculate the diffusion coefficient and the Stokes number. It is expressed by the 

Sutherland formula 

𝜂 = 𝜂0 ∗ (
𝑇

𝑇0
)

3 2⁄

∗ (
𝑇0 + 𝐵

𝑇 + 𝐵
) (27) 

Where T0 is 296.15 K, B is 110.4 K, the viscosity of air 𝜂0 is modeled as a normal random variable 𝜂0 ~ N (𝜂0,
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𝜎𝜂0

2 ) with a mean of 1.83245 * 10-5 kg/(m∙s) and standard deviation of 0.00069 * 10-5 kg/(m∙s) according to Birge 

[48]. 

(4) Slip length Lg 

Lg is equal to S𝜆. S is a coefficient ranging from 1-1.4 [49], and 1.126 is recommended in recent years [50]. It is 

modeled by a uniform distribution, S ~ U (1, 1.252).  is described as: 

𝜆 = 𝜆0 (
𝑇

𝑇0
) (

𝑃0

𝑃𝑟
) (

1 + 𝐵 𝑇0⁄

1 + 𝐵 𝑇⁄
) (28) 

Where 𝜆0 is 67.3 nm, 𝑃0 is 101.3 kPa [51]. The pressure Pr set in DMA was 100 kPa. The pressure of aerosol 

passing through the TEM gird is modeled by an arcsine distribution (100-0.1 kPa, 100+0.1 kPa) [46]. 

(5) Filter thickness Lf 

The nominal filter thickness provided by the manufacturer is 0.02 µm, it is modeled by a uniform distribution, Lf ~ 

U (0.02-0.0005 µm, 0.02+0.0005 µm). 

(6) Pore radius r0 

The pore radius of the 1.2/1.3 type grid provided by the manufacturer is 0.6 µm. The average value of at least 100 

measurements is 0.65 µm. It is modeled by a uniform distribution, r0 ~ U (0.6 µm, 0.7 µm). 

(7) Number of pores per surface unit of filter N0 

The pore size m and the pore distance n for calculating N0 can be modeled by uniform distributions: m ~ U (1.2 µm, 

1.4 µm), n ~ U (1.4 µm, 1.6 µm).  

(8) Particle density p 

The NaCl particle density is 2165 kg/m3, and the purity provided by the manufacturer is 99.5%. Besides, the NaCl 

particle entering the DMA may be covered by waterdrops, which decreases its density. Hence, the NaCl particle 

density is modeled as a uniform distribution: p ~ U (2046.466 kg/m3, 2175.825 kg/m3). 

(9) Face velocity U0 
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0.6 L/min flow goes through the filter by the control of the pump of CPC. The flowrate measured by the flowmeter 

inside of DMA is ranging between 0.5-0.6 L/min. Hence, the flowrate in the MPS is between 0.5-0.6 L/min. The 

corresponding face velocity can be modeled by a uniform distribution, U0 ~ U (2.6526 m/s, 3.1831 m/s). 

(10) Cunningham correction factor Cc 

Cc can be modeled by a multivariate Gaussian distribution with coefficients a, b, c identified from the literature. 

Table 2 summarizes some recently published values of these coefficients recommended by standard ISO 15900 [52].  

Table 2 Recently published value of coefficients a, b, c for calculating Cunningham correction factor [52] 

 a b C 

Allen et Raabe (1985) [53] 1.142 0.558 0.999 

Hutchins et al. (1995) [54] 1.231 0.4695 1.1783 

Kim et al. (2005) [51] 1.165 0.483 0.997 

Jung et al. (2012) [55] 1.165 0.48 1.001 

Using simulations of L. Coquellin [46], the coefficients are modeled as truncated Gaussian distributions A, B, C, 

respectively. Let 𝜃𝐴,𝐵,𝐶 = (
𝐴
𝐵
𝐶

), 𝜃𝐴,𝐵,𝐶
𝐴 = (

𝑎𝐴

𝑏𝐴

𝑐𝐴

), 𝜃𝐴,𝐵,𝐶
𝐻 = (

𝑎𝐻

𝑏𝐻

𝑐𝐻

), 𝜃𝐴,𝐵,𝐶
𝐽

= (

𝑎𝐽

𝑏𝐽

𝑐𝐽

), 𝜃𝐴,𝐵,𝐶
𝐾 = (

𝑎𝐾

𝑏𝐾

𝑐𝐾

). A, H, J, K refer 

to the results of the four authors listed in Table 2. 

𝜃𝐴,𝐵,𝐶  ~ 𝒩[𝜃𝐴,𝐵,𝐶
𝑙𝑜𝑤 , 𝜃𝐴,𝐵,𝐶

𝑢𝑝
] (𝜃𝐴,𝐵,𝐶

𝑚𝑒𝑎𝑛 , ∑ 𝜃𝐴,𝐵,𝐶) (29) 

𝜃𝐴,𝐵,𝐶
𝑙𝑜𝑤 = (

𝑎𝐻

𝑏𝐻

𝑐𝐾

) = (
1.142

0.4695
0.997

) , 𝜃𝐴,𝐵,𝐶
𝑚𝑒𝑎𝑛 = (

𝑎𝐽

𝑏𝐽

𝑐𝐽

) = (
1.165
0.480
1.001

) ,  𝜃𝐴,𝐵,𝐶
𝑢𝑝

= (

𝑎𝐽

𝑏𝐽

𝑐𝐽

) = (
1.231
0.558

1.1783
) (30) 

The covariance matrix ∑ 𝜃𝐴,𝐵,𝐶  is defined as: 

∑ 𝜃𝐴,𝐵,𝐶 = 𝑑𝑖𝑎𝑔 (max (|𝜃𝐴,𝐵,𝐶
𝑚𝑒𝑎𝑛 − 𝜃𝐴,𝐵,𝐶

𝑙𝑜𝑤 |
2

, |𝜃𝐴,𝐵,𝐶
𝑢𝑝

− 𝜃𝐴,𝐵,𝐶
𝑚𝑒𝑎𝑛|

2
)) (31) 

3.3 Model parameter sensitivity analysis using Sobol method 

Modeling the sampling efficiency based on the above ten parameters: Y = f (X). X is the vector of uncertain model 
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inputs (X1, X2, ... Xi, ... Xj, ... X10), and Y is the output sampling efficiency. The input distributions are derived from 

the uncertainty models. The following functional decomposition scheme is considered [56]:  

𝑓 = 𝑓0 + ∑ 𝑓𝑖

𝑖

+ ∑ ∑ 𝑓𝑖𝑗

𝑗>𝑖𝑖

+ ⋯ + 𝑓12…10 (32) 

The functions can be obtained from the conditional expectations: 

𝑓0 = 𝐸(𝑌) (33) 

𝑓𝑖 = 𝐸X~𝑖
(𝑌|𝑋𝑖) − 𝐸(𝑌) (34) 

𝑓𝑖𝑗 = 𝐸𝑋~𝑖𝑗
(𝑌|𝑋𝑖 , 𝑋𝑗) − 𝑓𝑖 − 𝑓𝑗 − 𝐸(𝑌) (35) 

And similarly for higher orders. 

The decomposition of total output variance to individual model parameters and their interactions can be written as:  

𝑉(𝑌) = ∑ 𝑉𝑖 + ∑ 𝑉𝑖𝑗 + ⋯ + 𝑉12…10

10

𝑖<𝑗

10

𝑖=1

(36) 

𝑉𝑖 = 𝑉𝑋𝑖
(𝐸X~𝑖

(𝑌|𝑋𝑖)) (37) 

𝑉𝑖𝑗 = 𝑉𝑋𝑖𝑗
(𝐸X~𝑖𝑗

(𝑌|𝑋𝑖 , 𝑋𝑗)) − 𝑉𝑖 − 𝑉𝑗 (38) 

Where Vi is the first-order variance contribution of the i-th parameter, Vij is the second-order contribution of the 

interaction between parameters i and j; and V12…10 contains all interactions higher than third-order, up to 10 total 

parameters. 

Indicate the X~i notation as the set of all variables except Xi, the first-order index (Si) and total-order index (STi) [57] 

are defined as: 

𝑆𝑖 = 𝑉𝑖 𝑉(𝑌)⁄ (39) 

𝑆𝑇𝑖
=

𝐸𝑋~𝑖
(𝑉𝑋𝑖

(𝑌|X~𝑖))

𝑉(𝑌)
(40) 

The first-order index is the fraction of the total output variance caused by the parameter i. The total-order index 

measures the total contribution to the output variance of Xi, including its individual effects plus an estimate of its 

interactions with all other parameters. 
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A global sample of the parameter space is taken using a quasi-random Sobol sequence of values to achieve uniform 

coverage of the space [58, 59]. Two independent sampling matrices A and B, with N×10 dimensions, are assumed. 

The index i running from one to ten is the number of parameters, while the index j running from one to N is the 

number of simulations. Introducing matrix 𝐴B
𝑖  where all columns are from A except the i-th column which is from 

B, Sobol sensitivity indices are calculated using the MC estimators as [60]: 

𝑉𝑋𝑖
(𝐸X~𝑖

(𝑌|𝑋𝑖)) ≈
1

𝑁
∑ 𝑓(B)𝑗 (𝑓(AB

𝑖 )
𝑗

− 𝑓(A)𝑗)

𝑁

𝑗=1

(41) 

𝐸X~𝑖
(𝑉𝑋𝑖

(𝑌|X~𝑖)) ≈
1

2𝑁
∑ (𝑓(A)𝑗 − 𝑓(AB

𝑖 )
𝑗
)

2
𝑁

𝑗=1

(42) 

Parameters with sensitivity indices greater than 0.1 are considered significant. 1,000,000 samples were selected for 

convergence of the results.  

4 Results and discussion 

4.1 Uncertainty analysis of sampling efficiency 

Fig. 3 shows the NaCl nanoparticle sampling efficiency uncertainties from experimental dispersion calibration and 

models. The uncertainties from experimental dispersion calibration (Exp) are simulated for 9 sizes and described 

according to the measured samples 
𝐶
→̃. The mean values are marked. The model uncertainties are described by an 

envelope of reliability (grey shadow) according to the parameter range. The figure also shows the mean overall 

efficiency  (Eth) and the mean efficiency due to individual sampling mechanisms: EDS, EDR, and EI. Table 3 shows 

the mean and uncertainty of experimental and theoretical sampling efficiency at different particle sizes. Here the 

uncertainty is calculated by 1/2 of the reliability envelope. Fig. 4 presents representative TEM images of 100 nm 

NaCl particles collected on the 1.2/1.3 carbon film TEM grid at the flowrate of 0.6 L/min. Analyzing with ImageJ, 
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most of the particles are homogeneously distributed with a size of 100 nm. Bigger particles observed may be caused 

by multiply charged. 

Fig. 3.NaCl nanoparticle sampling efficiency uncertainties from experimental dispersion calibration and models 

Table 3 Mean and uncertainty of sampling efficiency from measured data and theoretical models for monodisperse 

NaCl nanoparticles 

Diameter 5 nm 7 nm 10 nm 20 nm 30 nm 40 nm 60 nm 80 nm 100 nm 

Measurement 

Mean 0.6282 0.3726 0.2972 0.3203 0.3516 0.3916 0.5008 0.6249 0.7000 

Uncertainty 0.18000 0.00012 0.00032 0.00009 0.00006 0.00001 0.00002 0.00006 0.00003 

Model  

Mean  0.4395 0.3568 0.3042 0.3045 0.3649 0.4263 0.5270 0.5997 0.6529 

Uncertainty 0.07035 0.06032 0.05101 0.06216 0.07282 0.08577 0.07509 0.06822 0.06731 
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Fig. 4. Representative TEM images of NaCl particles with a mobility diameter of 100 nm 

The sampling efficiency curve shows U-shape with a minimum. The uncertainties from measured data are mostly 

covered by those from the theoretical models. The averages of the experimental  collection efficiencies  are 

between 29% and 70%, with a minimum at 10 nm. The uncertainties from experimental dispersion calibration are 

mostly less than 1%. For 5 nm particles, a large error bar is found. The number concentration of 5 nm particles 

generated by the atomizer is too low to be constant, which increases the uncertainty. Besides, 5 nm is the detection 

limit of the used CPC [61]. The minimum of the efficiency calculated by the theoretical models (Eth) is about29% at 

a particle diameter of around 14 nm. This is consistent with the experimental results. The uncertainties of theoretical 

efficiencies for the nano-scale particles are between 5% and 9%. For particles smaller than 10 nm, the surface 

diffusion mechanism EDS is significant for particle collection. And for those larger than 10 nm, impaction EI is an 

essential mechanism. Collection efficiencies due to wall deposition EDR are smaller than 12% for particles with 

diameters of 5-100 nm because of the small pore length and pore size ratio [62]. 

4.2 Sensitivity analysis of uncertain parameters 

Fig. 5 shows the parameter sensitivity analysis of 10, 20, 50, and 100 nm NaCl particle theoretical collection 

efficiency. 
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The results depict that the primary source of uncertainties is pore size r0 for particles in the nano-scale, with indices 

larger than 0.1. Pore size changes the collection efficiency due to diffusion and impaction. The uncertainties vary 

with particle sizes. Cc is significant for small particles, while for large particles, flowrate U0 becomes an important 

parameter. Cc is used to correct Stokes’s law because the no-slip boundary condition is violated for small particles 

moving with respect to the gaseous medium [53]. Different coefficients of Cc derived from the measurements bring 

great uncertainties to the model efficiency. The impaction mechanism, which is mainly affected by flowrate, 

significantly contributes to large particle collection.  

Conversely, low indices are shown for the parameters: lg, Lf, , η, T, K. Boltzmann constant K, slip length Lg, and 

fluid dynamic viscosity η are quasi-constants, bringing minor contributions to the sampling efficiency uncertainties. 

TEM grid thickness Lf and aerosol temperature T are also insensitive parameters due to their small ranges (0.02-

0.0005 µm, 0.02+0.0005 µm; 26.35+273.15 K, 27.35+273.15 K). High purity decides a small particle density range, 

which leads to a minor uncertainty as well. For most of the parameters, the difference between the first-order index 

and total order index is large, which validates that these parameters affect sampling efficiency mainly by interacting 

with other parameters. The slightly negative first-order index estimation occurs when the index insignificantly differs 

from 0 63].  
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Fig. 5. Parameter sensitivity analysis of the NaCl particle sampling efficiency for sizes of (a) 10 nm; (b) 20 nm; (c) 

50 nm; and (d) 100 nm. 

4.3 The effects of sampling conditions 

According to the sensitivity analysis results, pore size and flowrate are controllable sensitive parameters for sampling 

efficiency. Measurements have been carried out using different  

TEM grids and flowrates. CsCl nanoparticles were generated by the atomizer filled with CsCl solution to explore 

the impact of particle density. The parameter ranges are shown in Table 4.  

Table 4 Parameter ranges at different sampling conditions 

Particle Density range, Grid Pore size Pore pitch Flowrate set Flowrate Face velocity 
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type kg/m3 type range, µm range, µm value, L/min range, L/min range, m/s 

NaCl 2046.466-2175.825 2/2 1.8-2.2 1.9-2.0 0.6 0.6-0.75 2.9177-3.9788 

NaCl 2046.466-2175.825 1.2/1.3 1.1-1.3 1.4-1.6 0.4 0.35-0.55 1.9629-2.3873 

CsCl* 3769.657-4007.940 1.2/1.3 1.2-1.4 1.4-1.6 0.6 0.5-0.6 2.9177-3.9788 

* Purity is 99.5%  

Fig. 6 shows the collection efficiency uncertainties from measured data and theoretical models of the sampling 

system with a different pore size (5(a)), flowrate (5(b)), and collecting particles with a different density (5(c)). The 

results depict that  

the uncertainties from the experimental dispersion calibration are smaller (mostly less than 1%) than those from the 

models for all these sampling conditions. For CsCl particle collection, the uncertainties from the measured data are 

mostly covered by the range from the models (6%-10%). The minimum efficiency increases with the particle density. 

Denser particles enhance the impaction efficiency by changing the value of Stk.  For sampling conditions of the 2/2 

type grid and 0.4 L/min flowrate, the measured data uncertainties are covered by the model uncertainties for small 

particles. Here Cc for calculating the “Stk” in the impaction efficiency model is 1, which decreases the model 

uncertainties (1%-9%). The choice of models and parameter values is essential for simulating the sampling efficiency. 

The minimum efficiency (mean) decreases (30% to 8%) with the increased pore size (0.6 to 1 µm) by reducing the 

diffusion and impaction efficiency. The minimum collection efficiency increases, and the corresponding size 

decreases as the flowrate increases. Increasing flowrate causes a greater probability of large particle impaction 

deposition, and small particles are less likely to be captured by diffusion [64]. 
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Fig. 6. Uncertainty analysis of 100 nm particle sampling efficiency in the conditions of (a) changing pore size; (b) 

changing flowrate; (c) changing particle density. 

Fig. 7 shows the parameter sensitivity analysis of the theoretical collection efficiency for collecting 100 nm particles 

with a different pore size filter (6(a)), flowrate (6(b)), and density (6(c)). Pore size and flowrate are significant 

parameters with indices larger than 0.1. In addition, N0 significantly contributes to the uncertainty for collecting the 

CsCl particles. The control of filter properties is of immediate importance for sampling efficiency quantification. 

Fig. 7. Parameter sensitivity analysis of 100 nm particle sampling efficiency in the conditions of (a) changing pore 

size; (b) changing flowrate; (c) changing particle density. 

5 Conclusion 

In this study, the TEM grid-equipped MPS sampling efficiencies were tested and modeled at different sampling 

conditions. The experimental dispersion due to fluctuations among different CPC scans was calibrated. Uncertainties 

from the calibrated data and models were simulated using the Monte-Carlo method respectively. The results show 

that the uncertainties from the experimental dispersion calibration (mostly less than 1%) are mostly covered by the 

range from the models (less than 10%). The sampling efficiency of 5 nm particles displays larger uncertainty than 
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bigger particles, especially for the measured data. This confirms that the detection limit of the Condensation particle 

counter and the atomizer is close to 5 nm. Compared with particle collection with a 1.2 µm filter at 0.6 L/min flowrate, 

the uncertainties from models reduce (the minimum reduces from 5% to 1%) when using a large pore size (2 µm) 

filter or sampling at a low flowrate (0.4 L/min) because the Cunningham correction factor is removed in the Stokes 

number calculation. The contribution of parameters involved in the models to the uncertainties of theoretical 

sampling efficiency was quantified by Sobol variance-based sensitivity analysis. The results demonstrate that for 

small particles, the filter pore size and the Cunningham correction factor add significant uncertainties to the model 

uncertainties; for large particles, the flowrate is also a primary parameter. The pore size and flowrate require control 

to enhance the precision of sampling efficiency. The choice of models and parameter values is essential for 

simulating the sampling efficiency under different conditions. These results give opportunities to decrease the 

sampling efficiency uncertainty by controlling the parameter range and provide a basis for the MPS sampling system 

applications, such as the nanomaterial exposure risk assessment. 
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