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28 Abstract

29 Background: The aim of this study was to use an integrated exposure assessment approach, 

30 combining spatio-temporal modeling of environmental exposure and fate of the chemical to 

31 assess the exposure of vulnerable populations. In this study, chlorpyrifos exposure of pregnant 

32 women in Picardy was evaluated at a regional scale during one year. This approach provided 

33 a mapping of exposure indicators of pregnant women to chlorpyrifos over fine spatial and 

34 temporal resolutions using a GIS environment.

35 Methods: Fate and transport models (emission, atmospheric dispersion, multimedia exposure, 

36 PBPK) were combined with environmental databases in a GIS environment. Quantities spread 

37 over agricultural fields were simulated and integrated into a modeling chain coupling models. 

38 The fate and transport of chlorpyrifos was characterized by an atmospheric dispersion 

39 statistical metamodel and the dynamiCROP model. Then, the multimedia model Modul’ERS 

40 was used to predict chlorpyrifos daily exposure doses which were integrated in a PBPK model 

41 to compute biomarker of exposure (TCPy urinary concentrations). For the concentration 

42 predictions, two scenarios (lower bound and upper bound) were built.

43 Results: At fine spatio-temporal resolutions, the cartography of biomarkers in the lower bound 

44 scenario clearly highlights agricultural areas. In these maps, some specific areas and hotspots 

45 appear as potentially more exposed specifically in application period. Overall, predictions were 

46 closed to biomonitoring data and ingestion route was the main contributor to chlorpyrifos 

47 exposure.

48 Conclusions: This study demonstrated the feasibility of an integrated approach for the 

49 evaluation of chlorpyrifos exposure which allows the comparison between modeled predictions 

50 and biomonitoring data.
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53

54 1. Introduction

55 Amongst environmental stressors, chemical agents contribute to geographical environmental 

56 health inequalities regarding human exposures [1]. Exposure to chemical agents is complex 

57 to characterize due to the multiplicity of contamination sources and exposure pathways 

58 (ingestion, inhalation, dermal contact). Pollutant transfer processes into environmental media 

59 (air, soil, water) bring a spatial scope to exposure and involves territorial inequalities. Exposure 

60 is also time-varying and has potential impacts on people health during lifetime, which is 

61 included in the exposome concept [2]. In order to better understand the link between exposure 

62 to chemicals with potential health effects, variation of the exposure can be grasped by 

63 predicting representative internal doses and more specifically on target tissues of health effects 

64 [3]. 

65 Simultaneously, the cross-analysis of environmental, exposure and human biomonitoring data 

66 would enable to build a robust portrayal of the exposome, scalable on a large scale and at the 

67 populational level [3]. Integration of such data into a Geographic Information System (GIS) 

68 makes the link between source characterization and populational factors for a better 

69 understanding of the exposure [4]. Environmental data integration is however made difficult by 

70 the multitude of data produced according to specific objectives, with different levels of spatial 

71 and temporal aggregation, and requires specific methods and tools [5]. Combination of 

72 integrated environmental data with fate and transport modeling from the source to target 

73 population provides exposure predictions comparable to measurements in spatially and 

74 temporally consistent biological matrices. The comparisons of internal doses predictions with 

75 biomonitoring measurements provide the information to evaluate the relevance of the modeling 

76 approach. 
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77 Pesticides constitute a relevant application to use a spatialized and integrated exposure 

78 assessment approach. Indeed, these substances, mainly used in agriculture for plant 

79 protection, are transferred to air, soil and water after spreading [6]. The ubiquitous nature of 

80 pesticides in the environment therefore constitutes a risk to human health [7]. Due to the 

81 agricultural use of these products, rural populations living near crop fields where pesticides are 

82 applied are likely to be more exposed [8]. The contamination of the atmospheric compartment 

83 by pesticides is much less known than soil and water contaminations. Most epidemiological 

84 studies start from the hypothesis that pesticide concentrations in air are higher near spreading 

85 areas and decrease with the distance [9]. The estimation of pesticide atmospheric emissions 

86 has long remained a blocking element for model implementation, due to the diversity of 

87 application modes, the dependence of meteorological conditions and the lack of knowledge 

88 about microphysics, depositions and remobilization processes. Thus, few studies use a spatial 

89 modeling of pesticide atmospheric dispersion [9]. Advances in this field and the possibilities of 

90 describing pesticide quantities on fine resolutions now allow the use of atmospheric models on 

91 a local scale [10]. In France, there are databases on environmental quality (air, soil, water) and 

92 human biomonitoring [11]. Several French studies (Elfe, Esteban) measured the level of 

93 exposure to chemicals including pesticides [12]. However, such surveys of representative 

94 samples are expensive and technically difficult to conduct in order to characterize the exposure 

95 at fine spatial resolutions and on large-scale territories. 

96 As an example of active pesticide, Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-

97 phosphorothioate, CAS Registry No. 2921-88-2; CPF) belongs to the organophosphate class 

98 (OP). Since its first use in 1965, it has become one of the most widely used pesticides in the 

99 world and finds its main applications in agriculture and domestic use [13]. Human toxicological 

100 effects of OP insecticides are associated with the inhibition of acetylcholinesterase (AChE) in 

101 the brain and both central and peripheral nerve tissues [14]. Pregnant women are a vulnerable 

102 population as associations with prenatal exposure to chlorpyrifos were observed in 3 and 7-

103 year-old children with an IQ and working memory abilities decrease [15, 16]. Recent national 
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104 studies and reports have shown general population exposure to chlorpyrifos and 

105 organophosphate pesticides in France and OECD countries [17-22]. In the study of Béranger 

106 et al. [22], TCPy, a metabolite of chlorpyrifos and a common biomarker of chlorpyrifos exposure 

107 used in human biomonitoring, was among the molecules measured in hair with the highest 

108 median concentrations, with value of 2.7 pg/mg of pregnant women hair.

109 In this context, this paper proposes to use an integrated exposure assessment approach, 

110 combining spatio-temporal modeling of environmental exposure and fate of the chemical to 

111 define relevant phenomena. The aim of this paper is to demonstrate the feasibility of our 

112 integrated methodology for chlorpyrifos exposure assessment. This methodology combines 

113 several transfer models with exposure models (multimedia, PBPK), integrates environmental 

114 databases and accounts for the spatio-temporal variability of the exposure. This approach 

115 provides a mapping of exposure indicators of pregnant women to chlorpyrifos over fine spatial 

116 and temporal resolutions using a GIS environment.

117

118 2. Materials and methods

119 2.1. Case study

120 Chlorpyrifos exposure was assessed in 2013 over the Picardy region in northern France. It is 

121 a moderately densely populated region, with an area of 19,399 km² and almost 2 million 

122 inhabitants—3% of France’s population. Picardy is a region of field crops which highly 

123 consume pesticides [23]. Although chlorpyrifos has been progressively banned since 2013, 

124 resulting in a 97% decrease in chlorpyrifos sales between 2013 and 2018, higher exposure to 

125 this chemical has been observed in 2013 [24, 25]. According to the French National Bank of 

126 Plant Protection Products Sales by Authorized Distributors (BNV-D), more than 12 tons of 

127 chlorpyrifos have been sold in the region and spread over 1.3 million hectares of agricultural 

128 land during this year, being used for cereal and vegetable crops, orchards and vineyards [25, 

129 26].
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130 Modeling of chlorpyrifos fate and transport between environmental compartments, exposure 

131 media and population has required the integration of databases (Table S1) allowing the 

132 characterization of pollutant sources in 2013 in Picardy such as the agricultural spreading [25], 

133 the meteorological parameters [27] and the environmental concentrations of substances in 

134 water and food products [28-30].

135 A deterministic approach integrating and coupling models with environmental data has been 

136 developed and applied on this study (Fig. 1). The models have been adapted to allow the 

137 integration of the output data of an upstream model as input data of the downstream model. 

138 One model assessed ambient air concentrations and deposits (far-field) by considering 

139 emission conditions either in gaseous or liquid aerosol phase and meteorological data (near-

140 field). Then, a multimedia model was used to predict pollutant transfers between each 

141 environmental compartment (water, air, soil) to predict external exposure resulting from the 

142 integration of all media concentrations [31-33]. In addition to this local exposure, the 

143 contribution of other exposure sources, e.g. non-local food products, were also accounted. 

144 Values of these exposures were then integrated in a PBPK model to predict internal exposure 

145 to chlorpyrifos (Fig. 1).

146 Chlorpyrifos exposure was assessed over a weekly time step and a regular grid with a spatial 

147 resolution of 4 km². The regular grid constituted a common spatial support on which all the 

148 data were described. The following modeling approach therefore gave point estimates on grid 

149 cell centroids.

150 2.2. Input data

151 2.2.1. Agricultural data

152 Annual quantities applied over agricultural fields in Picardy in 2013 were predicted with data 

153 from the BNV-D [25]. Product sales extracted from this database were spatially distributed at 

154 field resolution using a methodology built by French National Institute for Agriculture, Food, 

155 and Environment (INRAE) according to the crop type and the postal code of the purchaser. 
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156 Based on agricultural spreading times data provided by departmental agricultural chambers, 

157 quantities applied were predicted every three hours. 

158 2.2.2. Outdoor air

159 Parameters including wind, temperature, precipitations, humidity and cloudiness available at a 

160 3-hour frequency were extracted from the meteorological stations of Dieppe, Lille, Caen, 

161 Rouen and Orly, these framing the target region and describing a representative climate of 

162 northern France. Most notably for the atmospheric dispersion statistical model, the database 

163 of the Synop Essential network of surface stations of the World Meteorological Organization 

164 was used [27].

165 2.2.3. Non-local food

166 Concentrations of chlorpyrifos in non-local, i.e. commercial, food products came from French 

167 Total Diet Study (EAT2) and European Food Safety Authority’s measurement compilations [28, 

168 29]. Quantification frequencies of chlorpyrifos in commercial food products were very low 

169 (Table S2). Thus, two scenarios were determined to frame exposure to commercial products. 

170 The lower bound scenario (LB) is a minimalist scenario for which the undetected values are 

171 set to 0 and the values detected but not quantified are set to the limit of detection. The upper 

172 bound scenario (UB) is a maximalist scenario for which the undetected values are set to the 

173 limit of detection and the values detected but not quantified are set to the limit of quantification. 

174 The values used in the upper bound scenario correspond to the maximum chlorpyrifos 

175 concentrations measured in commercial food products.

176 2.3. Fate and transport modeling approach

177 2.3.1. Air concentrations and atmospheric deposits

178 Based on data from the BNV-D, departmental agricultural chambers and the simulations of the 

179 quantities applied at a 3-hour step, the distributions on soil, plant and air (drift) in the first 

180 minutes after spreading were predicted from PestLCI 2.0 [34] for each agricultural field in 
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181 Picardy concerned by chlorpyrifos use. Emission fluxes from soil and plant volatilization were 

182 predicted with dynamiCROP [31, 32]. Air drift for this short period, as well as emission fluxes, 

183 then fed the atmospheric dispersion model described below. 

184 The large number of parcels, their heterogeneous boundaries and the strong temporal 

185 variability of emissions have driven the modeling approach towards a machine learning 

186 approach and the development of a statistical metamodel. A database resulting from ADMS 

187 (Numtech, version 5.2) simulations, including gaseous and liquid aerosol deposits on ground 

188 and air concentrations, was thus constituted based on emissions of one basic parcel (100 per 

189 100 m) and meteorological parameters observed at surface stations [27]. Additional 

190 meteorological parameters such as the Monin-Obukhov length and the boundary layer height 

191 were calculated and enrich the description of each calculation result so that they can be used 

192 as explanatory variables for the learning of the statistical model. The size of aerosols 

193 considered for modeling liquid phase drift was set at the lowest value found in the literature 

194 [35], i.e., a minimum particle size of 50 µm, in order to give preference to a major atmospheric 

195 transport approach. Once the metamodel was calibrated, it was applied on all parcels and 

196 provided atmospheric deposits and concentrations of chlorpyrifos either in the gaseous and 

197 liquid aerosol phase at a 3-hourly interval. The phase of the substance was assumed not to 

198 evolve after emission and considered as a passive tracker.

199 2.3.2. Multimedia exposure model

200 Multimedia exposure modeling follows a mass balance approach and is based on the 

201 resolution of differential equations with first-rate kinetics. The modeling has been performed 

202 with two multimedia models, dynamiCROP [31, 32] for the assessment of environmental 

203 transfers, and Modul’ERS [33] to predict chlorpyrifos daily exposure doses from environmental 

204 compartments (water, air, soil and food). 

205 Contamination of local food products cultivated in vegetable gardens was predicted from 

206 atmospheric deposits on plant and root uptake from soil. Four crops corresponding to the main 
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207 food products consumed [36] were studied: apple, lettuce, potato and tomato. For each crop, 

208 one plant model was used to integrate transfer specificities (leaf, fruit, root, tuber). Transfers 

209 between plant, air and soil were predicted from the dynamiCROP model which was conveyed 

210 to Python language to reduce large computing times generated by Excel and MATLAB ® [31]. 

211 Chlorpyrifos concentrations were predicted at harvest time. Lettuce being a crop harvested all 

212 year round, all concentrations predicted each week of the year were weighted according to a 

213 probability of harvesting based on the evolution of the leaf area index (LAI).

214 One model was provided for each crop studied (apple, lettuce, potato, tomato) according to 

215 their specificities. In each model, plant biomass and LAI were the main time-varying 

216 parameters. The calculation method of these parameters was redefined from the initial model. 

217 They were weekly estimated to consider temporal variations. The calculation method of all 

218 other parameters directly depending on plant biomass and LAI, i.e., plant compartment 

219 biomasses, volumes and areas, part of the deposits reaching compartments, transfer 

220 coefficients and flow rates, was thus temporally adjusted. Finally, chlorpyrifos concentrations 

221 were computed using time-varied biomass values and transfer coefficients. 

222 A percentage of self-consumption was defined from INSEE data [36]. It corresponds to the 

223 proportion of home-grown food products consumed (i.e. apple, lettuce, potato and tomato) in 

224 total food consumption per person. Four categories were defined, based on the number of 

225 inhabitants per urban unit (1) commune with less than 2,000 inhabitants (rural areas) (2) 

226 between 2,000 and 10,000 (3) between 10,000 and 100,000 (4) with more than 100,000 (Fig. 

227 S1).

228 Consumption of commercial food products was predicted using concentrations measurements 

229 from French and European studies (Table S3) and mean dietary beverage products 

230 consumption from the SISE-Eaux database [30]. 
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231 Aggregated multimedia exposure was then assessed from ingestion and inhalation pathways. 

232 Inhalation pathway was given as the sum of chlorpyrifos concentrations (Cinh, mg.m-3) in its 

233 liquid (Cpar) and gaseous (Cgas) phase:

234 (Eq. 1)𝐶𝑖𝑛ℎ =  𝐶𝑝𝑎𝑟 + 𝐶𝑔𝑎𝑠

235 Ingestion pathway was predicted considering weight, quantities of food products ingested, 

236 water consumption [30], soil ingestion [37] and a self-consumption factor characterizing local 

237 food products ingestion. Intake from food products, water and soil, i.e. daily ingested doses 

238 (Ding, mg.kg bw-1.d-1) were given from Eq. 2:

239 (Eq. 2)𝐷𝑖𝑛𝑔 =  𝐼𝑐𝑜𝑚,𝑓𝑜𝑜𝑑 + 𝐼𝑣𝑒𝑔 + 𝐼𝑠𝑜𝑖𝑙 + 𝐼𝐻2𝑂

240 where Icom,food, Iveg, Isoil and IH2O are intakes from commercial food products, local and 

241 commercial vegetables, soil and water.

242 2.3.3. Toxicokinetic modeling and internal exposure

243 To model the pharmacokinetics behavior of chlorpyrifos and its two metabolites: chlorpyrifos-

244 oxon (O,O-diethyl O-3,5,6-trichloro-2-pyridyl; CPF-oxon) and trichloropyridinol (3,5,6-trichloro-

245 2-pyridinol; TCPy), we used a PBPK/PD model developed by Poet et al. [38]. The model 

246 structure includes 10 tissue compartments for chlorpyrifos, 6 for chlorpyrifos-oxon and one 

247 urinary compartment for TCPy. This model considers changes in physiology, metabolism and 

248 sensitivity to toxicity over life-stages from childhood to adulthood and multi-route exposure 

249 [38]. It includes also physiological and metabolic changes that occur with pregnancy (increase 

250 in cardiac output, blood volume, fat mass). Three compartments (uterus, placenta, fetus) and 

251 their respective diffusion coefficients are included to describe the pregnancy [38]. The 

252 PBPK/PD model simulates the organ and blood concentrations of chlorpyrifos and chlorpyrifos-

253 oxon as well as the urinary excretion of TCPy. The model, initially built with acslXtreme (Aegis 

254 Technologies), was converted to C-based GNU software MCSim [39].
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255 2.4. Statistical analysis

256 In order to construct the exposure maps from spatialized databases, several statistical 

257 methods were used to specifically address environmental, behavioral or populational 

258 databases to increase their representativeness regarding the objectives of the exposure 

259 characterization. Data processing methods were adapted from the GIS-based modeling 

260 platform PLAINE (“Environmental INequalities Analysis PLatform”) [40]. Statistical and 

261 geoprocessing methods interfaced in a GIS were particularly used to bypass the issues 

262 generated by data gaps and predict exposure indicators on the areas of interest.

263 Since air inputs were the main environmental spatial determinant considered in the modeling, 

264 a geostatistical analysis was conducted on atmospheric concentrations and deposits to assess 

265 spatial autocorrelations. This analysis was conducted in order to better define a relevant grid 

266 spatial resolution for reducing computation time and investigate the possibility to predict 

267 exposure at a specific point (i.e. a located address of a cohort participant to compare with 

268 measured biomarker) from initial grid calculation. This analysis consisted of studying the 

269 sample 2D-variogram and testing the anisotropy [41]. The variogram computed the 

270 dissimilarities between two-point values according to the distance between the points. 

271 Anisotropy was tested to verify whether spatial variability trends of the phenomena changed 

272 as a function of the direction [42]. These analyzes were carried out with R software and the 

273 package “RGeostats” (https://rgeostats.free.fr).

274 3. Results

275 3.1. Spreading times and implications in temporal variations of chlorpyrifos 

276 presence

277 Most of the applications occurred between the tenth and the nineteenth week of the year, i.e. 

278 from mid-March to mid-May. The peak of applications was observed during April, between the 
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279 thirteenth and the sixteenth week of the year. At this time, the mean amount of chlorpyrifos 

280 applied by parcel exceeded 50 kg, or 5.7 kg/ha (Fig. 2).

281 Following an application, air drifts occurred in a short time and were concentrated over a 36-

282 hour period. Volatilization rates, whether from soil or plant, extended over a longer period and 

283 behaved on the same way. 95% of volatilization rates were concentrated over a 3-week period 

284 (Fig. S2). The temporal evolutions of chlorpyrifos concentrations predicted in several 

285 environmental matrices such as air and lettuce were similar to those of volatilization rates (Fig. 

286 S3).  For these two matrices, only 1% of initial concentrations remained after one month. 

287 However, concentration decrease in soil was slower to the point that there was still a third of 

288 chlorpyrifos after one month. It took about three months to drop below 5% of initial 

289 concentrations (Fig. S3).

290 3.2. Chlorpyrifos presence in environmental media and its spatialization

291 3.2.1. Atmospheric concentrations and deposits

292 The annual mean of predicted air concentrations varied from 0 to 5.5×10-5 mg/m3 for the whole 

293 region. The spatial distribution of concentrations was rather homogeneous over Picardy. The 

294 main hotspots were located in the north-west of the region between Amiens and Abbeville, but 

295 also in the southwest of Beauvais, south of Soissons and around Laon (Fig. S4A). Monthly 

296 mean air concentrations during April varied from 0 to 7×10-4 mg/m3 over the Picardy region 

297 and were up to 13 times higher than annual mean concentrations. Spatial distribution of air 

298 concentrations in April was broadly the same as for the annual mean concentrations (Fig. S4B). 

299 During the year, total atmospheric deposits per grid cell varied from 0 to 65 mg/year in Picardy. 

300 Spatial distribution of deposits was fairly homogeneous over Picardy. Main hotspots were 

301 located in the north-west of the region between Abbeville and Amiens as well as in the south-

302 east (Fig. S4C). In April, atmospheric deposits represented on average 75% of the annual 

303 totals and rose up to 100% in some areas (Fig. S4D).
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304 The spatial distribution of atmospheric concentrations and deposits both displayed the same 

305 spatial structure and an anisotropy axis oriented from west southwest to east-northeast with a 

306 65-degree angle to the North (Fig. S5). For both concentrations and deposits, the orthogonal 

307 variograms displayed a little anisotropy since the anisotropy ratios, for the minor axis, were 

308 0.819 for concentrations and 0.843 for depositions. Additionally, ranges (i.e. distances where 

309 the model flattens out and where the autocorrelation between sample locations becomes 

310 negligible) were also close, i.e. 66 km for the major axis and 55 km for the minor axis (Fig. S6A 

311 and B).

312 3.2.2. Local food products

313 Local food products, i.e. vegetable gardens in the vicinity of crop fields, are indirectly 

314 contaminated with chlorpyrifos deposits. Predicted concentrations in local-produced apples, 

315 potatoes and tomatoes were comprised, for 95% of them, between 9.4×10-12 and 9.1×10-8 

316 mg/kg of fresh weight for apples, 2.4×10-11 and 2.3×10-7 mg/kg of fresh weight for potatoes, 

317 7.5×10-11 and 6.9×10-7 mg/kg of fresh weight for tomatoes respectively. Local food 

318 concentration predictions were less dispersed and rather centered around the median of the 

319 two concentration scenarios based on commercial food products measured (Fig. S7). For 

320 local-produced lettuces however, predictions were more centered around the maximum value 

321 measured in commercial lettuces, which peaked at 1.1×10-2 mg/kg of fresh weight. Even 13% 

322 of predictions exceeded this maximum measured value. This singularity trend came from the 

323 cultivation of lettuce, which can be harvested throughout the year, while other crops are 

324 harvested several months after the end of spreading.

325 3.3. Chlorpyrifos external exposure

326 Annual mean daily inhalation doses for pregnant women varied between 0 and 9.1x10-6 

327 mg/kg/d. The mean daily inhalation dose map clearly brought out rural areas with some 

328 hotspots distributed all over Picardy. Urban areas (categories 3 and 4, Fig. S1) showed low to 

329 medium inhalation doses, but the lowest doses were located in non-agricultural areas such as 
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330 forests and tidal marshes. Spatial variability was high, extending over 10 orders of magnitude 

331 (Fig. 3A). Average daily inhalation doses during April varied between 0 and 1.2x10-4 mg/kg/d 

332 and exceeded the annual doses by a ten-fold factor. However, the April daily inhalation doses 

333 map presented the same spatial variability trend, i.e. hotspots in rural areas and lowest doses 

334 in forests and tidal marshes, as the annual map (Fig. 3B).

335 Annual mean daily ingestion dose maps for the lower bound scenario varied by a hundred-fold 

336 factor, between 1.6x10-7 and 4.5x10-5 mg/kg/d. There was no major difference─only 1.5% for 

337 the lower bound hypothesis─between annual mean and April mean ingestion doses. As for the 

338 inhalation, the lower bound scenario maps of daily exposure doses (Fig. 3C and D) brought 

339 out rural areas with hotspots in northern and southeastern Picardy. In the upper bound case, 

340 annual mean daily ingestion doses displayed a small variability across the entire area as the 

341 range between the minimal and maximal values, respectively 2.9x10-4 and 3.4x10-4 mg/kg/d, 

342 varied by 15%. There was no difference between annual mean and April mean ingestion 

343 doses. The hotspots observed in the lower bound scenario maps were also observed in the 

344 upper bound scenario maps although both were globally more homogeneous (Fig. 3E and F).

345 3.4. Environmental inequality characterization

346 Annual mean TCPy urinary concentrations for pregnant women, resulting from the aggregation 

347 of inhalation and ingestion pathways, were comprised between 1.9x10-6 and 6.6x10-4 mg/L, 

348 i.e. a 3-hundred factor, in the lower bound scenario. For the April predictions, the range of 

349 values extended by a thousand-fold factor, between 2.3x10-6 and 2.5x10-3 mg/L. We observed 

350 a significant difference of values between the entire year and April. Indeed, April predictions 

351 were three to four times higher than annual predictions for the lower bound scenario (Fig. 4A 

352 and B). With the upper bound scenario, the range of TCPy urinary concentrations varied by 

353 18% for the annual mean and were comprised between 3.6x10-3 and 4.2x10-3 mg/L. For April, 

354 the range of predictions varied by 60%, with concentrations comprised between 4.2x10-3 and 

355 6.6x10-3 mg/L. April predictions exceeded by 19% the annual predictions (Fig. 4C and D).
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356 The temporal evolution of TCPy urinary concentrations for pregnant women at the end of their 

357 first trimester were commonly at a steady state but strongly varied during the spreading period 

358 (Fig. S8). For the lower bound scenario, urinary TCPy concentrations began to increase in 

359 March and reached a maximum in April (about 90% of the maximum urinary TCPy 

360 concentrations). Then, the urinary TCPy concentrations decreased within six weeks and 

361 returned to steady state (about 20% of the maximum urinary TCPy concentrations). 

362 The analysis of pathways contributions to TCPy urinary concentrations showed that ingestion 

363 was the prominent exposure pathway for both scenarios. It counted for 85 % of overall 

364 exposure in the lower bound scenario and reached 99,5 % in the upper bound scenario (Fig. 

365 5). For this pathway, contributions of local food and commercial food also differed significantly 

366 between scenarios. While local food was the only contributor to the ingestion route in the lower 

367 bound scenario, commercial food largely dominated in the upper bound scenario (accounting 

368 for 99,2 % of total exposure against 0,3 % for local food). These observations only concerned 

369 annual mean. Inhalation contribution fluctuated monthly and became substantial during 

370 months where spreading was the highest. While inhalation contributed to 38 and 45% of overall 

371 exposure in March and May, it became the major pathway in April (83%) when considering 

372 lower bound case. Commercial food still dominated in the upper bound scenario even if 

373 inhalation contribution reached 4% in April.

374

375 4. Discussion

376 In this study, we performed an integrated and spatialized exposure assessment approach 

377 applied for a pesticide at a regional scale. The coupling of models and the integration of 

378 environmental data in a GIS environment provides a detailed mapping of chlorpyrifos 

379 exposure. These maps provide insights for the identification of potentially more exposed areas 

380 and populations. The cartography of TCPy urinary concentrations in the lower bound scenario 

381 clearly highlights agricultural areas. In these maps, some specific areas and hotspots appear 
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382 as potentially more exposed specifically in application period. For both scenarios, the different 

383 dietary behaviors between rural and urban areas reflect higher chlorpyrifos levels among the 

384 rural areas. These results are consistent with previous biomonitoring studies which have also 

385 found higher levels of urinary metabolite concentrations in rural populations than in urban 

386 populations or the general population [8, 43-45]. 

387 The comparison between internal dose predictions and measurements from biomonitoring 

388 studies allows to appreciate the quality of predicted values. Predictions were compared with 

389 data from North American cohorts measured over similar periods but not with French 

390 campaigns such as ELFE or ENNS because the TCPy was not retained in these studies [17, 

391 18]. Moreover, a regional cohort, “MecoExpo”, was constituted to estimate prenatal exposure 

392 but the analyzes did not allow to find traces of chlorpyrifos or its metabolites. Comparisons of 

393 TCPy urinary concentrations predictions with biomonitoring campaigns are shown in Table 1. 

394 Overall, the distribution of predictions lies in the range of the distributions of the measurements 

395 regardless of the period of the year. However, biomarker measurements consider all sources 

396 and exposure pathways at the individual level. Combined with questionnaires providing 

397 information on lifestyle habits, biomarker measurements and predictions of modeled internal 

398 concentrations allow to provide environmental contributions to distinguish behavioral and 

399 professional factors in the context of explanatory analyzes of impregnation. 

400 In this study, we considered that TCPy urinary concentrations were only due to the 

401 metabolization of chlorpyrifos in human body. However, populations are directly exposed to 

402 chlorpyrifos-oxon and TCPy in the environment [48]. The presence of chlorpyrifos-oxon and 

403 TCPy in the environment could occur from the degradation of chlorpyrifos by biotic 

404 (microorganisms) and abiotic (photolysis, hydrolysis) processes [13]. It is then necessary to 

405 improve the consideration of degradation phenomena of chlorpyrifos in the environment 

406 especially as degradation is the main factor explaining mass evolution of pesticides [31].

407 Concerning the contributions to TCPy urinary levels, ingestion of commercial food is the most 

408 contributive pathway for the upper bound scenario. This finding is consistent with previous 
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409 studies which found ingestion as the prominent residential exposure pathway [49, 50]. 

410 However, many uncertainties emerge from commercial food products data. Indeed, there are 

411 a high number of concentrations below detection and quantification limits within food 

412 databases. This led to a dual scenarization (lower and upper bound) of the exposure 

413 assessment which probably gives extreme estimates. In view of this, the integration of 

414 additional data, measured or modeled, would improve exposure predictions. Also, several 

415 statistical methods would allow to process data for which the majority of samples are below 

416 the limits of detection and quantification [51, 52]. Moreover, probabilistic approaches such as 

417 Monte Carlo methods could propagate uncertainties over the entire computation chain. If we 

418 consider that ingestion of commercial food products contributes to more than 99% of 

419 aggregated exposure in the upper bound scenario, the influence of the atmospheric part is 

420 therefore marginal. Conversely, the lower bound scenario does not consider the ingestion of 

421 commercial food products and we only observe the contribution of the atmospheric part, i.e. 

422 ingestion of local food products and inhalation. Actual chlorpyrifos exposure probably lies 

423 between the two scenarios.

424 Exposure to chlorpyrifos can also result from exposure to other environmental media such as 

425 indoor air or home dust [49]. Our predictions do not consider indoor exposures derived from a 

426 former or current domestic use or medium contamination by outdoor sources. This source is 

427 potentially non-negligible as chlorpyrifos can stay many months after use [14]. In the same 

428 way, dermal pathway was not considered because it does not contribute significantly to overall 

429 exposure [53, 54], especially since dermal absorption is less than 3% [55, 56]. However, it 

430 could be incorporated into residential exposure assessment if contamination of indoor 

431 environments is considered as a source of exposure. It could also become a non-negligible 

432 exposure pathway in the case of agricultural workers using pesticides. 

433 To improve this approach and regarding the computation time, it is necessary to address the 

434 relevance of the spatial and temporal resolutions of analysis to obtain the best compromise 

435 between predictions and computation times. In our study, seasonality of spreading plays a 
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436 major role in the variability of exposure and contamination of environmental media over time, 

437 unlike diet whose contribution to overall exposure remains the same throughout the year. 

438 Following spreading, chlorpyrifos persists a few weeks to a few months in environmental 

439 media. In our study we demonstrated that the variation in TCPy urinary concentrations was 

440 greater during the three months of spreading. For both environmental media and humans, 

441 chlorpyrifos levels do not return to their previous state until one month after spreading. This 

442 analysis shows that it would be better to use a variable temporal resolution, focusing most of 

443 the predictions during the exposure window between mid-March and mid-June. Additionally, 

444 we chose a regular geographic grid cell to assess populational exposure regardless of their 

445 remoteness to agricultural areas. To obtain a grid resolution more representative of 

446 populational exposure at an individual level, we used geostatistical methods and the variogram 

447 analysis of chlorpyrifos atmospheric concentrations and deposition. This additional analysis 

448 makes it possible to apprehend spatial autocorrelation structures of these phenomena. From 

449 the analysis of the variogram models, we could define optimized spatial entities able to capture 

450 relevant individual and aggregated environmental and population information. 

451

452 5. Conclusion

453 This study demonstrated the feasibility of an integrated approach for the evaluation of exposure 

454 to chlorpyrifos across the Picardy region. The use of this approach and the choice of fine 

455 spatio-temporal resolutions would allow researchers to improve exposure assessment 

456 methods. Both measurement and modeling approaches allow to assess the exposure of the 

457 populations considered with their own limits and uncertainties. The intersection of these 

458 complementary approaches improves the efficiency of decision-support tools to reduce the 

459 health and environmental impacts associated with exposure. Population stratification in the 

460 sampling plan based on exposure predictions can help reducing the number of samples in 

461 biomonitoring campaigns by selecting more contrasting individual profiles in terms of exposure. 
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462 Likewise, predicting the evolution of biomarkers as a function of exposure makes it possible to 

463 guide biomonitoring studies in order to identify key moments for sampling as well as to target 

464 specific areas and moments in the year. 

465 Beyond the uncertainties generated by data and models, the cartography of chlorpyrifos 

466 exposure helps decision-makers to identify potentially more exposed areas and populations 

467 and guide exposure reduction policies. To improve the approach, localized and regional 

468 biomonitoring campaigns should be conducted to compare them with exposure predictions. 

469 The analysis of spatio-temporal resolutions will also allow to extend the methodology on larger 

470 territories and other substances. Before that, a next step will be to refine this approach by 

471 integrating new datasets, other exposure pathways (indoor environments) and by using a 

472 probabilistic method based on Monte Carlo analysis. The representativeness of measurement 

473 data will also be improved by using advanced statistical methods to reconstruct censored data. 

474 The use of a probabilistic method will allow to consider uncertainties and to propagate them 

475 throughout the computing chain. 
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653 Figure legends

654 Table 1 – Comparisons of TCPy urinary concentrations (mg/L) predicted with measurements from biomonitoring campaigns.

655 Figure 1 – Conceptual scheme of the modeling approach used in this study. Environmental data (blue) are integrated into models (green) which 

656 characterize the transfers of chlorpyrifos from the source to the contamination of the target populations. Output data generated by these models 

657 (white) are themselves integrated as input data of the following model. At the end of the modeling chain are predicted the external and internal 

658 exposure doses (yellow).

659 Figure 2 – Seasonality of chlorpyrifos spreading in Picardy. Red symbols are the mean and the 95 % confidence interval of the quantities applied 

660 on each agricultural field. Note that the application period is very short and that the peak is reached during early spring.

661 Figure 3 – Mapping of daily exposure doses for the inhalation and ingestion pathways for pregnant women in Picardy. A) Mean annual daily inhalation 

662 doses; B) Mean daily inhalation doses during April; C) Mean annual daily ingestion doses (lower bound); D) Mean daily ingestion doses during April 

663 (lower bound); E) Mean daily ingestion doses (upper bound); F) Mean daily ingestion doses during April (upper bound). There is a seasonal difference 

664 between annual and April mean inhalation doses but not for ingestion doses. For these, only the difference between the scenarios is notable.

665 Figure 4 – Mapping of urinary concentrations of TCPy for pregnant women in Picardy. A) Mean annual urinary concentrations (lower bound); B) 

666 Mean urinary concentrations during April (lower bound); C) Mean annual urinary concentrations (upper bound); D) Mean urinary concentrations 

667 during April (upper bound). These maps result from the aggregation of the ingestion and inhalation exposure pathways for each scenario. For the 

668 lower bound scenario, there is a difference in urinary concentrations between the year and April. This case is however not found in the upper bound 

669 scenario.

670 Figure 5 – Mean contributions of exposure pathways to aggregated TCPy urinary concentrations for the lower bound (A) and upper bound (B) 

671 scenarios. For both scenarios, ingestion is the major exposure pathway.

672 Tables

PercentilePopulation Period P10 P25 P50 P75 P90 P95
Lower 
bound 
(year)

2.70e-3 5.40e-3 1.07e-2 2.18e-2 4.25e-2 6.82e-2

Lower 
bound 
(April)

5.76e-3 1.86e-2 4.28e-2 9.23e-2 0.18 0.28

Upper 
bound 
(year)

3.56 3.56 3.57 3.58 3.60 3.63

Upper 
bound 
(April)

Pregnant 
women 2013

4.17 4.18 4.21 4.25 4.34 4.44

Arcury et al. 
(2018) [46]

Non-
farmworkers 

women 
(Hispanic)

2013 – 1.3 2.6 3.7 4.2 –

NHANES 
(2019) [20] Women 2009 – 2010 – – 0.34 1.88 3.22 4.40

Health 
Canada 

(2017) [19]

Women (3-79 
years) 2014 – 2015 0.31 – 1.10 – 5.20 7.80

Whyatt et al. 
(2009) [47]

Pregnant 
women (Afro-
American and 

Dominican)

2001 – 2004 <0.26 <0.26 <0.26 1.02 3.30 4.80

673
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Figure S1 – Location of urban zones in Picardy according to the typology of INSEE (>2000 inhabitants).

Figure S2 – Cumulative frequencies of volatilization rates. Lines depict air drift (red), volatilization from 
plant (green) and from soil (blue). Quantities are ranked in descending order. Volatilization processes take 
place over short periods, i.e. less than a month. Air drift appears to be instantaneous compared to 
volatilization rates from soil and plant.
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Figure S3 – Time evolution of chlorpyrifos concentrations in air (blue), soil (red) and lettuce (green) after 
an application. Chlorpyrifos concentrations decrease within four weeks in air and lettuce while this process 
takes several months for the soil.

Figure S4 – Maps of air concentrations and atmospheric deposits in Picardy. Maps A and B show the 
distribution of mean atmospheric concentrations in nanograms per cubic meter over the year (A) and 
during April (B). Map C shows the annual distribution of atmospheric deposits in milligrams while Map D 
represents the percentage of deposits occurring in April. It is during April that the atmospheric 
concentrations are the most important and it is also the month that contributes the most to annual deposits.
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Figure S5 – Variogram maps of air concentrations (A) and deposits (B). The variogram maps display an 
anisotropy axis oriented from west-southwest to east-northeast.

Figure S6 – Comparisons between air concentrations (A) and deposits (B) anisotropic variograms. Black 
lines depict major axis variograms and red lines depict minor axis variograms.
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Figure S7 – Comparison between local food products concentration estimates at harvest and 
measurements from EFSA and EAT2 studies for the four crops. Red boxplots depict predicted 
concentrations of chlorpyrifos for each locally-produced crop. Green boxplots depict concentration ranges 
for each commercial crop according to the two scenarii (lower bound and upper bound). Values are 
expressed in mg per kilogram of fresh weight.

Figure S8 – Time evolution of TCPy urinary concentrations during the year for pregnant women at the end 
of their first trimester. Red line displays lower bound TCPy concentrations and green line displays upper 
bound concentrations. For both scenarii, the peak of urinary concentrations is comprised between March 
and May.
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Figure S9 – Inhalation pathway contributions to overall TCPy concentrations. Comparisons between annual 
mean and monthly means for months which agricultural spreading are the highest.

Tables

Table S1 – Available data and use.

Variable Data source and use

Plant protection 
product sales

National Bank of Plant Protection Products 
Sales by Authorized Distributors (BNV-D, 2020). 
To be used to predict annual quantities applied.

Spreading times
Departmental agricultural chambers (Chambres 

d’Agriculture Hauts-de-France, 2020). To be 
used to predict annual quantities applied.

Wind
Temperature
Precipitations

Humidity
Cloudiness

Synop Essential WMO (Synop Essentielles 
OMM, 2020). To be used to predict atmospheric 

dispersion.

Concentrations in 
commercial food 

products

French Total Diet Study (Leblanc et al., 2011) 
and EFSA (EFSA, 2015). To be used to predict 

dietary ingestion exposure.
Concentrations in tap 

water
SISE-Eaux (Davezac et al., 2008). To be used 

to predict water consumption exposure.

Table S2 – Quantification rates obtained from different food products in EAT2 and EFSA studies.

Study Quantification 
rate

EAT2 (France) 1.1%
EFSA (EU) 7.3%
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Table S3 – Concentration values used for commercial food products (mg/kg of fresh weight).

Food product LOD LOQ Scenario
Lower 
bound

Upper 
bound

Apple 3e-3 1.2e-2 0 1.69e-2

Lettuce 2.5e-2 5e-2 0 1.12e-2

Potato 5e-3 or 1e-2 –a 0 5.6e-3

Tomato 2.5e-2 5e-2 0 1.23e-2

Other food productsb Between 1e-3 and 
2.5e-2

Between 3e-3 and 
5e-2 0 6.49e-2

aAll samples were below the limit of detection (LOD).
bThe minimum limit of detection (LOD) was equal to 1e-3 mg/kg of fresh weight for meat, fish, seafood and dairy products. The 
maximum LOD was equal to 2.5e-2 mg/kg of fresh weight for all vegetables excluding potatoes. The minimum limit of quantification 
(LOQ) was equal to 3e-3 mg/kg of fresh weight for merguez. The maximum LOQ was equal to 5e-2 mg/kg of fresh weight for 
artichokes and turnips.
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