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Abstract 

For the determination of acute toxicity of chemicals in zebrafish (Danio rerio) embryos, the OECD test 

guideline 236, relative to the Fish Embryo Toxicity Test (FET), stipulates a dose-response analysis of 

four lethal core endpoints and a quantitative characterization of abnormalities including their time-

dependency. Routinely, the data are analysed at the different observation times separately. However, 

observations at a given time strongly depend on the previous effects and should be analysed jointly with 

them. To solve this problem, we developed multistate models for occurrence of developmental 

malformations and live events in zebrafish embryos exposed to eight concentrations of valproic acid 

(VPA) the first five days of life. Observations were recorded daily per embryo. We statistically infer on 

model structure and parameters using a numerical Bayesian framework. Hatching probability rate 

changed with time and we compared five forms of its time-dependence; a constant rate, a piecewise 

constant rate with a fixed hatching time at 48 hours post fertilization, a piecewise constant rate with a 

variable hatching time, as well as a Hill and Gaussian form. A piecewise constant function of time 

adequately described the hatching data. The other transition rates were conditioned on the embryo body 

concentration of VPA, obtained using a physiologically-based pharmacokinetic model. VPA impacted 

mostly the malformation probability rate in hatched and non-hatched embryos. Malformation reversion 

probability rates were lowered by VPA. Direct mortality was low at the concentrations tested, but 

increased linearly with internal concentration. The model makes full use of data and gives a finer grain 

analysis of the teratogenic effects of VPA in zebrafish than the OECD-prescribed approach. We discuss 

the use of the model for obtaining toxicological reference values suitable for inter-species extrapolation. 

A general result is that complex multistate models can be efficiently evaluated numerically. 

Keywords 

Multistate model, Zebrafish embryo, Malformations, Survival analysis, Dose-response analysis.  
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1 Introduction 

For human risk assessment, many in vitro and in vivo tools have been developed to improve the 

extrapolation of toxic effects from animals or non-animal systems to humans. Given its multiple 

advantages such as simple husbandry, transparency, small size, rapid development, documented genetic 

homologies to humans and animal welfare considerations, the zebrafish (Danio rerio) embryo has 

become an attractive species for toxicological and pharmacological testing (d’Amora and Giordani, 

2018; Driessen et al., 2013; Hill et al., 2005; Hodgson et al., 2018; Kantae et al., 2016; Kanungo et al., 

2014; Larisch et al., 2017; MacRae and Peterson, 2015; Sipes et al., 2011). For chemical  toxicity testing 

in the zebrafish embryo, the OECD test guideline (TG) 236 on the Fish Embryo Acute Toxicity Test 

(Busquet et al., 2014; Embry et al., 2010; OECD, 2013) prescribes to record counts of four core 

endpoints (coagulation, lack of heart beat, somite formation and tail detachment) in addition to reporting 

malformations at various times following exposure of individual fish embryos to five test concentrations. 

The same guideline recommends performing a separate time-stratified dose-response analysis for the 

determination of the lowest observed effect (LOEC) as well as LC50 and LC100. Only recently, full dose-

response curves for all observations at different times have been recommended as an advanced approach 

for a more detailed data analysis (Brotzmann et al., 2020). 

The standard stipulated by OECD TG 236 might also be improved by the following quantitative and 

qualitative principles: First, translation of toxicity assessment from zebrafish to humans should account 

for differences in pharmacokinetics between the two species (Quignot et al., 2014); this has been 

addressed in a previous article on physiologically-based pharmacokinetic (PBPK) modeling for the 

zebrafish embryo (Siméon et al., 2020a, 2020b). Second, inter-species extrapolation might be improved 

by a more in-depth mechanistic analysis of the animal model, which would also contribute to a 

refinement of the test method in line with the 3Rs principle (Russell and Burch, 1959). Although the 

design of mechanistic models for developmental toxicity is difficult (Battistoni et al., 2019), at least the 

general features of the malformation process should be accounted for. In quantitative terms, there are 

two major problems with time-stratified statistical analyses: (1) Events recorded at a given time are at 

least partly dependent on previously manifested effects; as a consequence, malformations occurrences 

are not independent. For example, embryos may die before completion of heart development; since dead 
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embryos cannot subsequently develop heart malformation, the prevalence of cardiac malformation at 

lethal test concentrations seems to decrease − a typical intricacy of competing risks. (2) Furthermore, 

stratifying the data by times of observation reduces the number of data points per analysis, potentially 

making their analysis impossible or at least reducing their power considerably.  

The standard analysis of such time-of-occurrence data uses survival models (Bradburn et al., 2003a, 

2003b; Clark et al., 2003a, 2003b; Jiang and Fine, 2007; Lee and Go, 1997), which are commonly used 

in clinical studies or failure-time analyses (Gould et al., 2015; Karmen et al., 2019). Multistate Markov 

models (Andersen et al., 2012; Beyersmann et al., 2012; Jackson, 2011) are extensions of survival 

models able to deal with competing risks.  

The present communication illustrates the application of multistate models to the analysis of zebrafish 

embryo malformation data following exposure to a model compound: valproic acid (VPA). VPA is a 

notorious teratogenic antiepileptic and thymoregulator widely used in humans, even though its 

mechanism of action is not fully understood (Chuang et al., 2012; Fathe et al., 2014; Phiel et al., 2001). 

The final model includes five physiological states the zebrafish embryos may be in: “normal” (i.e., pre-

hatched), “hatched”, “non-hatched with effects” (i.e., malformed), “hatched with effects” and 

“coagulated” (i.e., dead). The probabilities of transitions between states may depend on time (e.g., for 

hatching) or on internal chemical exposure concentration (e.g., for the transitions to malformed or dead 

states). At all times and all exposures levels, data collected were jointly analyzed, and an innovative 

route for solving the associated equations is proposed. Additionally, we computed internal VPA 

concentrations as a function of time and water-concentration using a zebrafish embryo physiologically-

based pharmacokinetic (PBPK) model previously developed (Siméon et al., 2020a, 2020b). Combining 

PBPK and multistate effect models allows to establish concentration-time-response relationships, which 

can be used for the establishment of toxicity reference values. 

2 Background on multistate models 

Survival analysis models the statistical distribution of the time of occurrence of events of interest (e.g., 

death), after a fixed starting time, using data from several subjects or observation units (patients, 

zebrafish embryos, etc.) (Bradburn et al., 2003a). The simplest survival model (Figure 1) considers only 
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two states, e.g., “alive” and “dead”, with no possible reversion from the second to the first. The deaths 

observed correspond to transitions between states 1 and 2, characterized by a hazard rate (also called 

transition intensity) q1,2. This transition intensity is of fundamental interest, because it can link 

instantaneous exposure to drugs or toxicants and observed death times in exposed individuals.  

Survival analysis can be generalized to multistate Markov models, which describe transitions, eventually 

reversible, between more than two states and can be used to obtain the distribution of residence time in 

the various states (Andersen et al., 2012; Beyersmann et al., 2012; Welton and Ades, 2005). If several 

states are accessible from another one (Figure 2), we have a competing risks process. 

Therefore, multistate Markov models form a general class of competing risk models, and can consider 

many intermediate events (Farewell and Tom, 2014; Putter et al., 2007) (see for example Figure 3). 

In these models, a set of transition intensities qi,j(t,z(t)) determines the risk of moving from state i to state 

j, as a function of time and individual-specific variables z(t), which can themselves be time-dependent 

(Jackson, 2011). An important class of variables z(t) are exposures to hazards, measured for example by 

the body or organ concentration of a toxicant. 

Assume we start from state X(0) = i among a set of states X, and call pi,j(t) the transition probability from 

state X(0) = i to state X(t) = j during time length t. Said otherwise, by definition: 

 𝑝𝑖,𝑗(𝑡) = 𝑃{𝑋(𝑡) = 𝑗|X(0) = 𝑖}  (1) 

Determining these transition probabilities is important, because they condition the likelihood of 

observing transitions between states as time passes (i.e., the data). To calibrate a multistate model from 

data, we need to link variables z(t), transition intensities qi,j(t,z(t)), transition probabilities pi,j(t) and 

observations. A system of ordinary differential equations (ODE), called forward Kolmogorov 

differential equations, can be written to link transition intensities and probabilities (Brinks and Hoyer, 

2018; Fisz, 1976). This system of equations can be expressed quite simply with a matrix notation: 

 
𝜕𝑷(𝑡)

𝜕𝑡
= 𝑷(𝑡)𝑸(𝑡) (2) 
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The transition probabilities pi,j(t) are the elements of the probability matrix P(t), and the corresponding 

transition intensities qi,j(t,z(t)) are the elements of the transition matrix Q(t). The ODE system is obtained 

by element-wise multiplication of the rows of matrix P(t) by the columns of matrix Q(t). The probability 

matrix P(t) we need is the solution of the above system of differential equations (Jackson, 2011) with 

suitable initial conditions (i.e., P(0) = I, the identity matrix). 

The final link between transition probabilities and data likelihood depends on the observational process, 

i.e. on study design and type of data collected (Jackson, 2011). In an intermittently-observed process, 

like the OECD 236 test, the data is a set of n observation times {t1,m, …, tn,m} and states {s(t1,m), …, 

s(tn,m)} in which individual m was at these times. This is also called time-censored “panel” data, because 

the exact time of occurrence of the malformation is not known with precision. The likelihood of 

observing a pair of successive states (s(tk,m), s(tk+1,m)) at times (tk,m, tk+1,m) is simply, by definition, the 

probability of going from state s(tk,m), to state s(tk+1,m) during the length of time tk+1,m – tk,m: 

 𝐿𝑘,𝑚 = 𝑝𝑠(𝑡𝑘,𝑚)𝑠(𝑡𝑘+1,𝑚)(𝑡𝑘+1,𝑚 − 𝑡𝑘,𝑚) (3) 

The full likelihood of the data, L, is simply the product of each Lk,m over all observed transitions and 

individuals. This essentially amounts to assuming a multinomial distribution of transition counts. 

Observations times do not need be equally spaced for Eq. 3 to apply.  

Two simplifications of the above general model can be made: 

Time-homogeneous multistate Markov models consider that transition intensities only depend on the 

starting state and their parameters do not depend on time (Putter et al., 2007; Zare et al., 2014): 

 𝑞𝑖,𝑗(𝑡, 𝑧(𝑡)) =  𝑞𝑖,𝑗 (4) 

In this case, the ODE system is linear and can be solved analytically using the so-called matrix 

exponentials (Jackson, 2011; Jones et al., 2017), which can be quite computationally expensive (Tsiros 

et al., 2019). 

Time-homogeneous semi-Markov models consider that transition intensities depend only on the starting 

state i and on the entry time tj into the next state j (Meira-Machado et al., 2009): 
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 𝑞𝑖,𝑗(𝑡, 𝑧(𝑡)) =  𝑞𝑖,𝑗(𝑡 − 𝑡𝑗) (5) 

The model can also be extended to hidden Markov processes if, for example, the exact states may be 

identified wrongly or indirectly by the observations. We will not consider such hidden Markov models 

here, because the definition and observation of malformations are quite crisp in the zebrafish embryo. 

However, we are interested in general non-time-homogeneous models, because transition intensities 

may change continuously with zebrafish embryo age. In particular, embryos grow and their internal 

concentrations of toxicants changes continuously with time (Siméon et al., 2020a). In that case, the 

matrix exponential solution does not apply, and numerical integration of the ODE system is the best 

solution, which we use. 

3 Materials and methods 

3.1 Zebrafish embryo malformation data 

Spawning groups were obtained from a colony of adult wild-type zebrafish (Danio rerio) of the 

‘Westaquarium strain’ maintained at the fish facilities of the Aquatic Ecology and Toxicology Group at 

the University of Heidelberg (licensed under no. 35-9185.64/BH). All experiments were based on OECD 

TG 236 and associated work (Braunbeck et al., 2015; Braunbeck and Lammer, 2006; Embry et al., 2010; 

Lammer et al., 2009; OECD, 2013); however, as an adjustment, for better observation of effects, 

exposure of the embryos was extended to 120 hours post-fertilization (hpf). According to Strähle et al. 

(2012), an extension of the exposure period to 120 hpf is possible without violation of the current EU 

animal welfare legislation (EU, 2010) and is recommended in cases of inconclusive observations after 

96 hpf. 

For each test, embryos were immersed in the test solutions at the 16 cell-stage at the latest (≤ 90 min; 

before cleavage of blastodisc). To start exposures with minimum delay, twice the number of eggs 

eventually needed per treatment group were picked from the same batch of eggs and transferred into 

100 ml crystallization dishes with the test concentrations or negative (artificial water according to ISO 

7346-3) (OECD, 2013) and positive controls (24.7 µM of 3,4-dichloroaniline). At 3 hpf at the latest, 

viable eggs were selected for normal development under the stereomicroscope (≥ 30-fold magnification) 

and transferred to a final volume of 1 ml into 24-well plates (one embryo per well). To account for 
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potential adsorption of the test solutions to the plastic walls of the wells, the plates had been pre-exposed 

to the test solutions for 24 h. Test solutions were replaced at 24, 48, 72 and 96 hpf (without changing 

the well plates). Embryos were not dechorionated and hatched on their own at approximately 72 hpf. 

VPA was tested in three independent runs at seven test concentrations ranging from 6.25 to 400 μM 

regularly spaced by a factor of 2. The control group comprised a total of 120 embryos, while VPA-

exposed groups consisted of 60 embryos per test concentration. Note that each embryo was in its own 

well of the plates and was observed individually. 

Prior to medium replacement and upon completion of the test at 120 hpf, embryos were analyzed for 

macroscopically discernable alterations including the four morphological lethal core endpoints listed by 

OECD TG 236 (OECD, 2013) (coagulation, lack of heart-beat, somite formation and tail detachment) 

as well as any additional sublethal observation including, e.g., scoliosis/lordosis, eye deformation, loss 

of pigmentation, various types of edemata and general skeletal deformations (Braunbeck et al., 2005; 

Hollert et al., 2003; Nagel, 2002). Up to 55 developmental malformations could be recorded including 

a semi-quantitative graduation of severity for at least part of the adverse effects, e.g. heart-beat reduced, 

severely reduced or missing. All the effects recorded and their corresponding codes are summarized in 

Supplemental Material Table S1. 

For documentation, morphological alterations were recorded with a Zeiss Axio Cam ICc1 camera 

mounted on a Zeiss Olympus CKX41 microscope (Carl Zeiss, Oberkochen, Germany) and analyzed 

using the Zeiss imaging program Zen lite 2011. 

Since the addition of buffer may affect the development of the embryos, the artificial water pH was not 

buffered, but measured independently at the various test concentrations of VPA (Supplemental Material 

Table S2). Water pH decreased with VPA concentration, which was expected and taken into account 

for internal concentration estimation by the PBPK model (see below). The pH of the control solutions 

was at 7.75. According to the OECD test guideline, water pH values between 6.5 and 8.5 are not 

expected to induce particular toxicity and pH should be kept in that range (Busquet et al., 2014; OECD, 

2013). Since the pH dropped below 6.5 for the highest VPA test concentration (800 μM), leading to 

rapid death of the embryos within a couple of hours by a mechanism completely independent of 

malformations and subsequent lethality, data obtained at 800 μM were excluded from this analysis. 
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3.2 Zebrafish embryo malformation multistate model  

3.2.1 Model structure 

The proposed multistate model of malformations in the zebrafish embryo includes five states, as shown 

in Figure 3: “normal”, N, i.e., pre-hatched; “hatched”, H; “non-hatched with effects”, E, i.e., malformed; 

“hatched with effects”, EH; “coagulated”, C, i.e., dead. We aggregated the various malformations into 

non-hatched with effects and hatched with effects for simplicity.  

The coagulated state is the only absorbing state (state from which you cannot return). Back transitions 

are possible between the normal and non-hatched with effects states, and between the hatched and 

hatched with effects states, since we had observations of such transitions. 

The elements of the associated transition probability matrix P(t) are the transition probability pi,j(t). 

According to our model, the transition probabilities PH,N(t), PC,N(t), PEH,N(t), PC,H(t), PH,E(t), PC,E(t), 

PEH,E(t), PH,C(t), PEH,C(t), and PC,EH(t) will always be null, because there is no path between the first and 

the second state. Hence, there is no need to compute a differential equation for them. Note however, for 

example, that while there is no direct transition from the normal to the hatched with effects states, this 

transition is still possible via the non-hatched with effects state, so pN,EH is not null. The transition 

probability PC,C(t) is equal to 1, because C is absorbing state. Therefore, P(t) can be written as follow: 

 𝑷(𝑡) =

(

  
 

𝑝𝑁,𝑁(𝑡)

0
𝑝𝐸,𝑁(𝑡)

0
0

𝑝𝑁,𝐻(𝑡)

𝑝𝐻,𝐻(𝑡)

𝑝𝐸,𝐻(𝑡)

0
𝑝𝐸𝐻,𝐻(𝑡)

𝑝𝑁,𝐸(𝑡)

0
𝑝𝐸,𝐸(𝑡)

0
0

𝑝𝑁,𝐶(𝑡)

0
𝑝𝐸,𝐶(𝑡)

1
0

𝑝𝑁,𝐸𝐻(𝑡)

𝑝𝐻,𝐸𝐻(𝑡)

𝑝𝐸,𝐸𝐻(𝑡)

0
𝑝𝐸𝐻,𝐸𝐻(𝑡))

  
 

 (6) 

The associated transition matrix, Q(t) only includes direct transitions between states (see Figure 3) and 

its row sums have to be equal to 0. Therefore, the diagonal transition intensities qN,N(t), qH,H(t), qE,E(t), 

qC,C(t), and qEH,EH(t) must be respectively:  

 𝑞𝑁,𝑁(𝑡) = −(𝑞𝑁,𝐻(𝑡) + 𝑞𝑁,𝐸(𝑡) + 𝑞𝑁,𝐶(𝑡))  (7) 

 𝑞𝐻,𝐻(𝑡) = − 𝑞𝐻,𝐸𝐻(𝑡)  (8) 
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 𝑞𝐸,𝐸(𝑡) = −(𝑞𝐸,𝑁(𝑡) + 𝑞𝐸,𝐶(𝑡) + 𝑞𝐸,𝐸𝐻(𝑡))  (9) 

 𝑞𝐶,𝐶(𝑡) =  0  (10) 

 𝑞𝐸𝐻,𝐸𝐻(𝑡) = −𝑞𝐸𝐻,𝐻(𝑡)  (11) 

The transition matrix Q(t) is therefore: 

 𝑸(𝑡) =

(

 
 

−𝑞𝑁,𝐻(𝑡) − 𝑞𝑁,𝐸(𝑡) − 𝑞𝑁,𝐶(𝑡)

0
𝑞𝐸,𝑁(𝑡)

0
0

𝑞𝑁,𝐻(𝑡)

−𝑞𝐻,𝐸𝐻(𝑡)

0
0

𝑞𝐸𝐻,𝐻(𝑡)

𝑞𝑁,𝐸(𝑡)

0
−𝑞𝐸,𝑁(𝑡) − 𝑞𝐸,𝐶(𝑡) − 𝑞𝐸,𝐸𝐻(𝑡)

0
0

𝑞𝑁,𝐶(𝑡)

0
𝑞𝐸,𝐶(𝑡)

0
0

0
𝑞𝐻,𝐸𝐻(𝑡)

𝑞𝐸,𝐸𝐻(𝑡)

0
−𝑞𝐸𝐻,𝐻(𝑡))

 
 

 (12) 

The model ODE system is obtained by a simple matrix multiplication of P(t) by Q(t): 

 
𝜕𝑝𝑁,𝑁(𝑡)

𝜕𝑡
= − 𝑝𝑁,𝑁(𝑡) × (𝑞𝑁,𝐻(𝑡) + 𝑞𝑁,𝐸(𝑡) + 𝑞𝑁,𝐶(𝑡)) + 𝑝𝑁,𝐸(𝑡) × 𝑞𝐸,𝑁(𝑡) (13) 

 
𝜕𝑝𝑁,𝐻(𝑡)

𝜕𝑡
= 𝑝𝑁,𝑁(𝑡) × 𝑞𝑁,𝐻(𝑡) − 𝑝𝑁,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) + 𝑝𝑁,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (14) 

 
𝜕𝑝𝑁,𝐸(𝑡)

𝜕𝑡
= 𝑝𝑁,𝑁(𝑡) × 𝑞𝑁,𝐸(𝑡) − 𝑝𝑁,𝐸(𝑡) × (𝑞𝐸,𝑁(𝑡) + 𝑞𝐸,𝐶(𝑡) + 𝑞𝐸,𝐸𝐻(𝑡)) (15) 

 
𝜕𝑝𝑁,𝐶(𝑡)

𝜕𝑡
= 𝑝𝑁,𝑁(𝑡) × 𝑞𝑁,𝐶(𝑡) + 𝑝𝑁,𝐸(𝑡) × 𝑞𝐸,𝐶(𝑡) (16) 

 
𝜕𝑝𝑁,𝐸𝐻(𝑡)

𝜕𝑡
= 𝑝𝑁,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) + 𝑝𝑁,𝐸(𝑡) × 𝑞𝐸,𝐸𝐻(𝑡) − 𝑝𝑁,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (17) 

 
𝜕𝑝𝐻,𝐻(𝑡)

𝜕𝑡
= − 𝑝𝐻,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) + 𝑝𝐻,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (18) 

 
𝜕𝑝𝐻,𝐸𝐻(𝑡)

𝜕𝑡
= 𝑝𝐻,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) − 𝑝𝐻,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (19) 
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𝜕𝑝𝐸,𝑁(𝑡)

𝜕𝑡
= − 𝑝𝐸,𝑁(𝑡) × (𝑞𝑁,𝐻(𝑡) + 𝑞𝑁,𝐸(𝑡) + 𝑞𝑁,𝐶(𝑡)) + 𝑝𝐸,𝐸(𝑡) × 𝑞𝐸,𝑁(𝑡) (20) 

 
𝜕𝑝𝐸,𝐻(𝑡)

𝜕𝑡
= 𝑝𝐸,𝑁(𝑡) × 𝑞𝑁,𝐻(𝑡) − 𝑝𝐸,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) + 𝑝𝐸,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (21) 

 
𝜕𝑝𝐸,𝐸(𝑡)

𝜕𝑡
= 𝑝𝐸,𝑁(𝑡) × 𝑞𝑁,𝐸(𝑡) − 𝑝𝐸,𝐸(𝑡) × (𝑞𝐸,𝑁(𝑡) + 𝑞𝐸,𝐶(𝑡) + 𝑞𝐸,𝐸𝐻(𝑡)) (22) 

 
𝜕𝑝𝐸,𝐶(𝑡)

𝜕𝑡
= 𝑝𝐸,𝑁(𝑡) × 𝑞𝑁,𝐶(𝑡) + 𝑝𝐸,𝐸(𝑡) × 𝑞𝐸,𝐶(𝑡) (23) 

 
𝜕𝑝𝐸,𝐸𝐻(𝑡)

𝜕𝑡
= 𝑝𝐸,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) + 𝑝𝐸,𝐸(𝑡) × 𝑞𝐸,𝐸𝐻(𝑡) − 𝑝𝐸,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (24) 

 
𝜕𝑝𝐸𝐻,𝐻(𝑡)

𝜕𝑡
= − 𝑝𝐸𝐻,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) + 𝑝𝐸𝐻,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (25) 

 
𝜕𝑝𝐸𝐻,𝐸𝐻(𝑡)

𝜕𝑡
= 𝑝𝐸𝐻,𝐻(𝑡) × 𝑞𝐻,𝐸𝐻(𝑡) − 𝑝𝐸𝐻,𝐸𝐻(𝑡) × 𝑞𝐸𝐻,𝐻(𝑡) (26) 

As mentioned above, the other differentials, e.g. for PH,N(t), are null. Similarly, PC,C(t) is always equal 

to 1 and its differential is null. To check the model equations, we can calculate the probability mass 

balance, which should always be equal to 5, because the initial condition for P(t) is the identity matrix 

of order 5: 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑎𝑠𝑠 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = ∑ (∑ 𝑃𝑖,𝑗(𝑡)
𝑗=5
𝑗=1 )𝑖=5

𝑖=1  = 5 (27) 

3.2.2 Transition hatching rate sub-model 

The zebrafish embryo hatching rate is clearly non-constant with time: in normal conditions, hatching is 

never observed before 24 hpf, because the embryo is not ready for hatching (Kimmel et al., 1995). We 

tested five sub-models linking qN,H (t) and time and retained a piecewise constant model with estimated 

hatching time on the basic of the Akaike information criterion (see Supplemental Material Section 2). 

In the five-state model (Figure 3), hatching can happen to normal embryos (state N) and malformed 
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embryos (state E). The piecewise constant sub-model was used for both hatching rates in the final model, 

leading to three parameters to estimate: hatching time t
h
, and the values of the intensities qN,H and qE,EH 

after t
h
 (before t

h
 those intensities were assumed to be null). 

3.2.3 VPA concentration-dependent transition intensities 

To find appropriate functional forms for the links between VPA internal concentration, C(t), and 

transition intensities, we first estimated the remaining intensities (qE,N, qEH,H, qN,E, qN,C, qE,C, and qH,EH) 

separately for each exposure group. We then determined visually adequate sub-models: exponential for 

qE,N and qN,E; linear for qEH,H, qN,C and qE,C; and Hill for qH,EH (a comparison of the final sub-models with 

the separate estimates is shown in Supplemental Material Figure S6). The corresponding equations are: 

 𝑞𝐸,𝑁(𝐶(𝑡)) = 𝑞𝐸,𝑁(0) × e
𝑘𝑞𝐸,𝑁× 𝐶(𝑡)  (28) 

 𝑞𝑁,𝐸(𝐶(𝑡)) = 𝑞𝑁,𝐸(0) × e
𝑘𝑞𝑁,𝐸× 𝐶(𝑡)  (29) 

 𝑞𝐸𝐻,𝐻(𝐶(𝑡)) = 𝑞𝐸𝐻,𝐻(0) + 𝑘𝑞𝐸𝐻,𝐻 ×  𝐶(𝑡) (30) 

 𝑞𝑁,𝐶(𝐶(𝑡)) = 𝑞𝑁,𝐶(0) + 𝑘𝑞𝑁,𝐶 ×  𝐶(𝑡)  (31) 

 𝑞𝐸,𝐶(𝐶(𝑡)) = 𝑞𝐸,𝐶(0) + 𝑘𝑞𝐸,𝐶 ×  𝐶(𝑡) (32) 

 𝑞𝐻,𝐸𝐻(𝐶(𝑡)) =  
𝑞𝐻,𝐸𝐻𝑚𝑎𝑥 × 𝐶(𝑡)

𝑛

𝐸𝐶50
𝑛+ 𝐶(𝑡)𝑛

  (33) 

where qE,N(0), qN,E(0), qEH,H(0), qN,C(0), and qE,C(0) the transition intensities at VPA concentration zero; 

kqE,N, kqN,E, kqEH,H, kqN,C, and kqE,C are constants; qH,EHmax
 is the maximal transition intensity value of 

qH,EH, n its Hill exponent, and EC50 the concentration for which 𝑞𝐻,𝐸𝐻 is equal to 50% of its maximal 

value. 
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3.3 Coupling to a zebrafish embryo PBPK model 

The internal VPA concentration vs. time profiles (whole body excluding yolk) driving the above 

transition intensities (Eqs. 28 to 33) were computed for the various nominal exposure concentrations 

tested using our previously published zebrafish embryo PBPK model (Siméon et al., 2020a, 2020b). The 

decrease in water pH with increasing VPA test concentration was taken into account in our computation. 

The pre-computed internal concentration vs. time profiles were read at the start of the multistate 

calculations and interpolated linearly as needed during integration of the ODE equations. Figure S1, in 

Section 1 of the Supplemental Material, shows the value of internal concentration as a function of 

nominal concentration and time (on the Figure, discontinuities are due to the daily medium changes). 

3.4 Statistical inference on multistate model parameters 

The multistate parameters of the joint PBPK-multistate model were calibrated using Markov chain 

Monte Carlo (MCMC) simulations in a Bayesian statistical framework (Bernillon and Bois, 2000; Bois, 

2012; Smith and Roberts, 1993). MCMC methods can draw samples from the joint multi-dimensional 

posterior distribution of the model parameters, given a statistical model, prior parameter distributions, 

and data for which a likelihood function can be computed (Bois, 2009). 

We used the following statistical model: For most parameters (qE,N(0), qN,E(0), qEH,H(0), qN,C(0), qE,C(0), 

kqE,N, kqN,E, kqEH,H, kqN,C, kqE,C, qH,EHmax
, n, and EC50) we estimated one common value given the data 

from all experimental exposure groups. The three hatching parameters (t
h
, qN,H, and qE,EH) were estimated 

at the same time, but in a multi-level framework (Bois, 2012): As indicated in the experimental protocol, 

because the embryos of each exposure may not have been exactly at the same morulation stage at the 

time of selection, and due to biological variability, average hatching time varied randomly between 

exposure groups. Therefore, at the higher level of the hierarchy, we have three mean hatching 

parameters, and for individual exposure groups we assume that group-specific values are distributed 

randomly around the common mean: 

 𝝋𝑖~ Lognormal(𝝋, 𝝈) (34) 



 14 

where φ is the geometric mean in log-space of either t
h
, qN,H, or qE,EH, and σ is the corresponding standard 

deviation in log-space. The lognormal distribution for t
h
 was truncated to fall between 0 and 5 (days). 

So, for hatching, three mean parameters and eight triplets of group-specific parameters were estimated. 

Non-informative uniform priors were used for most transition intensities’ parameters. Parameters 

qEH,H(0) and kqEH,H were sampled with correlated constraints to respect the fact that qEH,H must be 

positive. For the SDs of the dose-group-specific hatching parameters, very wide truncated normal 

distributions were used (Table 1). 

The data were censored by interval. The data likelihood was therefore computed as the product of terms 

given by Eq. 3 over all transitions and individual embryos. 

Two simulated Markov chains of 30,000 iterations each were generated, starting from a set of parameter 

values randomly sampled from their priors. Convergence of the last 15,000 iterations of two chains was 

assessed using Gelman and Rubin’s Rhat convergence criterion (Gelman and Rubin, 1992). 

3.5 Calculation of predicted embryos counts 

The number of zebrafish embryos in state j at time t, nj(t), is conditioned by the probability to go from 

each initial state i to state j, according to the number of zebrafish embryos in initial state i at starting 

time t0, ni(t0), and is defined by: 

 𝑛𝑗(𝑡) = ∑(𝑛𝑖(𝑡0) × 𝑃𝑖,𝑗(𝑡)) (35) 

3.6 Calculation of reference toxicity values 

Internal concentration values (internal EC10) leading to 10% change from control on intensities were 

simply computed by mathematical inversion of Equations 28 to 33 (see Supplemental Material, section 

4). This was done for all the parameter values sampled by MCMC to obtain distributions of EC10 values 

reflecting uncertainty. External concentrations values leading to 10% effects (external EC10) on 

probabilities were computed by running the joint PBPK-multistate model for a grid of VPA water 

concentrations. Estimated probabilities were recorded for a dense set of times, leading to sets of three-

dimensional exposure-time-response relationships. Contour at z-values 0.1 or 0.9 (depending on 
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whether P increases or decreases with VPA exposure, respectively) were obtained with the “contour” 

function of the R statistical package for the maximum posterior parameter set and 100 random parameter 

sets, to estimate uncertainty. 

3.7 Software 

The dynamic model simulations and MCMC calibrations were performed with GNU MCSIM version 

6.1.0 (https://www.gnu.org/software/mcsim) (Bois, 2009). We used the R software version 3.5.2 for 

plotting and miscellaneous statistical analyses (R Development Core Team, 2013). The model code 

and the MCMC specification file are shown in Supplemental Material, Section 6. 

4 Results 

4.1 Model calibration 

4.1.1 Model fit to the data 

Each MCMC chain of 30,000 iterations took 9 hours to complete on a Dell Precision 5530 laptop 

computer (with Intel Core i7-8850H CPU clocked at 2.6GHz) using the Linux subsystem. Figure 4 

shows all observed transition counts plotted against the corresponding maximum posterior (best) model 

predictions. Note that the predictions are expected values, rather than integer counts, so there is a layer 

of randomness in the data that is not taken into account in this plot. Note also that the graph uses 

logarithmic scales for readability. Since null values (mostly for observations) cannot be shown on such 

a plot, we assigned them an arbitrary value of 0.1, only for plotting purposes; some of them fall far away 

from the identity line because of that artifact. Furthermore, the data are integers and the model 

predictions reals, so there will always be a mismatch. The model has a slight tendency to under-predict 

the data, but most of the points fall in the two-fold error interval. Table S4 (Supplemental material) gives 

all predicted and observed values. If we disregard the null values, the most outlying points are from the 

control group (three transitions observed from normal to hatched with effects on day 4, and two embryos 

remaining in the effect state on day 5) or correspond to observations of one or two transitions in the 

exposed groups while the model predicts a low probability for those events.  
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Figure 5 shows the detailed fit of the coupled PPBK-multistate model to the number of transitions 

between states, for the control group and the highest exposure concentration. The model is continuous 

in time, but we coarsely discretized its outputs when plotting them with the observations to better focus 

on the latter. The model predictions for all concentrations are presented in the Figure S8 of the 

Supplemental Material. As VPA exposure concentration increases, we observe a decrease in transitions 

to the hatched (H) state, and an increase in transitions to the malformed (E), hatched malformed (EH), 

and dead states (C). Yet, most exposure concentrations have little effect. Time has a strong effect on 

transitions between states, because hatching intensities are not constant in time and because of 

competing risk and depletion effects. For example, in the control group, the count of transitions from 

normal to hatched states is high at the end of day 3, because qN,H(t) become non-null, but it decreases at 

the end of days 4 and 5, simply because there are no more embryos left to hatch. At the highest VPA 

concentration, the count of transitions from normal to malformed (N to E) is highest at the end of day 1 

because of VPA, but then decreases because of depletion of the normal fish. At the same concentration, 

the count of malformed to malformed transitions (E to E, i.e., the count of fish staying in the malformed 

state) first increases and then decreases, because malformed embryos start either hatching or dying. The 

predicted counts of embryos malformed (E), hatched with effects (EH), or dead (C) is shown in Figure 

6 as a function of the time for each exposure concentration (the predicted counts for all states are shown 

in Figure S9 of the Supplemental Material). The number of embryos hatched with effects or dead 

increases with the concentration and the time of exposure, but the number of malformed embryos 

decreases with time and would not be well nor coherently modeled by standard sigmoidal dose-response 

curves. Note that there is less information in those count data than in the transition data (less data points 

for the same experiments), and that is why the model is fitted to the transition data. 

4.1.2 Transition intensities’ estimates 

The marginal posterior parameters distributions obtained by MCMC calibration with the embryo 

transition count data are summarized in Table 2. The parameters were estimated with a precision ranging 

from about 1.4% (for th) to 89% (kqN,C). A parameter posterior precision depends largely on the number 

of observed transitions that are conditioned by that parameter. The posterior summaries of the 

concentration-group-specific hatching parameter estimates are given in Table S5 of the Supplemental 



 17 

Material; there was no obvious correlation of those with concentration, but the hatching intensity is 

twice as low in malformed embryos as in normal embryos. Note, however, that MCMC sampling yields 

parameter vectors (sets) out of the joint posterior distribution of all parameters calibrated, that means 

that correlations between parameter estimates can be viewed, summarized and taken into account in 

predictive simulations. The correlations between parameters of the same intensity sub-models are shown 

in Figure S7 of the Supplemental material. 

It is challenging to directly interpret the values of Table 2. More telling is Figure 7, which shows the 

relationships between transition intensities and internal concentration (Eqs. 28 to 33) obtained when 

using the above posterior parameter estimates. Those are in fact the fundamental dose-response 

relationships of the model. First, there are large differences between their shape and range of values. 

The two largest correspond to rates of malformations. Note that the toxicity to hatched embryos starts 

occurring at lower dose than toxicity to the non-hatched embryos, but saturates above 0.01 M. Next 

comes the suppression of reversions from malformed to normal or hatched malformed to hatched. Such 

events are sometimes observed, but become even less likely as the internal concentration of VPA 

increases. Finally, direct mortality is relatively low at the concentrations tested, but seems to increase 

linearly with internal concentration. 

4.2 Calculation of reference toxicity values 

Regulatory guidelines on toxicity testing typically recommend to analyze the concentration-response 

profiles obtained experimentally to identify points of departure from baseline (healthy) state. Such points 

of departure can, for example, be exposure concentrations (EC10) leading to 10% effect. They can then 

be transposed to other species for risk assessment. Should such values be sought, they could be derived 

on the basis of internal or external concentrations and for effects measured by transition intensities (q), 

or transition probabilities (P). Out of the four possible combinations, we chose to present internal 

concentrations values leading to 10% effects (EC10) for intensities, and external EC10 for probabilities. 

The distribution of internal EC10 values for the reversion intensities qE,N and qEH,H are shown in Figure 

8. Their maximum posterior estimates are 5.5×10-4 and 4.7×10-3 M, respectively. The EC10 values for 

the other intensities, by increasing order, are 1.3×10-5 M for direct death (qN,C), 6.2×10-5 M for death of 
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malformed embryos (qE,C), 2.7×10-4 M for malformations in non-hatched embryos (qN,E), and 3.0×10-3 

M for malformation in hatched embryos (qH,EH). Hence, the intensities of malformations or their 

reversions appears to be less sensitive than death to VPA internal concentration, as judged by the sole 

EC10. 

Transition intensities are fundamental quantities in the model, but are not directly related to observations 

of fish counts in the different states, which may be more relevant for risk assessment. Transition 

probabilities condition more directly fish counts. Internal concentration EC10 values for probabilities 

could be obtained, but it may be more relevant again for risk assessment, in some context, to obtain EC10 

values based on external concentration. This can be done, but in that case, the EC10 depends both on 

exposure concentration and time. Figure 9, top row, shows the 3D water concentration-time-transition 

probability relationships for transition from normal to malformed, PN,E, normal to dead, PN,C. and normal 

the healthy hatched (PN,H).  PN,E shows a maximum a mid-exposure concentration and mid-time, because 

of competition effects with other states (dead, hatched, hatched malformed). PN,C has a less complex 

shape and increases nonlinearly with time and external concentration, because death is an absorbing 

state from which the embryo cannot escape. PN,H peaks late in time, but declines quickly with 

concentration. The three bottom panels of Figure 9 show the corresponding EC10 estimates, which are 

functions of time. These are just contours plots of the 3D surface at 10% of the maximum probability. 

For PN,E, there is clearly a sensitive period of time just before hatching, when VPA has had time to exert 

its effect and hatching has not depleted the pool of non-hatched embryos. At that time, the EC10 is around 

50 μM. For PN,C, the longer the lower the EC10, but it does not go lower than 200 μM, showing that dead, 

here also is a less sensitive toxicity endpoint. Finally, PN,H appears to be a very sensitive endpoint at 

later times. The expected counts of fish in the various final states will look exactly like those plots, 

because the probability at each point would just be multiplied by the starting count of embryos (in the 

normal state). 

Figure 10 shows Stradivarius plots comparing external concentration EC10 values obtained empirically 

(see Table S6 in Supplemental material) with the distribution of minimal EC10 values based on PN,E, and 

PN,C. Those minimal values were obtained by taking the minimum external concentration along each 

possible contour line. They fall around time 2.8 days for PN,E, and as expected, 5 days for PN,C. The range 
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of values is comparable, and the most sensitive endpoints found empirically (reduced yolk sac 

absorption EC10 at 20 μM; Pericardial edemata EC10 at 38 μM; Craniofacial deformation EC10 at 52 μM) 

do fall in the range of the PN,E based EC10s we found. 

5 Discussion 

A five-state Markovian model was developed to simulate and predict the occurrence of developmental 

malformations observed in zebrafish embryo following VPA exposure. The model makes full use of 

time- and dose-information gathered in the time-course of an OECD 236-compliant zebrafish toxicity 

test (OECD, 2013). The model takes into account the possibility of reversion of malformations, 

concurrent transitions between states, time- and exposure-dependent transition intensities. The link to 

exposure is important, because it offers a semi-mechanistic explanation of the observations, whose 

correlation pattern is complex and forbidding time by time or endpoint by endpoint analyses. Using 

PBPK-predicted internal concentration makes the model even more mechanistic and offers a way to take 

into account the large pharmacokinetic differences between human and zebrafish embryos, if 

quantitative extrapolation of the results to humans is sought. However, the model has limitations, as 

discussed below.  

5.1 Model structure and fit to the data 

Our model makes large simplifications that can partly explain the relative misprediction of low transition 

count data. For simplicity, and because we wanted to introduce a general framework, the model 

aggregates in only five states some 55 malformation types which occurred with different intensities at 

different times. Differences in intensities could partly be explained by different organ concentrations of 

the chemical or different organ susceptibilities to malformations. A finer subdivision of states by organs 

would allow the use of organ-specific measures of internal exposure (which could be predicted by the 

PBPK model) and better model the effect of malformations’ type and number. The total number of 

malformations or the number of affected organs could be computed and considered as measures of 

toxicity in predictive simulations, to define reference values, for example. This would still require 

calibration of the multistate model parameters, because some chemicals might have an affinity for an 

organ without causing effects to it. A finer grain model would also be more mechanistic and predictive 



 20 

after extrapolation to another species. Low frequency events would be analyzed joinly, with better 

statistical power (power calculations could also be done to optimize experimental design for specific 

outcomes). The relevance of rare events in a cross-species prediction context is another matter. 

Extrapolation of results and correlation between different species should always be made with utmost 

care, not only with respect to different time-scales of development, but also with regard to differences 

in molecular processes relevant for drug-induced effects, namely metabolism and toxicokinetic 

capacities. In any case, we do not claim at all to provide the ultimate solution to toxicity assessment with 

only zebrafish embryo tests. Indeed, evidence from organ-specific assays and different assay systems 

should also be considered. As to timing, it is obvious, for example, that heart malformations will not be 

observed before heart formation, etc., and this is not accounted for in the model at the moment. Note 

also that some malformation types correspond in fact to various degrees of severity of the same 

malformation (e.g., for the heart). It is common to use multistate models to describe such progressions 

by a linear chain of states (Cannon et al., 2017), and those could be used here. However, one problem 

arises when partitioning effects into finer states: There is a combinatorial multiplication of pluri-

malformation states (i.e., embryos suffering from several malformations at the same time should be in 

specific states). We do not have a solution to that problem at the moment. 

A simplified three-state model was used to find the most appropriate way to describe the time-

dependence of hatching intensity. Two hatching sub-models had almost equal AIC values (a piecewise 

constant model with estimated hatching time and a Hill’s model). We preferred the former, and data at 

a finer time scale (e.g., every few hours) would be needed to refine the model. Note that observation 

times do not need at all to be equally spaced when using a multistate framework. There was an apparent 

random effect in hatching intensity between VPA exposure groups, and we adopted a hierarchical 

approach to model it. A posteriori, there are not huge or very significant differences in hatching between 

exposure groups, and only one set of hatching parameters might suffice. While there is no obvious effect 

of VPA on hatching time or extent, the model estimates separately hatching in normal and malformed 

embryos, and we found the latter to have a reduced hatching rate. Please note that one type of 

malformations is “lack of hatch” and could be modeled as a censored piece of data on hatching time. 
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The shape of the individual sub-models linking internal concentration to transition intensities was 

determined with a standard two-step approach: First, estimate transition intensities for each exposure 

group, independently; second, determine empirically the relationship of the estimates with 

concentration. Another route for determining those relationships would be to link them to mechanistic 

quantitative AOP models (Battistoni et al., 2019), but that would require much more data. We did find 

that all six transitions intensities, not including hatching, discussed above, were VPA concentration-

dependent. A more principled method would compare systematically various sub-model fits, or use a 

non-parametric model able to describe all of them. For example (see Figure S6), a negative exponential 

function might be better suited to model qEH,H relationship with VPA concentration. It might not make 

much difference though, because reversion from malformed hatched embryos are very few. 

Furthermore, the computational burden would have been much higher, and we would not have had 

enough concentration levels to improve dramatically and validate the intensity sub-models (the four 

lowest VPA concentrations tested had little effects). There also seems to be a small but consistent burst 

of effects at low concentrations in Figure S6. We wanted to avoid overfitting and did not try to capture 

this pattern. We also think that this early burst is an artefact induced lumping several types of 

malformations, but examining that hypothesis would require a more refined model, as discussed above. 

Remember, though, that the points shown on Figure S6 do not represent data, but are statistical estimates 

of transition intensities obtained from individual concentration data analysis. It is tempting to consider 

Figure S6 as a visual fit check, but in fact it compares estimates from two very different models.  

The actual comparison of data and model predictions (Figures 4 and 5) shows a good agreement. Note 

that at the highest VPA concentration actually tested (800 µM) all embryos had died within the first day, 

potentially through a direct effect on water pH. We focused on malformations and excluded the 800 µM 

concentration and associated data from our analysis. The question remains of the effect of pH at the 

lower VPA concentrations. Andrade et al. (2017) showed that the survival rate of fish embryos depends 

on pH. In their study, at pH 3.5 all zebrafish embryos died within 24 hours; under pH 5, survival was 

definitely reduced, but not at pH 6. The sublethal effects of pH concerned mostly cardiac function and 

appeared at concentrations close to the lethal ones. Understanding which part of VPA embryo toxicity 

is due to its acidity could be important in the context of inter-species extrapolation, if the buffering 
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capacity of the embryo environment was different from that of water. We account for the action of pH 

on VPA kinetics (whose description is much improved when considering pH) and indirectly on its 

effects. However, we did not model the action of pH itself and that may have biased somewhat our dose-

response sub-models. We could have modeled this effect by adding a separate term to the death intensity 

sub-model. However, clearly differentiating deaths due to pH from those due to VPA would require 

doing experiments where only pH would change.  

There are seven reverse transitions going from malformed to normal-looking embryos, and 19 

transitions on day 5 from malformed hatched embryos to normal-looking ones. The malformations 

observed were different in hatched versus unhatched states: Malformations “Delayed body 

development”, “Reduced eye development”, “Missing heart beat” and “Severely reduced blood flow” 

were more frequently observed in the unhatched states. They were not really organ-specific, but early 

development stages-specific. The hatched state coincided with further organ differentiation and growth, 

and there we observed specific organs’ malformation such as “Pericardial edema”, “Reduced blood flow 

with pooling at yolk”, “Scoliosis”, etc. For reversions from the malformed unhatched state back to 

normal (E-N) were: Blood pooling, Pericardial edema and Yolk edema. Reversions from the malformed 

hatched state back to hatched (EH-H) were: Tremor, Tailfin development impacted, Scoliosis, 

Craniofacial deformation, Side lying, Blood pooling, Pericardial edema and Yolk edema. So definitely, 

the reversions from un-hatched malformed and hatch malformed were different. We estimated the 

corresponding intensities and found them to be negatively affected by VPA. They could have been 

treated as miss-classified events by using a Hidden Markov extension of the model (Williams et al., 

2020), but it seems unlikely that observation errors would be affected by VPA exposure. Furthermore, 

among the observed malformations (Table S1), some, like edema, are known to be reversible with the 

embryo’s growth and its development its immune system (van der Vaart et al., 2012; von Hellfeld et al., 

2020). An advantage of our global model is that “small” events such as these are identifiable, because 

all time and dose data are analyzed jointly. We would argue that if all 55 malformation types were 

analyzed, each of them would have low counts, and only such a model would be able to quantify them 

jointly and adequately. 
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5.2 Model solving and calibration 

We used the transition count data, as is done in multistate modeling, rather than population count data 

in the various states, as would be typically done in toxicology. Population counts evolve with time and 

concentration, but they carry less information than transition counts, because they lose information about 

the trajectory of individual fish through states in time. The standard OECD protocol calls for 

observations once per day, but indeed, more frequent observations would be more informative. The 

model takes into account the fact that an observed transition, say from normal to dead, may have 

occurred through passing (with the day) by the malformed state, without direct observation of it. Making 

sure that most states are actually observed would bring more precise predictions. Note also that only the 

three highest doses are strongly informative about effects. Obviously, statisticians always beg for more 

data, but one application of the model could be to estimate the value of added information and help 

planning further experiments (Bois et al., 1999; Overstall et al., 2020). 

General multistate models can use time-dependent transition intensities. However, in all multistate 

model applications and software we have seen, the matrix exponential solution is always used and cannot 

accommodate time-dependent intensities. The traditional solution is to approximate time dependent 

parameters by piecewise constant functions of time (Williams et al., 2020). However, assuming a 

piecewise constant process is a strong limitation which makes it difficult and inaccurate to link multistate 

and continuous pharmacokinetic models, and even more to make inference about the joint 

pharmacokinetic-pharmacodynamic model. It also increases the number of parameters to estimate. 

Finally, the matrix exponential solution is clumsy and slow to compute. A much more general solution 

is to integrate numerically the set of differential equations. Numerical integration imposes no constraints 

on linearity of the transition intensities or their time independence. Modern integration algorithms are 

also very fast and precise. Surprisingly, we seem to be the first to have used direct numerical integration 

of the differential system specifying P in the published literature. Curiously, the statistical community 

has so far preferred approximating non-linear general models with piecewise-linear models, despite the 

ensuing lack of flexibility and increased number of parameters to estimate. We compared the solution 

of the same multistate model using the well-known msm R package (Jackson, 2011), which uses in this 

case the analytical solution (much faster than matrix exponentials) and maximum-likelihood, and our 
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integration method in a Bayesian framework, using GNU MCSim. We obtain the same or more precise 

estimates (see Supplemental material, section 5 and Figure S10), but GNU MCSim took 20 minutes to 

obtain 2000 MCMC samples, and msm took 1 hour to obtain 1000 bootstrap samples. 

5.3 Reference values and extrapolation 

We explored ways to derive different types of EC10 values using our joint PBPK-multistate model, 

because the model (after further validation) could be used in various risk assessment contexts. For direct 

assessment of risk to fish in ecotoxicology, it is possible to use external (water) concentration EC10s, 

taking fish population counts (for example, successfully hatched fish) as endpoints (Figure 9). However, 

for extrapolation of the results to other species, and in particular humans, endpoints corresponding to 

specific organs’ malformation would probably be of interest for mechanistic reasons. In that case, it 

might be better to use internal concentration EC10s for specific transition rates. 

The zebrafish PBPK model allows us to obtain organ concentration values and link them to specific 

toxic event rates. Using a human PBPK model (Abduljalil et al., 2019), fetal concentrations could be 

obtained and the ensuing malformation risk to the embryo would be computed using these internal 

EC10s. Alternatively, using reverse dosimetry (Brochot et al., 2019), the mother exposure resulting in an 

acceptable risk level could be computed. A more detailed model could factor in malformation severity 

or reversibility and fine-tune reference values and risk assessment, making them more specific of 

particular effects, the extrapolation of which would be warranted by mechanistic considerations. For 

example, VPA prenatal exposure in humans has been associated with neurodevelopmental disorders 

such as autism (Kozma, 2001; Ornoy, 2009; Christensen et al., 2013). The zebrafish embryo has been 

proposed as a model species for such effects via the observation of physiological impairment and 

neurological effects causing behavioral alterations (Zimmermann et al., 2015; Chen et al., 2018; 

Dwivedi et al., 2019). Relevant physiological impairments are any effect (e.g., small eyes, chordal 

deformations, head and craniofacial deformations) which alters sensory perception and the animal’s 

ability to react. Direct neurological effects include for example jitter and tremor, or lack of movement. 

Such effects, and their potential reversibility, could be included in the multistate framework we propose, 

and their probability of appearance could be linked to specific organ’s concentration (eye, brain …). 

However, the actual relevance of such malformations for future behavioral changes depends on their 
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severity, reversibility, short- and long-term effects on the organism etc., and should be discussed for 

each substance using all the relevant evidence from multiple tests systems (including organ-specific 

assays), in an AOP or weight of evidence framework, for example. So far, however, the predictivity of 

our zebrafish embryo PBPK model for specific organ concentrations has not been cross-checked with 

experimental data for organ-specific concentrations. This should be done before applying it for 

predictions in a regulatory context. It may be reassuring that we found EC10 values in the range of those 

found with simpler methods. 

Extrapolating EC10 values between species, with safety factors for example, is a standard procedure. But 

we could also take the more mechanistic approach that would transpose elements of the model itself to 

the target species. Assumptions would have to be made about the states to conserve or change. For 

example, a hatched state might or might not be relevant to humans, depending on whether human birth 

can be assimilated to hatching. We do not have experience with the extrapolation of transition rates. To 

understand better how it could work, it would be very interesting to compare rates obtained in zebrafish 

and rat for the same chemicals, for example. In general, some transition rates could be set to zero in the 

target species if they are determined to be irrelevant. This could also be motivated by health protective 

reasons (for example, turning off all reversion rates in human). The diagonal terms of the transition 

matrix Q (Eq. 12) would also have to be adjusted to respect the constraint of null row sums. To account 

for differences in developmental timescales between test and target species, note that transition rates are 

defined as probabilities per unit time. It should be possible to normalize or transform the development 

time scale between species. For example, assume that time to hatching is about 3 days in zebrafish and 

time to birth in human is about 270 days. The ratio is 90, so all zebrafish transition rates could be divided 

by 90 to get rough human estimates. This would “slow” time by a factor 90. All these ideas should be 

validated with further data and case studies. 

6 Conclusion 

The multistate malformation model we propose is very general and versatile. It could be applied to 

analyze data on many chemicals in the zebrafish and in other species, in particular rodents. There is 

nothing specific to the zebrafish about the general framework; the definition of the states, the possible 



 26 

transitions between them would need to be adapted, and a specific PBPK model should be used, but the 

method would stay the same. For different chemicals, the sub-models linking malformation rates and 

exposure concentration would simply need to be fine-tuned with chemical-specific data. We showed 

how to do that using Bayesian inference with GNU MCSim, but a maximum likelihood approach and 

other software like R packages could also be used, at the eventual cost of some loss of flexibility in 

setting up hierarchical models for variability for example. 

For the zebrafish embryo test, our model fits our VPA data well and is an obvious refinement, allowing 

a better use of data. We could differentiate effects of VPA on various malformation steps to a level that 

would be inaccessible to simpler dose-response analyses. Our framework could also lead to potential 

saving of animal lives through optimal design or statistical sample size calculations. 

This model only sets up a framework and should be extended by considering more states and 

differentiating the severity of malformations. If that were done, its coupling to a PBPK would become 

even more relevant as specific organ concentrations could be linked to specific organ malformations for 

better data analyses and predictions of specific risk to humans, for example. We are aware that our 

approach is relatively complex and needs to be further verified with other chemicals before it could be 

used routinely or in any regulatory context. It would also be possible to simplify it, by using water 

concentration as a measure of exposure, for example. That could be justified assuming proportionality 

between water and body concentration. In any case, our model should help the scientific and risk 

assessment communities in improving toxicity data analyses. 

Corresponding author  

Email: frederic.bois@certara.com 

Acknowledgments 

This project has received funding from the European Union's Horizon 2020 research and innovation 

programme under grant agreement No. 681002 (EU-ToxRisk). The authors would like to thank Dr. 

Rachel Rose and the two anonymous reviewers for useful comments and discussion. 

mailto:frederic.bois@certara.com


 27 

7 References 

Abduljalil, K., Pan, X., Pansari, A., Jamei, M., Johnson, T.N., 2019. A preterm physiologically based 

pharmacokinetic model. Part I: physiological parameters and model building. Clinical 

Pharmacokinetics. https://doi.org/10.1007/s40262-019-00825-6 

Andersen, P.K., Geskus, R.B., de Witte, T., Putter, H., 2012. Competing risks in epidemiology: 

possibilities and pitfalls. International Journal of Epidemiology 41, 861–870. 

https://doi.org/10.1093/ije/dyr213 

Andrade, T.S., Henriques, J.F., Almeida, A.R., Soares, A.M.V.M., Scholz, S., Domingues, I., 2017. 

Zebrafish embryo tolerance to environmental stress factors - Concentration-dose response analysis 

of oxygen limitation, pH, and UV-light irradiation. Environmental Toxicology and Chemistry 36, 

682–690. https://doi.org/10.1002/etc.3579 

Battistoni, M., Di Renzo, F., Menegola, E., Bois, F.Y., 2019. Quantitative AOP based teratogenicity 

prediction for mixtures of azole fungicides. Computational Toxicology 11, 72–81. 

https://doi.org/10.1016/j.comtox.2019.03.004 

Bernillon, P., Bois, F.Y., 2000. Statistical issues in toxicokinetic modeling: a Bayesian perspective. 

Environmental Health Perspectives 108 (suppl. 5), 883–893. 

Beyersmann, J., Allignol, A., Schumacher, M., 2012. Competing Risks and Multistate Models with R. 

Springer New York, New York, NY. https://doi.org/10.1007/978-1-4614-2035-4 

Bois, F.Y., 2012. Bayesian inference, in: Reisfeld, B., Mayeno, A.N. (Eds.), Computational Toxicology 

Vol. II. Humana Press, New-York, pp. 597–636. 

Bois, F.Y., 2009. GNU MCSim: Bayesian statistical inference for SBML-coded systems biology 

models. Bioinformatics 25, 1453–1454. https://doi.org/10.1093/bioinformatics/btp162 

Bois, F.Y., Smith, T.J., Gelman, A., Chang, H.Y., Smith, A.E., 1999. Optimal design for a study of 

butadiene toxicokinetics in humans. Toxicological Sciences 49, 213–224. 

Bradburn, M.J., Clark, T.G., Love, S.B., Altman, D.G., 2003a. Survival Analysis Part II: Multivariate 

data analysis – an introduction to concepts and methods. British Journal of Cancer 89, 431–436. 

https://doi.org/10.1038/sj.bjc.6601119 

Bradburn, M.J., Clark, T.G., Love, S.B., Altman, D.G., 2003b. Survival Analysis Part III: Multivariate 

data analysis – choosing a model and assessing its adequacy and fit. British Journal of Cancer 89, 

605–611. https://doi.org/10.1038/sj.bjc.6601120 

Braunbeck, T., Boettcher, M., Hollert, H., Kosmehl, T., Lammer, E., Leist, E., Rudolf, M., Seitz, N., 

2005. Towards an alternative for the acute fish LC(50) test in chemical assessment: the fish embryo 

toxicity test goes multi-species - an update. ALTEX 22, 87–102. 

Braunbeck, T., Kais, B., Lammer, E., Otte, J., Schneider, K., Stengel, D., Strecker, R., 2015. The fish 

embryo test (FET): origin, applications, and future. Environmental Science and Pollution Research 

22, 16247–16261. https://doi.org/10.1007/s11356-014-3814-7 

Braunbeck, T., Lammer, E., 2006. Draft detailed review paper on fish embryo toxicity assays. UBA 

Contract Number 203 85 422. Umweltbundesamt – German Federal Environment Agency, Dessau, 

Germany. 

Brinks, R., Hoyer, A., 2018. Illness-death model: statistical perspective and differential equations. 

Lifetime Data Anal 24, 743–754. https://doi.org/10.1007/s10985-018-9419-6 

Brochot, C., Casas, M., Manzano-Salgado, C., Zeman, F.A., Schettgen, T., Vrijheid, M., Bois, F.Y., 

2019. Prediction of maternal and foetal exposures to perfluoroalkyl compounds in a Spanish birth 

cohort using toxicokinetic modelling. Toxicology and Applied Pharmacology 379, 114640. 

https://doi.org/10.1016/j.taap.2019.114640 



 28 

Brotzmann, K., Wolterbeek, A., Kroese, D., Braunbeck, T., 2020. Neurotoxic effects in zebrafish 

embryos by valproic acid and nine of its analogues: the fish-mouse connection? Archives of 

Toxicology. https://doi.org/10.1007/s00204-020-02928-7 

Busquet, F., Strecker, R., Rawlings, J.M., Belanger, S.E., Braunbeck, T., Carr, G.J., Cenijn, P., 

Fochtman, P., Gourmelon, A., Hübler, N., Kleensang, A., Knöbel, M., Kussatz, C., Legler, J., 

Lillicrap, A., Martínez-Jerónimo, F., Polleichtner, C., Rzodeczko, H., Salinas, E., Schneider, K.E., 

Scholz, S., van den Brandhof, E.-J., van der Ven, L.T.M., Walter-Rohde, S., Weigt, S., Witters, H., 

Halder, M., 2014. OECD validation study to assess intra- and inter-laboratory reproducibility of the 

zebrafish embryo toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and 

Pharmacology 69, 496–511. https://doi.org/10.1016/j.yrtph.2014.05.018 

Cannon, J., Roberts, K., Milne, C., Carapetis, J.R., 2017. Rheumatic heart disease severity, progression 

and outcomes: a multi‐state model. Journal of the American Heart Association 6. 

https://doi.org/10.1161/JAHA.116.003498 

Chen, J., Lei, L., Tian, L., Hou, F., Roper, C., Ge, X., Zhao, Y., Chen, Y., Dong, Q., Tanguay, R.L., 

Huang, C., 2018. Developmental and behavioral alterations in zebrafish embryonically exposed to 

valproic acid (VPA): an aquatic model for autism. Neurotoxicology and Teratology 66, 8–16. 

https://doi.org/10.1016/j.ntt.2018.01.002 

Christensen, J., Grønborg, T.K., Sørensen, M.J., Schendel, D., Parner, E.T., Pedersen, L.H., 

Vestergaard, M., 2013. Prenatal valproate exposure and risk of autism spectrum disorders and 

childhood autism. JAMA 309, 1696. https://doi.org/10.1001/jama.2013.2270 

Chuang, C.-M., Chang, C.-H., Wang, H.-E., Chen, K.-C., Peng, C.-C., Hsieh, C.-L., Peng, R.Y., 2012. 

Valproic Acid Downregulates RBP4 and Elicits Hypervitaminosis A-Teratogenesis—A Kinetic 

Analysis on Retinol/Retinoic Acid Homeostatic System. PLoS ONE 7, e43692. 

https://doi.org/10.1371/journal.pone.0043692 

Clark, T.G., Bradburn, M.J., Love, S.B., Altman, D.G., 2003a. Survival Analysis Part I: Basic concepts 

and first analyses. British Journal of Cancer 89, 232–238. https://doi.org/10.1038/sj.bjc.6601118 

Clark, T.G., Bradburn, M.J., Love, S.B., Altman, D.G., 2003b. Survival Analysis Part IV: Further 

concepts and methods in survival analysis. British Journal of Cancer 89, 781–786. 

https://doi.org/10.1038/sj.bjc.6601117 

d’Amora, M., Giordani, S., 2018. The utility of zebrafish as a model for screening developmental 

neurotoxicity. Frontiers in Neuroscience 12, 976. https://doi.org/10.3389/fnins.2018.00976 

Driessen, M., Kienhuis, A.S., Pennings, J.L.A., Pronk, T.E., van de Brandhof, E.-J., Roodbergen, M., 

Spaink, H.P., van de Water, B., van der Ven, L.T.M., 2013. Exploring the zebrafish embryo as an 

alternative model for the evaluation of liver toxicity by histopathology and expression profiling. 

Archives of Toxicology 87, 807–823. https://doi.org/10.1007/s00204-013-1039-z 

Dwivedi, S., Medishetti, R., Rani, R., Sevilimedu, A., Kulkarni, P., Yogeeswari, P., 2019. Larval 

zebrafish model for studying the effects of valproic acid on neurodevelopment: an approach towards 

modeling autism. Journal of Pharmacological and Toxicological Methods 95, 56–65. 

https://doi.org/10.1016/j.vascn.2018.11.006 

Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Léonard, 

M.A., Lillicrap, A., Norberg-King, T., Whale, G., 2010. The fish embryo toxicity test as an animal 

alternative method in hazard and risk assessment and scientific research. Aquatic Toxicology 97, 79–

87. https://doi.org/10.1016/j.aquatox.2009.12.008 

EU, 2010. Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 

on the protection of animals used for scientific purposes. Official Journal of the European Union L 

276, 33–79. 

Farewell, V.T., Tom, B.D.M., 2014. The versatility of multi-state models for the analysis of longitudinal 

data with unobservable features. Lifetime Data Analysis 20, 51–75. https://doi.org/10.1007/s10985-

012-9236-2 



 29 

Fathe, K., Palacios, A., Finnell, R.H., 2014. Brief report novel mechanism for valproate-induced 

teratogenicity: Novel Mechanism for Valproate-Induced Teratogenicity. Birth Defects Research Part 

A: Clinical and Molecular Teratology 100, 592–597. https://doi.org/10.1002/bdra.23277 

Fisz, M., 1976. Probability Theory and Mathematical Statistics, 3rd ed. Wiley, New York. 

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences (with 

discussion). Statistical Science 7, 457–511. 

Gould, A.L., Boye, M.E., Crowther, M.J., Ibrahim, J.G., Quartey, G., Micallef, S., Bois, F.Y., 2015. 

Responses to discussants of ‘Joint modeling of survival and longitudinal non-survival data: current 

methods and issues. report of the DIA Bayesian joint modeling working group.’ Statistics in 

Medicine 34, 2202–2203. https://doi.org/10.1002/sim.6502 

Hill, A.J., Teraoka, H., Heideman, W., Peterson, R.E., 2005. Zebrafish as a Model Vertebrate for 

Investigating Chemical Toxicity. Toxicological Sciences 86, 6–19. 

https://doi.org/10.1093/toxsci/kfi110 

Hodgson, P., Ireland, J., Grunow, B., 2018. Fish, the better model in human heart research? Zebrafish 

Heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system. Progress in 

Biophysics and Molecular Biology 138, 132–141. https://doi.org/10.1016/j.pbiomolbio.2018.04.009 

Hollert, H., Keiter, S., König, N., Rudolf, M., Ulrich, M., Braunbeck, T., 2003. A new sediment contact 

assay to assess particle-bound pollutants using zebrafish (<i>Danio rerio<\i>) embryos. Journal of 

Soils and Sediments 3, 197–207. https://doi.org/10.1065/jss2003.09.085 

ISO, 1996. International Organization for Standardization. Water quality - Determination of the 28 acute 

lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan 29 

(Teleostei, Cyprinidae)]. ISO 7346-3: Flow-through method. Available: [http://www.iso.org]. 

Jackson, C.H., 2011. Multi-State Models for Panel Data: The msm Package for R. J. Stat. Soft. 38. 

https://doi.org/10.18637/jss.v038.i08 

Jiang, H., Fine, J.P., 2007. Survival Analysis, in: Ambrosius, W.T. (Ed.), Topics in Biostatistics. 

Humana Press, Totowa, NJ, pp. 303–318. https://doi.org/10.1007/978-1-59745-530-5_15 

Jones, E., Epstein, D., García-Mochón, L., 2017. A procedure for deriving formulas to convert transition 

rates to probabilities for multistate markov models. Medical Decision Making 37, 779–789. 

https://doi.org/10.1177/0272989X17696997 

Kantae, V., Krekels, E.H.J., Ordas, A., González, O., van Wijk, R.C., Harms, A.C., Racz, P.I., van der 

Graaf, P.H., Spaink, H.P., Hankemeier, T., 2016. Pharmacokinetic modeling of paracetamol uptake 

and clearance in zebrafish larvae: expanding the allometric scale in vertebrates with five orders of 

magnitude. Zebrafish 13, 504–510. https://doi.org/10.1089/zeb.2016.1313 

Kanungo, J., Cuevas, E., Ali, S., Paule, M., 2014. Zebrafish model in drug safety assessment. Current 

Pharmaceutical Design 20, 5416–5429. https://doi.org/10.2174/1381612820666140205145658 

Karmen, C., Gietzelt, M., Knaup-Gregori, P., Ganzinger, M., 2019. Methods for a similarity measure 

for clinical attributes based on survival data analysis. BMC Medical Informatics and Decision 

Making 19, 195. https://doi.org/10.1186/s12911-019-0917-6 

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic 

development of the zebrafish. Developmental Dynamics 203, 253–310. 

https://doi.org/10.1002/aja.1002030302 

Kozma, C., 2001. Valproic acid embryopathy: report of two siblings with further expansion of the 

phenotypic abnormalities and a review of the literature. American Journal of Medical Genetics 98, 

168–175. 

Lammer, E., Carr, G.J., Wendler, K., Rawlings, J.M., Belanger, S.E., Braunbeck, Th., 2009. Is the fish 

embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute 



 30 

toxicity test? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149, 

196–209. https://doi.org/10.1016/j.cbpc.2008.11.006 

Larisch, W., Brown, T.N., Goss, K.-U., 2017. A toxicokinetic model for fish including multiphase 

sorption features: A high-detailed, physiologically based toxicokinetic model. Environmental 

Toxicology and Chemistry 36, 1538–1546. https://doi.org/10.1002/etc.3677 

Lee, E.T., Go, O.T., 1997. Survival analysis in public health research. Annual Review of Public Health 

18, 105–134. https://doi.org/10.1146/annurev.publhealth.18.1.105 

MacRae, C.A., Peterson, R.T., 2015. Zebrafish as tools for drug discovery. Nature Reviews Drug 

Discovery 14, 721–731. https://doi.org/10.1038/nrd4627 

Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C., Andersen, P.K., 2009. Multi-state models 

for the analysis of time-to-event data. Statistical Methods in Medical Research 18, 195–222. 

https://doi.org/10.1177/0962280208092301 

Nagel, R., 2002. DarT: the embryo testa with the zebrafish <i>Danio rerio<\i> - A general model in 

ecotoxicology and toxicology. Alternatives to Laboratory Animals 19 Suppl 1, 38–48. 

OECD, 2013. OECD Guidelines for the Testing of Chemicals. Section 2: Effects on Biotic Systems - 

Test No. 236: Fish Embryo Acute Toxicity (FET) Test. Organization for Economic Cooperation and 

Development, Paris, France. https://doi.org/10.1787/9789264203709-en 

Ornoy, A., 2009. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? 

Reproductive Toxicology 28, 1–10. https://doi.org/10.1016/j.reprotox.2009.02.014 

Overstall, A.M., Woods, D.C., Parker, B.M., 2020. Bayesian optimal design for ordinary differential 

equation models with application in biological science. Journal of the American Statistical 

Association 115, 583–598. https://doi.org/10.1080/01621459.2019.1617154 

Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A., Klein, P.S., 2001. Histone 

Deacetylase Is a Direct Target of Valproic Acid, a Potent Anticonvulsant, Mood Stabilizer, and 

Teratogen. Journal of Biological Chemistry 276, 36734–36741. 

https://doi.org/10.1074/jbc.M101287200 

Putter, H., Fiocco, M., Geskus, R.B., 2007. Tutorial in biostatistics: competing risks and multi-state 

models. Statistics in Medicine 26, 2389–2430. https://doi.org/10.1002/sim.2712 

Quignot, N., Hamon, J., Bois, F.Y., 2014. Extrapolating <i>in vitro<\i> results to predict human toxicity, 

in: Bal-Price, A., Jennings, P. (Eds.), In Vitro Toxicology Systems, Methods in Pharmacology and 

Toxicology. Springer Science, New-York, pp. 531–550. 

R Development Core Team, 2013. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

Russell, W.M.S., Burch, R.L., 1959. The principles of humane experimental technique. Methuen, 

London. 

Siméon, S., Brotzmann, K., Fisher, C., Gardner, I., Silvester, S., Maclennan, R., Walker, P., Braunbeck, 

T., Bois, F.Y., 2020a. Development of a generic zebrafish embryo PBPK model and application to 

the developmental toxicity assessment of valproic acid analogs. Reproductive Toxicology 93, 219–

229. https://doi.org/10.1016/j.reprotox.2020.02.010 

Siméon, S., Brotzmann, K., Fisher, C., Gardner, I., Silvester, S., Maclennan, R., Walker, P., Braunbeck, 

T., Bois, F.Y., 2020b. Corrigendum to “Development of a generic zebrafish embryo PBPK model 

and application to the developmental toxicity assessment of valproic acid analogs” [Reprod. Toxicol. 

93 (2020) 219-229]. Reproductive Toxicology S089062382030232X. 

https://doi.org/10.1016/j.reprotox.2020.10.006 

Sipes, N.S., Padilla, S., Knudsen, T.B., 2011. Zebrafish as an integrative model for twenty-first century 

toxicity testing. Birth Defects Research Part C: Embryo Today: Reviews 93, 256–267. 

https://doi.org/10.1002/bdrc.20214 



 31 

Smith, A.F.M., Roberts, G.O., 1993. Bayesian computation via the Gibbs sampler and related Markov 

chain Monte Carlo methods. Journal of the Royal Statistical Society Series B 55, 3–23. 

Strähle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., Rastegar, S., Schumacher, A., Selderslaghs, 

I., Weiss, C., Witters, H., Braunbeck, T., 2012. Zebrafish embryos as an alternative to animal 

experiments - A commentary on the definition of the onset of protected life stages in animal welfare 

regulations. Reproductive Toxicology 33, 128–132. https://doi.org/10.1016/j.reprotox.2011.06.121 

Tsiros, P., Bois, F.Y., Dokoumetzidis, A., Tsiliki, G., Sarimveis, H., 2019. Population pharmacokinetic 

reanalysis of a Diazepam PBPK model: a comparison of Stan and GNU MCSim. Journal of 

Pharmacokinetics and Pharmacodynamics 46, 173–192. https://doi.org/10.1007/s10928-019-09630-

x 

van der Vaart, M., Spaink, H.P., Meijer, A.H., 2012. Pathogen Recognition and Activation of the Innate 

Immune Response in Zebrafish. Advances in Hematology 2012, 1–19. 

https://doi.org/10.1155/2012/159807 

von Hellfeld, R., Brotzmann, K., Baumann, L., Strecker, R., Braunbeck, T., 2020. Adverse effects in the 

fish embryo acute toxicity (FET) test: a catalogue of unspecific morphological changes versus more 

specific effects in zebrafish (Danio rerio) embryos. Environmental Sciences Europe 32, 122. 

https://doi.org/10.1186/s12302-020-00398-3 

Welton, N.J., Ades, A.E., 2005. Estimation of Markov chain transition probabilities and rates from fully 

and partially observed data: uncertainty propagation, evidence synthesis, and model calibration. 

Medical Decision Making 25, 633–645. https://doi.org/10.1177/0272989X05282637 

Williams, J.P., Storlie, C.B., Therneau, T.M., Jr, C.R.J., Hannig, J., 2020. A Bayesian approach to 

multistate hidden Markov models: application to dementia progression. Journal of the American 

Statistical Association 115, 16–31. https://doi.org/10.1080/01621459.2019.1594831 

Zare, A., Mahmoodi, M., Mohammad, K., Zeraati, H., Hosseini, M., Naieni, K.H., 2014. Assessing 

Markov and Time Homogeneity Assumptions in Multi-state Models: Application in Patients with 

Gastric Cancer Undergoing Surgery in the Iran Cancer Institute. Asian Pacific Journal of Cancer 

Prevention 15, 441–447. https://doi.org/10.7314/APJCP.2014.15.1.441 

Zimmermann, F.F., Gaspary, K.V., Leite, C.E., De Paula Cognato, G., Bonan, C.D., 2015. 

Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): 

a developmental behavior analysis. Neurotoxicology and Teratology 52, 36–41. 

https://doi.org/10.1016/j.ntt.2015.10.002 

 

  



 32 

 

Figure 1. Schematic representation of a basic two-state survival model (state 1: alive; state 2: dead). 

 

Figure 2. Schematic representation of a simple competing risk model. After a 

transition from states 1 (e.g., healthy) to 2 (e.g., dead), state 3 (e.g., sick) 

cannot be reached.  

 

Figure 3. Schematic representation of our five-state competing risk model for the zebrafish embryo: 

“normal” (N), “hatched” (H), “non-hatched with effects” (E), “coagulated” (C), and “hatched with 

effects” (EH). The transition intensities from one state to itself (instantaneous probability of staying in 

a state) have been made explicit. 
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Figure 4. Observed versus best model-predicted transition counts of transitions between states normal 

(N), hatched (H), malformed (E), hatched with effects (EH) and dead (C). The black line is the perfect 

fit. The dashed lines give the two-fold-error band. The crosses are null observations or predictions 

assigned an arbitrary value of 0.1 to appear on the graph. 

 

Figure 5. Observed (dots) and predicted (lines) number of transitions between states normal (N), 

hatched (H), malformed (E), hatched with effects (EH) and dead (C), as a function of time for the 

exposure concentrations 0 and 400 µM. Hatching rate is modeled by a piecewise constant intensity 

with estimated hatching time. The colored bands give the predictions’ 95% confidence intervals. 
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Figure 6. Counts of embryos in the malformed, hatched with effects and dead states, as a function of 

time and VPA concentrations. The dots are the data, the lines are model predictions. The colored 

bands give the predictions’ 95% confidence intervals. The control group is omitted because very few 

embryos developed effects or died at concentration zero. 
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Figure 7. Transition rates as a function of VPA internal concentration. The black line is the best 

estimate. The grey lines are 50 random estimates. On the top panels, the dashed line corresponds to a 

10% change from control (for the best estimate). The blue areas show the 95% confidence interval. 
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Figure 8. Distribution of EC10 values for the transition rates qE,N and qEH,H. Those EC10 are defined 

on a scale of internal embryo concentrations. 

     

     

Figure 9. Top row: Probability for an embryo normal at time zero to be in state malformed (PN,E, left), 

or to be dead (PN,C, center), or to be in the healthy hatched state (PN,H, right), as a function of time and 

VPA water concentration. The parameter best estimates were used to compute the surfaces. Bottom 

row: Contour lines (EC10) at 10% probability for PN,E (left) and PN,C (center), and at 90% for PN,H 

(right) for the best parameter estimates and 100 random parameter sets. 
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Figure 10. Distributions of the empirically determined external concentration EC10 values (the red dot 

corresponds to death) and of the minimal EC10 values obtained for PN,E (malformations) and PN,C 

(death) transition probabilities.  
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Table 1. Prior parameters distribution used for MCMC calibration of the five-

state model with embryo transition count data. 

Parameter Prior distribution a 

qE,N(0) U(0, 2) 

kqE,N U(-6×102, 0) 

qEH,H(0) U(0, 4) 

kqEH,H U(-50×qEH,H(0), 0) b 

qN,E(0) U(0, 0.06) 

kqN,E U(2×102, 4.5×102) 

qN,C(0) U(0, 0.01) 

kqN,C U(0, 10) 

qE,C(0) U(0, 0.1) 

kqE,C U(0, 10) 

qH,EHmax U(0, 40) 

n U(0, 15) 

EC50 U(0, 0.01) 

qN,H c U(0, 20) 

qE,EH c U(0, 10) 

th 
c U(1, 5) 

σqN,H Nt(1.1, 0.5, 1.01, 10) 

σqE,EH Nt(1.1, 0.5, 1.01, 10) 

σth Nt(1.1, 0.5, 1.01, 10) 

a Distribution shapes: U(a, b) for uniform between a and b; Nt(m, s, a, b) for truncated normal with 

mean m, SD s, and bounds a and b. 

b Correlated sampling. 

 c Prior distribution of the inter-group mean. 

  



 39 

Table 2. Mean, standard deviation (SD), 95% confidence intervals (IC95%) and maximum 

posterior (MP) value of the MCMC-sampled multistate model parameters. 

Parameter Mean ± SD IC 95% MP 

qE,N(0) 0.75 ± 0.21 [0.40; 1.2] 0.61 

kqE,N -280 ± 97.1 [-479; -103] -190 

qEH,H(0) 0.53 ± 0.15 [0.29; 0.86] 0.45 

kqEH,H -16.5 ± 0.182 [-35; -1.15] -9.5 

qN,E(0) 0.042 ± 0.0059 [0.032; 0.055] 0.040 

kqN,E 371 ± 23 [318; 404] 355 

qN,C(0) 0.0014 ± 0.0012 [5.9×10-5; 0.0043] 7.1×10-5 

kqN,C 0.78 ± 0.70 [0.027; 2.7] 0.55 

qE,C(0) 0.017 ± 0.014 [0.00065; 0.050] 0.0028 

kqE,C 3.7 ± 1.2 [1.3; 6.1] 4.5 

qH,EHmax 24 ± 8.6 [9.2; 39] 23 

n 5.8 ± 0.62 [4.6; 7.1] 5.4 

EC50 0.0044 ± 0.00056 [0.00345; 0.0056] 0.0046 

qN,H a 3.8 ± 0.61 [2.9; 5.2] 3.3 

qE,EH a 0.84 ± 0.29 [0.41; 1.5] 0.57 

th 
a 2.8 ± 0.042 [2.7; 2.9] 2.8 

σqN,H 1.2 ± 0.19 [1.0; 1.7] 1.0 

σqE,EH 2.0 ± 0.26 [1.6; 2.6] 2.2 

σth 1.0 ± 0.015 [1.0; 1.1] 1.0 

a Inter-group mean. 

 


