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Abstract 

Many soluble rocks will dissolve when in contact with fluid such as water. This transformation of 

rock solid into flowing fluid may trigger the creation of cavities which may further lead to either 

smooth subsidence or sudden collapse of land surface. Dissolution phenomenon can be of natural or 

human origin. This paper deals with the problem of the dissolution of underground soluble rocks and 

the geomechanical consequences such as subsidence, sinkholes and underground collapse. In this 

paper, rock dissolution and the induced underground cavities are computed using a Diffuse Interface 

Model (DIM), which does not require to follow interfaces explicitly. We describe briefly the 

mathematical and physical framework for the dissolution model. We first explain the transition 

(upscaling) of a multiphysics problem formulated at the microscopic (pore-) scale level to the 

macroscopic (Darcy-) scale level. Rock material considered in this paper is gypsum, despite that the 

developed method is also suitable for over soluble rocks (e.g., limestone, Halite). The second part of 

this paper is devoted to a set of problems dealing with mechanical response of the rock mass in 

connection with the dissolution process. We discuss the subsidence induced by the dissolution of one 

or more gypsum lenses, the stability of the covering, and finally the failure of a gypsum pillar in an 

abandoned quarry. These examples, while they may involve rather theoretical hypotheses, have the 

virtue of showing the relevance of the method as well as the very diverse issues that it can treat. 

 

Keywords: dissolution, diffuse interface method, gypsum, upscaling, mining, subsidence, stability 

1. Introduction 

Many problems in geomechanics, such as subsidence, sinkholes and collapses, are related 

to the dissolution of soluble rocks. So, dissolution of porous rocks is a major concern in 

geomechanics field since it may cause catastrophic damages. Rock dissolution may create 

underground voids of large size, leading to a potential risk of instability or collapse of 

geological formation as illustrated in Figure 1.  
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Figure 1. Land subsidence (sinkhole) in Central Kansas related to underground rock dissolution 

(after USGS water science). 

 

Dissolution is driven by the flow of an under saturated fluid. For instance, the subsurface 

water flow or, also, hydraulic conditions through soils and rocks which trigger 

hydrodynamic? instability onset. The natural or human made hydraulic conditions may evolve 

with time and change in space. This paper focuses mainly on dissolution of gypsum 

(CaSO4.2H2O) while the proposed methodologies have a general scope. 

 

Dissolution is also used in industrial activities intensively, for example in the case of salt 

“solution mining” method. This industrial process extracts underground salt by injecting fresh 

water through an injection well and produces saturated brine at an extraction well. Such a 

method is highly suitable in case of thin salt layers located at great depth. 

Modeling the multi-scale and multiphysics features of rock dissolution problems requires 

to address several difficult questions. The first concerns the accuracy needed in the 

description of solid-liquid interface recession at the macro- (Darcy-) scale level. To achieve 

this goal, a precise mathematical formalization of physicochemical and transport mechanisms 

at the micro-scale level is required. The second problem is linked to the description of 

dissolution at large spatial scales (e.g., in situ scale, site scale). The third is considering the 

strong physical coupling with other processes, such as rocks mechanical behavior.  

The main dissolution rate models are often phenomenological, directly proposed at the 

macroscopic scale level. The dissolution models which are currently intensively used are 

based on laboratory tests or in-situ observations. Such models may be considered as 

describing dissolution in an average sense. Unfortunately, these phenomenological models are 

unable to take into account accurately multi-scale aspects and issues such as the effect of 

natural convection or the presence of heterogeneity at the microscopic scale, etc. For instance, 

a total dissolution rate observed at the laboratory level cannot be extrapolated to the field 

where hydrodynamic conditions are completely different. Often, interpreting these 

experiments in terms of intrinsic properties allowing for some up-scaled model and 

predictions, such as an intrinsic surface reaction rate for instance, is not accessible since it 

would require a relatively complicated CFD (Computational Fluid Dynamics) analysis. This 

paper discusses these different questions based on theoretical and numerical analysis of 

several examples. The starting point of our dissolution problem is the pore scale (micro scale) 
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description of the dissolving surface and the choice of the surface dissolution kinetics. This 

has been the subject of many studies for various dissolving materials (mainly in chemical or 

geochemical scientific domains). Generally, the reaction rate, R , applied as a boundary 

condition for the micro-scale dissolution boundary value problem for soluble rocks like 

limestone, calcite, gypsum, or salt follows a general form expressed as (Jeschke et al., 2001; 

Jeschke and Dreybrodt, 2002): 

1

n

eq

C
R k

C

 
= −  

                                                                                                                          

(1) 

In this expression, k is the reaction rate coefficient, C is the concentration of the dissolved 

species and eqC  is the thermodynamic equilibrium concentration (also named solubility). The 

impact of this boundary condition on transport problem near the surface may be evaluated 

through the Damköhler number (Da). Damköhler number is a dimensionless numbers used in 

chemical engineering to relate the chemical reaction time scale (reaction rate) to the transport 

rate occurring in the system. When Damköhler number is very large, for instance through a 

very large value of k , this boundary condition tends to the classical equilibrium condition 

expressed by eqC C= at the solid surface. Let us assume that such an approximation is valid 

and restrict our analysis to two different approaches for modeling the dissolution problem, 

i.e., the recession of the solid surface. The first one corresponds to a method which follows 

explicitly the fluid-solid interface. For instance, this can be done using an ALE (Arbitrary 

Lagrangian-Eulerian) method (Donea et al. 1982). The second approach resolves dissolution 

using a Diffuse Interface Model (DIM) which transforms the sharp solid-liquid interface into 

a continuous description (Anderson et al., 1998, Collins et al., 1985, Luo et al., 2012). We 

will present the physical and mathematical base of the dissolution model and deduce the DIM 

model using a volume averaging theory. The mathematical problem is formulated at the pore 

scale and then upscaled to Darcy scale in order to obtain macroscopic balance laws and the 

associated effective parameters. The workflow is depicted in Figure 2. 

 

Figure. 2. Problem: From micro-scale to large-scale levels 

 

Although the approach proposed in this article is applicable in the context of salt rock 

(Cristescu and Hunsche (1998), Carter et al. (1993), Bérest et al. (2019), Sadeghiamirshahidi 
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and Vitton (2019)), we will focus on the mechanical consequences of dissolution in a gypsum 

context.  

 It must be emphasized, however, that dissolution of rock formations occur in many other 

contexts. For instance, in Carbon dioxide (CO2) capture and geological storage (CCS), CO2 

may dissolve into brines, increasing acidification and dissolution of carbonate species within 

the reservoir. The reader can refer to the papers of Al-Khdheeawi et al. (2017a-c) and Iglauer 

et al. (2015) for more details. Similarly, acid injection is currently used to recover the 

permeability of rock formation surrounding petroleum wells, an engineering technique based 

on the existence of unstable dissolution fronts (Golfier, F., Zarcone, C., Bazin, B., 

Lenormand, R., Lasseux, D., Quintard, M., 2002. On the ability of a Darcy-scale model to 

capture wormhole formation during the dissolution of a porous medium. Journal of Fluid 

Mechanics 457, 213–254.).  These interesting topics and the associated mechanisms are out of 

the scope of this paper.  

In some abandoned mines, gypsum pillars are naturally subjected to many external loads 

(mechanical, thermal, hydric, etc.) and weathering (e.g., action of water, bacteria), which may 

degrade their mechanical properties (Castellanza et al. (2008)). A dangerous phenomenon in 

case of abandoned gypsum and anhydrite mines is water flooding. In the case of time-

continuous flooding, the underground water will progressively dissolve pillar rock until 

failure. To access the short- or long-term stability of the mine, the time evolution of the 

dissolution process and the recession rate of the water-gypsum interface must be investigated. 

These natural processes are of direct relevance to gypsum mining. Because gypsum dissolves 

readily in flowing water, any gypsum mine which becomes flooded on abandonment should 

be subject to a hydrological survey as advised by Cooper (Cooper, 1988). 

Whatever the hydro-geological configuration, the dissolution of gypsum (lenses, pillars, 

etc.) in the ground raises the questions in terms of geomechanical consequences: subsidence, 

sinkholes, pillar or cavities stability, etc. (Gysel (2002), Walthan et al., (1981), Toulemont, 

(1987,1981), Cooper (1988), Bell et al. (2002)). The purpose of the last section of this article 

is to show theoretically on several 2D and 3D examples, the robustness and the potentialities 

of the proposed numerical dissolution approach.  

The problems to be dealt with from a mechanical point of view will be either elastic or 

elastoplastic. We will illustrate these questions in the case of subsidence induced by the 

dissolution of one or several gypsum lenses. In these examples, gypsum lenses are located 

between porous rock layers. We analyze the evolution of the stability of the recovery as a 
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function of spatial evolution of the dissolution front (water-gypsum interface). We finally 

analyze the evolution of the stability of an isolated gypsum pillar. All these models have a 

predictive feature, as they provide the evolution of the deformation mechanisms as a function 

of time. 

2. Dissolution models 

This section first describes a generic pore-scale dissolution model corresponding to 

dissolution of a soluble solid species considered as a single component (either a true one 

component system or a mixture that behaves as a single component, in this case referred to as 

a pseudo-component). The approach can be extended easily to a material having several 

components (multi-components). In this latter multi-component case, conservation equations 

(mass, momentum, etc.) should be applied to each component of the physical system. In this 

paper, only a general idea is given about the upscaling of the pore-scale equations into a 

macro-scale diffuse interface model. The resulting Darcy scale model can be used to model 

the dissolution of large cavities or porous formations. The methodology is available for salt, 

gypsum and even carbonate rocks, provided that local conditions are compatible with the 

assumption of a pseudo-component. Otherwise, the same methodology must be extended to a 

multicomponent treatment, which is beyond the scope of this paper. 

As introduced earlier, we may consider various classes of dissolution models. The first 

one corresponds to the original dissolution problem involving a sharp liquid/solid interface 

(Figure 3). In this case, the solid-liquid interface is defined mathematically by a surface at 

which the liquid concentration is equal to the equilibrium concentration, given our assumption 

of large Da. To describe the dissolution state, we may introduce a scalar “phase” indicator 

defined in the whole domain (rocks and fluid). For example, if this scalar is the porosity βε , it 

has a value of 1 in the liquid phase and zero elsewhere (or a non-zero value if the “solid” is a 

true permeable porous medium), with a jump at the solid-liquid interface (left column of 

Figure 3). Solving the mathematical problem requires special front tracking, front marching 

numerical techniques, which are often computationally time consuming. This method can face 

numerical difficulties, in the presence of geometrical singularities (near non-soluble layers). 

Such difficulties can be circumvented if we do not require an explicit treatment of the moving 

interface. Instead, partial differential equations are written for continuous variables, such as 

βε  and the mass fraction Aβω  (mass fraction of species A in the β-phase), which leads to a 

diffuse interface description as illustrated in Figure 3 (right).  
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Figure 3. Original dissolution model (sharp interface on the left) and diffuse interface model (on 

the right). 

 

The original solid/liquid dissolution problem can be described by classical convective-

diffusive mass balance and Navier-Stokes (momentum) equations, etc. To develop the DIM 

model, we start from these original solid/liquid equations to generate averaged or Darcy-scale 

equations involving effective coefficients (Luo, et al. 2012, Guo et al. 2015) and considering 

the density as a function of concentration. In the first subsection, the original pore-scale 

model for the dissolution problem is introduced. In the second subsection, we briefly 

introduce the upscaling of the pore-scale model into the Darcy-scale equations which are used 

as the basis for the DIM formulation. 

2.1. The original multiphase model 

Following our assumption of a pseudo-component behavior, let us consider a binary 

liquid phase β containing chemical species A and B, and a solid phase σ containing only 

chemical species A, as illustrated in Figure 4 (right).  

 

Figure 4: Large-scale (left) and near interface scale (right)  

The total mass balance equation for the β-phase, the mass balance for species A in the β-

phase, and the general mass balance equation for σ-phase can be expressed by Eqs. 2(a)-(c), 

respectively. 
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Here, �� and �� denote the density of the β- and σ-phase, respectively. �� and �� denote bulk 

velocity of the β- and σ-phase, respectively. In the following analysis, the σ-phase is supposed 

immobile, i.e., 0σ =v . ���denotes the mass fraction of species A in β-phase. ��� denotes the 
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diffusion coefficient. For the pure fluid flow, we will use the Navier-Stokes equations for the 

momentum balance, i.e.,  

2  gp
t
β

β β β β β β βρ ρ ζ
∂ 

+ ⋅∇ = −∇ + + ∇ ∂ 

v
v v v                                         (3) 

where βv , pβ∇
 
represents the pressure gradient in the β-phase, βζ the dynamic viscosity 

(supposed constant) of  the β-phase and g the gravity vector. At the β-σ interfaceAβσ , the 

chemical potentials for each species should be equal for the different phases. In this case and 

for the special binary case under investigation, we have the following equality at a given 

pressure p and temperature T: 

( ) ( ), , , ,   at    A A A Ap T p T Aβ β σ σ βσµ ω µ ω=                                                                        (4) 

where, Aσω  is equal to 1. It must be emphasized that in the complete binary case, i.e., when 

Aσω  is not equal to 1, there is also a relation similar to the above equation for the other 

components. The binary case results in the classical equilibrium condition, i.e.,  

      at        A eq Aβ βσω ω=
                      (5) 

where, eqω  is the thermodynamic equilibrium concentration for species A. Note that this 

equation is also fulfilled in the reactive case when Da >>1.  

The boundary conditions for the pseudo-component mass balance at the solid-liquid 

interface (of outward normal nβσ ) can be written as: 

( )( ) ( ) at  A AA ADβ ββσ β β β βσ β βσ σ βσβ σρ ω ωρ ρ⋅ − − ∇ = ⋅ −w n wvn                                           (6) 

where, βσw  is the interface velocity. This equation can be used to calculate the interface 

velocity. We can remark that in general we have the following inequality: βσ β≪w v   

For gypsum, for instance, the maximum value of βσ βσ⋅n w  is about 89.7 10 m / s,−×  

which is negligible compared to seepage velocities in hydrogeology, which is on the order of 

10-5 to 10-6 m/s. A boundary condition corresponding to no jump in the tangential velocity has 

to be enforced at Aβσ .  

The recession velocity βσw  can  be expressed as : 

1

(1 )
 A A

A

Dβ
β

σ
βσ βσ βσ β

β

ω
ω

ρ
ρ

⋅ = ⋅∇
−

n w n          (7) 
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This last equation relates explicitly the recession velocity to the transport flux and can be 

used to compute the interface movement in ALE method. The dissolution problem is 

completed with the set of equations to describe the boundary and initial conditions of the fluid 

domain. Because of the complex movement of the interface, frequent re-gridding is required 

and the resolution near the interface cannot be very fine, or else it creates rapid unacceptable 

distortion of the mesh.  

Some of the numerical difficulties associated with very sharp fronts can be circumvented 

by using a Diffuse Interface Method (DIM). Contrary to “interface tracking methods", a 

diffuse interface method considers the interface as a smooth transition layer where the 

quantities vary continuously. The whole domain constituted by the two phases is considered 

to be a continuous medium without any singularities nor a strict distinction of solid or liquid 

(see Figure 3).  

 

2.2. Darcy-scale non-equilibrium model  

A DIM model can be written in an ad’hoc manner or developed more accurately following 

a porous-medium type of approach.  In this subsection, we briefly describe the macroscopic 

Darcy-scale equations obtained by upscaling the above set of pore scale equations, using the 

volume averaging theory (Quintard and Whitaker, 1994, Whitaker, 1999). The reader will 

find in paper (Guo et al., 2016) the details of this change of scale. The representative 

elementary volumes are schematically illustration in Figure 5. We define the intrinsic average 

of the mass fraction as 

( )1 1
A A A A

V

dV
V

β

β
β β β β β

β

ω ε ω ω−Ω = = =  r             (8) 

and the superficial average of the velocity as  

( )1

V

dV
V

β

β
β β β β βε= = = V v v v r               (9) 

where, βV  is the filtration velocity and U
β

β β= v  is the β-phase intrinsic average velocity.  

 

Figure 5. Averaging volume at pore scale level and material point position vector (left) and 3-phases 

model (the third phase may be insoluble species for instance) (right 

 

After transformation, the averaged form of balance equation of species A can be expressed as  
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( )
( )( )

( )
( )

1
-  

A

A A A A A

A

D dA
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βσ

β β
β β β β β β βσ β β β

ρ ω
ρ ω ρ ω ρ ω

∂
+ ∇ ⋅ = ∇ ⋅ ∇ ⋅ −

∂ ������� ��������������
�������������cba

d

v n v w            (10) 

The different terms express: (a) accumulation, (b)convection, (c) diffusion, and (d) the phase 

exchange terms, respectively. Based on several assumptions and some mathematical 

treatments of the different equations, we obtain the following control equations for the diffuse 

interface model (DIM) (Luo et al. 2012) 

( ) ( )( )* * * * *.   1A
A A A A eq At

β
β β β β β β β β β β β βε ρ ρ ε ρ ρ α ω

∂Ω
+ ⋅∇Ω = ∇ ⋅ ∇Ω + − Ω − Ω

∂
V D                         (11) 

( ) ( )
*

* *
eq At

β β
β β β β

ε ρ
ρ ρ α ω

∂
+ ∇⋅ = − Ω

∂
V

                                (12)  

and  

( )*
eq At t

βσ
σ σ β β

εερ ρ ρ α ω
∂∂− = = − Ω

∂ ∂                                 (13) 

where, *
βρ  is such that *

A Aβ β β β βρ ω ε ρ Ω=  and α  is the exchange term between the two 

phases, which is a non-linear function of  βε . *
AβD  is the macroscopic diffusion/dispersion 

coefficient, which can be expressed as 

( )* I ITA L T

D

β β

β β β
β

ββ

α α α
τ ε ε

= + + −
V V V

D
V

        (14) 

where the tortuosity βτ , the longitudinal Lα  and transversalTα  dispersivities ( Lα  and Tα ) 

depend on the pore-scale geometry and possibly  βε . The macroscopic effective coefficients 

are obtained by solving “closure problems” provided by the theory over different types of unit 

cells representative of the porous medium, as illustrated in Figure 6. 

 

Figure 6.  Examples of various f 1D, 2D and 3D unit cells (after Courtelieris and Delgado (2012) 

 

Closure problems correspond to an approximate solution of the coupled problem: 

averaged variables/deviations. The approximate solution takes often the form of a mapping 

such as  

( )A A eq Asβ β β β βω ω= ⋅∇Ω + − Ωɶ b                                     (15) 
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where, Aβωɶ  is the concentration deviation and βb  and sβ  are two closure variables. Solving 

two sets of boundary value closure problems for βb  and sβ  allows us to express the 

macroscopic effective values according to the characteristics at the pore scale.  

In other words, the physical properties at the macroscopic level are not 

"phenomenological" values but built on the basis of physical properties observed-defined at 

the microscopic scale. In our case, we obtain the effective macroscopic diffusion tensor Aβ
*D , 

the macroscopic effective exchange coefficient α  and the effective density *βρ  such as:  

( )1 11
A A

A

D dA b
V

βσ

β β β βσ β β β βε ε− −
 
 = + −
 
 

 ɶ*D I n b v                    (16) 

( ) ( )1

1
A

eqA

D s dA
V

βσ

β
β βσ β

ρ
α

ω
= ⋅∇

− n                                             (17) 

* 1

 A
A

β β β
β β

ρ ρ ω
ε

=
Ω

                                    (18) 

We observed that when the saturation at a material point is reached then: 

0eq A Cte
t
β

β β

ε
ω ε

∂
= Ω  = ⇔ =

∂                                                                                         (19)
 

In the case of DIM use for a large-scale cavity dissolution problem involving an 

impervious rock formation, i.e., not necessarily a real porous medium problem application, 

the choice of the exchange coefficient α  expression as a function of porosity is more 

arbitrary. It must, however, be observed a null condition when the material point is considered 

strictly in the fluid phase or strictly in the solid phase. This is illustrated in Figure 7. 

 

 

 

Figure 7. Porous domains: "fluid"-interface-solid and expression of volume fraction ε  

 

We must underline that, in the DIM model, there is no “pure liquid phase” (Figure 7) 

since βε  is used continuously to represent the fluid as well as the solid regions. Therefore, the 

Navier-Stokes equations are not suitable in the rock domain region. We must add a Darcy 

term in the momentum equation. For instance, we can adopt a Darcy-Brinkman model 

(Brinkman, 1947) such as 
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( ) ( ) ( )* 1 0
A

AP
β β

β β β β β β
β

µ
ρ µ

ε
−

Ω
∆ − ∇ − − Ω ⋅ =V g K V                 (21)  

where the permeability tensor K is a function of βε . The Darcy-Brinkman equation will 

approach to Stokes equation when K is very large and will simplifies to Darcy’s law when K 

is very small. If inertia terms are not negligible, a similar Darcy penalization of Navier-Stokes 

equations may be used. The resulting DIM equations may be solved with various numerical 

techniques but in this paper, we will use a COMSOL Multiphysics® implementation. Results 

are presented and discussed in the next section. 

 

To summarize, the most important assumptions behind the model used in the examples are: 

1. the possibility of using a pseudo-component, 

2. Damkhöler and Péclet numbers so dissolution is close to the thermodynamic equilibrium 

boundary condition case, 

3. Darcy-scale heterogeneities at a scale smaller than the typical formation scale are not 

included. 

 

Cases with more complex chemistry may be handled as now indicated in the paper by moving 

to a multicomponent system. In this paper, we have essentially proposed examples with thin 

dissolution fronts. In this case, the actual « pore-scale » dissolution has not a great impact 

(i.e., boundary condition at the solid surface being of reactive form or thermodynamic 

equilibrium form). This would change the dynamics at the pore-scale but not at a larger scale 

(a Darcy-scale dissolution front, even very sharp, involves several pore length-scales). This is 

why we restricted our examples to such cases. Still, in order to compare to an actual site 

situation, a good characterization of the site is necessary mainly because heterogeneities will 

impact on the recession velocity. 

 

3. Dissolution modelling and geomechanical issues 

The main goal of this section is to show the potential application of the method outlined in 

the previous section in terms of mechanical consequences induced by rock dissolution, i.e., 

the coupling of dissolution processes with geomechanical boundary value problems. The 

"theoretical" configurations considered below are sufficiently representative of real cases. The 

cases of flooded rooms in gypsum quarries, void created by dissolution and sinkholes as 
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illustrated in Figures. 8 and 9 are common. In fact, many ground surface failures occur over 

gypsum beneath Paris (France) (Toulemont, 1987), and investigation of a cavity found in 

1975 beneath railway engineering works revealed a failure migrating upwards through the 

cover rocks from dissolution cavities in a number of gypsum horizons. As advised by Cooper 

(1988), gypsum mine, which becomes flooded on abandonment, should be subject to a 

hydrologic survey. Whatever the hydro-geological configuration, the dissolution of gypsum in 

the ground raises the question of consequences in terms of geomechanical behavior: surface 

subsidence, sinkholes, caverns or pillar stability, etc. In the 2D or 3D numerical examples 

under consideration, the dissolution process will generate growing cavities (case of gypsum 

lenses) or decreasing cross-section of pillars (case of rooms and pillar quarries). Numerous 

caprock sinkholes at Ripon, U.K. are reactivated by continuous dissolution of gypsum 

(Cooper, 1988). The mechanical consequences of dissolution can be either a gentle 

deformation of soil surface or recovery failure and collapse leading to sinkholes (Figure 9). 

 

Figure 8. Views of a pillar in the Rocquevaire abandoned quarry (Bouches-du-Rhône, France) 

with two different water flooding levels (at two different times 1996 and 2010, by courtesy of Watelet 

JM, INERIS) and (right) schematic section through a hidden void found within cover rocks of gypsum 

in Paris (France) railway station underground (After Toulemont (1987)). 

 

Figure 9. Examples of dissolution consequences: (Left) several sinkholes in wood Buffalo 

National Park (Canada). An interstratal dissolution of gypsum induce a collapse that propagates 

through dolomite cover beds and (right) (after Walthan et al. (1981), Van Everdingen (1981)) 

 

The non-linear coupled time dependent multiphysics problems are solved within the 

framework of porous medium theory. The mechanical consequences of the dissolution are 

approached in our geomechanics framework through a simplified analysis. For the mechanical 

response of the rock mass, we consider only the effect of domain change induced by the 

dissolution. The dissolution process will generate growing cavities (case of lenses) or 

decreasing cross-section of pillars (case of rooms and pillars quarries). The domain is 

supposed saturated and drained. The problems are supposed also isothermal. In fact, there is 

no particular difficulty to introduce temperature either in dissolution formalism or mechanical 

problems. 



13 

 

In the following 2D and 3D examples, we consider several coupled problems. The first 

one corresponds to the dissolution of one or more gypsum lenses contained in a porous 

horizon, which can be located between two layers of marl for instance. And the flow is 

induced by a natural hydraulic gradient. The second case corresponds to dissolution under an 

elastic and elastoplastic recovery. Finally, the third scenario is about the dissolution of an 

elastoplastic gypsum pillar. We will analyze the time evolution of subsidence, surface slope, 

mass deformation, stability and collapse condition for the roof and for the pillar. These simple 

examples show the predictive nature of the proposed approach. 

 

3.1 The case of one gypsum lens with elastic or elastoplastic recovery  

The first theoretical problem considered is the isothermal dissolution of a cylindrical 

gypsum lens of 2.5 m thick with a diameter of 5 m (Figure 10). The lens is located in a porous 

medium located between two permeable domains. Pure water flow is imposed at the inlet at 

the velocity V of 10-6 m/s, with zero concentration of the dissolved species. All the boundaries 

of the layer containing the lens are at zero flux, with the exception of the inlet and the outlet 

boundaries. The permeability K of the gypsum is 10-15 m2 and that of the surrounding medium 

is 10-12 m2. The dynamical viscosity of water is 10-3 Pa s. All boundaries of the layer are 

symmetric from a mechanical point of view. The elastoplastic (Mohr-Coulomb) 

soil/overburden has a Young's modulus of 25 MPa, a Poisson coefficient of 0.3, a cohesion of 

0.1 MPa and a friction angle of 30°. The Young’s modulus of the supposed elastic gypsum 

lens is equal to 35000 MPa. 

 

Figure 10. Mesh and location of soluble gypsum lens and water level. 

 

The density of all materials is taken to be 2000 kg/m3. The model has a vertical plane of 

symmetry passing through the middle of the lens (Figure 10). Therefore, we will model only 

half of the domain. On all sides of the model the normal component of displacement is zero 

(roller plane). The only load is gravity.  

 

3.1.1 One gypsum lens with elastoplastic recovery  

In Figures. 11 and 12, we present the 3D shapes of the gypsum lens at different times and 

the temporal evolution of a cross section passing through the middle of the cylindrical lens, 
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respectively. We observe a significant reduction of the cross-section induced by dissolution, 

with the initial cylindrical shape preserved.   

 

Figure 11. Gypsum lens (red) at different times (0, 10, 40 and 60 years). 

 

 

Figure 12. Time evolution of a cross section passing through the middle of the 

cylindrical lens, with the contours corresponding to time of 0, 20, 30, 40, 50, 60 and 65 years, 

respectively. 

 

The size of the cavity increasing with dissolution will induces plasticity or failures in the 

overburden. If the cavity has a significant size and/or weak mechanical properties, the effects 

of dissolution can result in subsidence or a sinkhole creation. In Figure 13 we show the spatial 

distribution of the effective plastic strain expressed by epε : ( )2

3
 ep p p

ij ijd dε ε ε=   for three 

time instants (20, 40 and 60 years), where we observe the extension and the distribution as a 

function of the intensity of the lens dissolution. 

 

Figure 13.  Effective plastic strain distribution in the recovery after 20, 40, and 60 years 

(top) and isovalues of the effective plastic strain distribution in the recovery after 20, 40, and 

60 years. 

 

In Figure 14 we show the time evolution of the volume integration of the effective plastic 

strain _ ep

Overburden

Int EP dvε=  . 

 The purpose of this integration is not so much to determine a particular value from a 

physical point of view but to show the temporal evolution of the plasticity in the recovery. We 

see that it increases continuously with time, thus vary with dissolution and remains constant 

when the gypsum lens is completely dissolved. Figure 15 shows the evolution of the vertical 

displacement w, for point A on the bottom of recovery and point B at the surface, with both 

two points in the middle of the model. One may observe the vertical displacement as 

dissolution proceeds.  
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Figure 14. Time evolution of the volume integration of the effective plastic strain over 

the overburden. 

 

Figure 15. 3D distribution of vertical displacement when the gypsum lens is totally dissolved 

(left) and vertical displacement w(t) as a function of time at two points A and B (right). 

 

3.1.2 Single and multiple gypsum lenses - subsidence  

In this subsection, we discuss the evolution of subsidence as a function of dissolution. We 

adopt the same boundary and initial conditions as before. In the case of a single lens, they 

have a diameter of 5 m and are very close to the surface (depth of 5 m). The overburden is 

assumed elastic with a Young's modulus of 0.5 MPa (Figure 16). 

 

Figure 16. Geometrical model used for the subsidence analysis. Single gypsum lens (top) and 

multiple gypsum lenses (down). 

 

Figure 17 shows the spatial distribution of the vertical displacement at the surface for 

different moments. We can observe the evolution of subsidence both in its form and in its 

intensity. The relevance of the numerical model, although simple, coupling dissolution and 

mechanical response, resides in the time predictive character of the method. Figures. 18 and 

19 give some quantitative values of the displacement. From Figure 19 we can observe that the 

location of the maximum of the subsidence evolves in space when time (dissolution) 

increases. The position of these points is important in the analysis of the soil-structure 

interaction and the evaluation of the mechanical consequences on them. The effects on the 

structure depend among other things on the location and the footprint of the structures 

(building, railway, bridges, etc.). In the case of dissolution, these relative positions (positions 

of structures in surface basin) are not constant and evolve with time, due do dissolution. It is 

therefore interesting to be able to estimate its temporal evolution in order to prevent possible 

damage of the structures. The proposed method can achieve this goal. Figure 20 depicts a 3D 

representation of the spatial distribution of the vertical displacement at the surface for 

different times. We can observe the time evolution of the vertical displacement with the 

evolution of the lens’s dissolution (boundaries –red circles). 
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Figure. 17. Spatial distribution of the vertical displacement at the surface at t= 20, 40, 60, 100 

years. 

 

Figure 18. Time (every 10 years) and space evolution of the vertical displacement (left) and the 

derivative of the vertical displacement with respect to x along line CD (right). 

 

Figure 19. Time (every 10 years) and space evolution of the vertical displacement (left) and the 

derivative of the vertical displacement with respect to x along line AB (right) 

 

 

Figure 20. 3D Spatial distribution of the vertical displacement at the surface and state of gypsum 

(red circle) at t= 10, 30, 50, 60 years. 

 

We see that the subsidence evolves with time and is far from being uniform. It is more 

significant in upstream than in downstream. The concentration of the fluid increases (from 

upstream to downstream) while the rate of dissolution decreases. Consequently, the 

mechanical effects in terms of subsidence on the surface also undergoes this shift over time. A 

steady state will be reached only if all gypsum is dissolved. Figure 21 illustrates quantitatively 

this last remark. It depicts the spatial distribution of the normalized concentration on a 

horizontal cross plane passing through the middle of the lenses and state of gypsum (black 

circle) for different moments (t= 0, 10, 30, 50, 60 years).  

 

Figure 21. Spatial distribution of the normalized concentration on a horizontal cross plane 

passing through the middle of the lenses and boundaries of gypsum (black circle) at t= 0, 10, 30, 50, 

60 years. 

 

For a more quantitative understanding, we focus on the vertical displacement evolution 

computed at particular locations of the surface. For this, we consider six points (P1-P6) 

located on the surface and in the center of six lenses. Figure 22 not only gives the maximum 

vertical displacement value but also the time required to reach it. We also observe the time 

difference induced by the flowing of partially saturated fluid and pure water. 

 

Figure 22. Location of six points P1-P6 (left) and their vertical displacement (right) 
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3.2 2D plane strain - elastoplastic recovery  

In this subsection, we discuss the evolution of subsidence as a function of dissolution in 

plane strain condition. The boundary and initial conditions are depicted in Figure 23. The 

water level is located at the gypsum layer roof. The gypsum layer is bounded at the top by a 

soft elastoplastic soil. For this soil an associated Mohr-Coulomb failure is used. It has a 

Young’s modulus of 100 MPa, a Poisson coefficient of 0.3, a friction angle of 25° and a 

cohesion equal to 0.04 MPa. The upstream velocity V  is 5×10-7 m/s. 

In this case the gypsum has a height of 2 m and is very close to the surface (depth of 7.5 

m). Note that in many countries (Toulemont, 1981, 1987) there exists gypsum layer very 

close to the surface. 

 

Figure 23.  2D plane dissolution-mechanical model (left) and finite element mesh and location of 

the gypsum lens.  

 

Figure 24. Evolution of dissolution of gypsum layer (in red) and induced effective plastic strain in 

the recovery 

 

As expected, the faster the dissolution, the more plasticity develops in the soil recovery 

(Figure 24). The method gives also information on the history of plasticity development 

within this recovery. The maximum dissolution of the gypsum layer is approximately 12 m. 

Then there is no longer convergence of the numerical algorithm. If the problem is 

mathematically well posed, we can attribute the loss of convergence to the loss of soil 

stability. The soil can no longer support the excess stress generated by the growth of the 

cavity. This fact is corroborated by the evolution of the subsidence located in the center of the 

model (Figure 28). 

Note that the stability analysis is carried out based on the plastic limit and not on the basis 

of the second order work criterion (Prunier (2009), Laouafa (2011)). In order to compare the 

distribution and intensity of the plasticity within the soil layer, we compared that resulted 

from dissolution and that resulted by carrying out an instantaneous extraction of 12 m of 

gypsum (Figure 25). The comparison in terms of displacement and slope is depicted in Figure 

26. 
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Figure 25. Effective plastic strain in the recovery. Obtained by dissolution (left) and 

instantaneous extraction (right) 

 

The first remarks that can be made when examining Figure 25 are as follows. The critical 

void sizes are very similar regardless of the method. It is however difficult, even dangerous, 

to generalize this result in the case of different geometrical and hydrodynamic configurations. 

However, a significant difference exists in the spatial distribution of the effective plastic 

strain. If the recovery is constituted by a more fragile, brittle rock, early damage could give 

rise to fracturing. Furthermore, if the hydraulic pressure is high then rupture could be reached 

more quickly in time and space. This mechanism cannot be described by adopting 

instantaneous excavation. Let us also emphasize that plasticity develops at places but also at 

given times (results of computation).  

 

Figure 26. Vertical displacement, comparison between dissolution and instantaneous extraction 

(left). Evolution slope in % during dissolution. 

 

Figure 27 gives the time evolution of the void along the line AB (denoted in Fig. 16) and 

the location and shape of normalized porosity along AB every 10 years. The S shaped curves 

are intrinsic to our DIM approach. 

 

Figure 27. Time evolution of the void along line AB (Fig. 16) (left) and normalized porosity 

(diffuse interface) along AB every 10 years. 1 means fluid and 0 means solid. 

 

Figure 28 depicts the time evolution of vertical displacement of a point located in the 

surface and the middle of the model. The shape of displacement versus time and the velocity 

indicate clearly a loss of stability. This kind of collapse may lead to classical sinkholes.  

 

Figure 28. Time evolution vertical displacement (left) and velocity (right) during dissolution 

process 

 

3.3 Elastoplastic gypsum pillar 

The problem considered in this subsection is the isothermal dissolution of a cylindrical 

gypsum pillar of height 2.5 m and diameter of 5 m (Figure 29). The pillar is located between 

two supposed non permeable domains (above and below). The imposed upstream flow (inlet) 
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velocity V is equal to 10-6 m/s. The concentration of the dissolving species in the inlet fluid is 

zero. All the boundaries of the layer containing the lens are zero flux, except for the inlet and 

the outlet boundaries. The permeability K of the gypsum is 10-15 m2 and that of the 

surrounding medium is 10-10 m2. The dynamical viscosity of the fluid is that of water (10-3 Pa 

s). All boundaries of the layer from a mechanical point of view are rollers. The elastoplastic 

(Mohr-Coulomb) gypsum pillar has a Young's modulus of 35000 MPa, a Poisson coefficient 

of 0.3, a cohesion of 2000 MPa and a friction angle of 35°. The overburden (height 2 m) is 

supposed elastic (35000 MPa, a Poisson coefficient of 0.3,). A pressure P equal to 4.8 MPa is 

applied on the top of the surface. 

 

Figure 29. Gypsum pillar model and boundary conditions (left), mesh and zoom (right) 

 

During continuous injection of fresh water, the dissolution of gypsum pillar is strongly 

controlled by the concentration of the flowing fluid near the pillar surface. We can observe in 

Figure 30 the time evolution of the pillar shape and concentration distribution.  

 

Figure 30. Normalized concentration field and shape of gypsum pillar (black) at different times. 

Values in horizontal plane cross section passing through the middle of the pillar. 

 

Figure 31. Example of streamline and fluid velocity vector field around the pillar at three 

instants. 

 

Due to the low Reynolds numbers Re (mainly linked to very low fluid velocity), 

6

3

  1000 10 2.5
Re 2.5

10

V Hρ
µ

−

−

× ×= = =  the flow is smooth and laminar, and symmetry is 

conserved (Figure 31) since no eddies develop behind the cylinder. 

 

Figure 32 shows the plasticity evolution inside the pillar with dissolution. As expected, 

under a constant external loading, when dissolution increase, plasticity increases. We observe 

that distribution is not symmetric, but more important at the upstream of the pillar.  

 

Figure 32. Evolution of Plastic deformation in the pillar for three times (15, 18 and 25 years). 

The black line denotes the initial pillar configuration. 
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The last configuration is the last converged Newton-Raphson solution. When analyzing 

the displacement history, this non-convergence means collapse of the pillar. The main lesson 

of this last simulation is that we can predict (under some conditions) the collapse of the pillar 

(Figures 32 and 33) and eventually its consequence on the stability of the recovery. 

 

 

Figure 33. Time evolution of the vertical displacement of the material located on top of the pillar 

 

 

In the above examples (cylindrical gypsum lenses and cylindrical pillar) we see that 

symmetry of the fluid flow is preserved. We observe also that the rate of dissolution is 

uniform along the height of theses rocks structures. This is mainly due to the very low fluid 

velocity and very low Rayleigh number in case of gypsum, which indicates that no natural 

convection occurs). Figure 34 depicts the shape obtained with ALE method and considering a 

more soluble pillar rock, halite (salt) for instance. In this purely dissolution problem, we 

observe a significant change in the final shape of the pillar. 

 

Figure 34. 3D and top views. Example of effect of Rayleigh (Ra) and Reynolds number 

(Re) on the intensity and on the shape of the dissolution on an initial cylindrical salt pillar. 

Recall that: 
3  g L

Ra
D

ρ
µ

∆
=  or in porous media 

g K L
Ra

D

ρ
µ

∆
=  and 

LcV
Pe

D
=  

In such case the failure mode may be quite different. These cases are under study. In the 

first modeling we used an isotropic elastoplastic model for gypsum. No mechanical 

volumetric strain Vε  was consider affecting in the permeability. In future work we will use a 

model proposed by Chin et al. (2000) where 

( )0 0
0

1 1 1 , V

n

e K Kε φφ φ
φ
 

= − − =  
 

                                         (22) 

Expression in which n is in the range to 5 to 15, or a more relevant expression of the 

permeability function of the dissolution process and to the mechanical deformation:

( ( , ), )VK K tε ω ε≡   
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4. Concluding remarks 

In this paper, we have discussed the problem of the dissolution of rock materials and rock 

formations, with a focus on gypsum material. A modeling approach was developed using a 

weak coupling (impact of dissolution on mechanical behavior) between dissolution and 

geomechanical behavior. The dissolution model is based on a macro-scale or Darcy-scale 

model obtained by upscaling the microscopic scale or pore scale equations, using the volume 

averaging theory, which allows to relate explicitly the form of the macro-scale equations and 

the effective properties to the pore-scale physics. The application to several problems 

typically encountered in engineering shows the importance of the rock solubility on the cavity 

formation and the coupling between transport including dissolution and geomechanics. 

Numerous theoretical examples treated in this demonstrated the potentialities of the 

methodology. It must be emphasized that the fields of application of the DIM method are 

much broader. 

The weakly coupled sequential approach for solving dissolution and geomechanics 

allowed us to obtain already interesting results in terms of risk analysis. Better accuracy, or 

further applications, would require the introduction of a stronger coupling between 

geomechanics and dissolution. We expect to integrate in the short term a strong coupling 

between dissolution and geomechanics, mainly in the context of leaching. In the case of 

matrix dissolution, work is under way to describe dissolution of multi-scale heterogeneous 

media. The case of handling heterogeneities, if they cannot be included in the Darcy-scale 

mesh representation is an open subject, i.e., how to modify the Darcy-scale mathematical 

model to take into account, let us say, centimetric heterogeneities such as nodules or strata. 

Work is in progress to achieve this goal. 

 In such a configuration, another problem for a relevant coupling is the description of the 

evolution of the mechanical behavior of the material at the material point level. For porous 

materials, dissolution results in a reduction-modification of the frontiers of the domain but 

also into a modification of the pore volume. This latter mechanism, depending on its intensity, 

can radically change the behavior of the material (modulus, yield surface, flow rule, etc.) and 

pose a difficult challenge for the development of a model. Another point that seems 

interesting to investigate is dissolution in media with several significantly different 

characteristic porosity scales. For example, dissolution in fractured media and in the case of 

double or multiple porosities media.  
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Figure 1. Land subsidence (sinkhole) in Central Kansas related to underground rock dissolution (after 

USGS water science). 

 

 

 

 

 

Figure. 2. Problem: From micro-scale to large-scale levels 
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Figure 3. Original dissolution model (sharp interface on the left) and Diffuse Interface Model 

(on the right). 

 

 

 

 

 

 

 

 

 

Figure 4: Large-scale (left) and near interface scale (right) 

 

 

 

 

 

 

 

 

Figure 5. Averaging volume at pore scale level and material point position vector (left) and 3-

phases model (the third phase may be insoluble species for instance) (right). 
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Figure 6.  Examples of various 1D, 2D and 3D unit cells (after Courtelieris and Delgado 

(2012)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Porous domains: "fluid"-interface-solid and expression of volume fraction ε  
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Figure 8. Views of a pillar in the Rocquevaire abandoned quarry (Bouches-du-Rhône, France) 

with two different water flooding levels (at two different times 1996 and 2010, by courtesy of 

Watelet JM, INERIS) and (right) schematic section through a hidden void found within cover 

rocks of gypsum in Paris (France) railway station underground (After Toulemont (1987)). 

 

Figure 9. Examples of dissolution consequences: (Left) several sinkholes in wood Buffalo 

National Park (Canada). An interstratal dissolution of gypsum induce a collapse that 

propagates through dolomite cover beds and (right) (after Walthan et al. (1981), Van 

Everdingen (1981)) 
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Figure 10. Mesh and location of soluble gypsum lens and water level. 

 

Figure 11. Gypsum lens (red) at different times (0, 10, 40 and 60 years). 
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Figure 12. Time  evolution of a cross section passing through the middle of the 

cylindrical lens, with the contours corresponding to time of 0, 20, 30, 40, 50, 60 and 65 years, 

respectively. 

  

 

 

Figure 13. Effective plastic strain distribution in the recovery after 20, 40, and 60 years (top) 

and isovalues of the effective plastic strain distribution in the recovery after 20, 40, and 60 

years. 
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Figure 14. Time evolution of the volume integration of the effective plastic strain over the 

overburden. 

 

 

 

 

 

 

 

 

 

 

Figure 15. 3D distribution of vertical displacement when the gypsum lens is totally dissolved 

(left) and vertical displacement w(t) as function of time at two points A and B (right). 
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Figure 16. Geometrical model used for the subsidence analysis. Single gypsum lens (top) and 

multiple gypsum lenses (bottom). 

 

Figure 17. Spatial distribution of the vertical displacement at the surface at t= 20, 40, 60, 100 

years. 
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Figure 18. Time (every 10 years) and space evolution of the vertical displacement (left) and 

the derivative of the vertical displacement with respect to x along line CD (right).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Time (every 10 years) and space evolution of the vertical displacement (left) and 

the derivative of the vertical displacement with respect to x along line AB (right)  
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Figure 20. 3D Spatial distribution of the vertical displacement at the surface and state of 

gypsum (red circle) at t= 10, 30, 50, 60 years.  

 

 

Figure 21. Spatial distribution of the normalized concentration on a horizontal cross plane 

passing through the middle of the lenses and state of gypsum (black circle) at t= 0, 10, 30, 50, 

60 years.  
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Figure 22. Location of six points P1-P6 (left) and their vertical displacement (right) 

 

 

 

 

 

 

 

 

 

Figure 23.  2D plane dissolution-mechanical model (left) and finite element mesh and location 

of the gypsum lens 
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Figure 24. Evolution of dissolution of gypsum layer (in red) and induced effective plastic 

strain in the recovery  

 

 

 

 

Figure 25. Effective plastic strain in the recovery. Obtained by dissolution (left) and 

instantaneous extraction (right) 
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Figure 26. Vertical displacement, comparison: dissolution vs instantaneous (left). Evolution 

slope in % during dissolution. 

 

 

 

Figure 27. Time evolution of the void along line AB (Figure 16) (left) and normalized 

porosity (diffuse interface) along AB every 10 years. 1 mean fluid and 0 solid. 
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Figure 28. Time evolution vertical displacement (left) and velocity (right) during dissolution 

process  

 

 

 

 

Figure 29. Gypsum pillar model and boundary conditions (left), mesh and zoom (right) 
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Figure 30. Normalized concentration field and shape of gypsum pillar (black) at different 

times. Values in horizontal plane cross section passing through the middle of the pillar. 

 

 

Figure 31. Example of streamline and fluid velocity vector field around the pillar at three 

instants. 
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Figure 32. Evolution of Plastic deformation in the pillar for three times (15, 18 and 25 years). 

The black line denotes the initial pillar configuration. 

 

 

 

 

Figure 33. Time evolution of the vertical displacement of the material located on top of the  

Pillar 
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Figure 34. 3D and top views. Example of effect of Rayleigh (Ra) and Reynolds number (Re) on the intensity and 

on the shape of the dissolution on an initial cylindrical salt pillar. 

 

 

 

 

 

 

 


