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Abstract

Many soluble rocks will dissolve when in contactiwiluid such as water. This transformation of
rock solid into flowing fluid may trigger the créat of cavities which may further lead to either
smooth subsidence or sudden collapse of land surfaissolution phenomenon can be of natural or
human origin. This paper deals with the problenthefdissolution of underground soluble rocks and
the geomechanical consequences such as subsidémdeoles and underground collapse. In this
paper, rock dissolution and the induced undergraianvities are computed using a Diffuse Interface
Model (DIM), which does not require to follow infaces explicitly. We describe briefly the
mathematical and physical framework for the disotu model. We first explain the transition
(upscaling) of a multiphysics problem formulated the microscopic (pore-) scale level to the
macroscopic (Darcy-) scale level. Rock materialsidered in this paper is gypsum, despite that the
developed method is also suitable for over solubtks (e.g., limestone, Halite). The second part of
this paper is devoted to a set of problems dealith mechanical response of the rock mass in
connection with the dissolution process. We dis¢hessubsidence induced by the dissolution of one
or more gypsum lenses, the stability of the coggrand finally the failure of a gypsum pillar in an
abandoned quarry. These examples, while they maylvia rather theoretical hypotheses, have the

virtue of showing the relevance of the method al agthe very diverse issues that it can treat.

Keywords: dissolution, diffuse interface method, gypsum, afiag, mining, subsidence, stability
1. Introduction

Many problems in geomechanics, such as subsidemtéloles and collapses, are related
to the dissolution of soluble rocks. So, dissolutmf porous rocks is a major concern in
geomechanics field since it may cause catastropamages. Rock dissolution may create
underground voids of large size, leading to a pakmisk of instability or collapse of

geological formation as illustrated in Figure 1.



Figure 1. Land subsidence (sinkhole) in Central garelated to underground rock dissolution

(after USGS water science).

Dissolution is driven by the flow of an under sated fluid. For instance, the subsurface
water flow or, also, hydraulic conditions througloils and rocks which trigger
hydrodynamic? instability onset. The natural or Barmade hydraulic conditions may evolve
with time and change in space. This paper focusaslyn on dissolution of gypsum
(CaSQ.2H0) while the proposed methodologies have a geseogle.

Dissolution is also used in industrial activitiegeinsively, for example in the case of salt
“solution mining” method. This industrial procesdracts underground salt by injecting fresh
water through an injection well and produces s#drdorine at an extraction well. Such a
method is highly suitable in case of thin salt lsylecated at great depth.

Modeling the multi-scale and multiphysics featuoésock dissolution problems requires
to address several difficult questions. The firsnaerns the accuracy needed in the
description of solid-liquid interface recessiontla@ macro- (Darcy-) scale level. To achieve
this goal, a precise mathematical formalizatioploysicochemical and transport mechanisms
at the micro-scale level is required. The secomublem is linked to the description of
dissolution at large spatial scales (e.g., in stale, site scale). The third is considering the
strong physical coupling with other processes, agctocks mechanical behavior.

The main dissolution rate models are often phenotogical, directly proposed at the
macroscopic scale level. The dissolution modelsclwvhare currently intensively used are
based on laboratory tests or in-situ observatid®iscch models may be considered as
describing dissolution in an average sense. Unfattly, these phenomenological models are
unable to take into account accurately multi-s@dpects and issues such as the effect of
natural convection or the presence of heterogemgitlye microscopic scale, etc. For instance,
a total dissolution rate observed at the laboratewgl cannot be extrapolated to the field
where hydrodynamic conditions are completely ddfgr Often, interpreting these
experiments in terms of intrinsic properties allogifor some up-scaled model and
predictions, such as an intrinsic surface reactaia for instance, is not accessible since it
would require a relatively complicated CFD (Compioiaal Fluid Dynamics) analysis. This
paper discusses these different questions basethemmetical and numerical analysis of
several examples. The starting point of our diggmuproblem is the pore scale (micro scale)
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description of the dissolving surface and the ob@t the surface dissolution kinetics. This
has been the subject of many studies for variossotliing materials (mainly in chemical or
geochemical scientific domains). Generally, thectiea rate,R, applied as a boundary
condition for the micro-scale dissolution boundaglue problem for soluble rocks like
limestone, calcite, gypsum, or salt follows a gahérm expressed as (Jeschke et al., 2001,
Jeschke and Dreybrodt, 2002):

e k(l_gj 1)

eq
In this expressiorkis the reaction rate coefficierCis the concentration of the dissolved

species an C,, is the thermodynamic equilibrium concentratiors¢ahamed solubility). The

impact of this boundary condition on transport peaib near the surface may be evaluated
through the Damkdhler number (Da). Damkdhler nunider dimensionless numbers used in
chemical engineering to relate the chemical readiioe scale (reaction rate) to the transport
rate occurring in the system. When Damkdéhler nunibeery large, for instance through a
very large value ok, this boundary condition tends to the classicalildgium condition

expressed tC = C, at the solid surface. Let us assume that such pro@mation is valid

and restrict our analysis to two different appraacior modeling the dissolution problem,
i.e., the recession of the solid surface. The first corresponds to a method which follows
explicitly the fluid-solid interface. For instancthis can be done using an ALE (Arbitrary
Lagrangian-Eulerian) method (Donea et al. 1982 $b&cond approach resolves dissolution
using a Diffuse Interface Model (DIM) which transfts the sharp solid-liquid interface into
a continuous description (Anderson et al., 1998Jiloet al., 1985, Luo et al., 2012). We
will present the physical and mathematical bast@fdissolution model and deduce the DIM
model using a volume averaging theory. The mathiealgtroblem is formulated at the pore
scale and then upscaled to Darcy scale in ordebtain macroscopic balance laws and the

associated effective parameters. The workflow galed in Figure 2.

Figure. 2. Problem: From micro-scale to large-scidgels

Although the approach proposed in this article ppligable in the context of salt rock
(Cristescu and Hunsche (1998), Carter et al. (198)est et al. (2019), Sadeghiamirshahidi



and Vitton (2019)), we will focus on the mechanicahsequences of dissolution in a gypsum
context.

It must be emphasized, however, that dissolutiock formations occur in many other
contexts. For instance, in Carbon dioxide gC€apture and geological storage (CCS),.CO
may dissolve into brines, increasing acidificateord dissolution of carbonate species within
the reservoir. The reader can refer to the pagetd-Khdheeawi et al. (2017a-c) and Iglauer
et al. (2015) for more details. Similarly, aciddajfion is currently used to recover the
permeability of rock formation surrounding petratewells, an engineering technique based
on the existence of unstable dissolution fronts Ifi@o F., Zarcone, C., Bazin, B.,
Lenormand, R., Lasseux, D., Quintard, M., 2002. tla ability of a Darcy-scale model to
capture wormhole formation during the dissolutidnaoporous medium. Journal of Fluid
Mechanics 457, 213-254.). These interesting tagickthe associated mechanisms are out of
the scope of this paper.

In some abandoned mines, gypsum pillars are natugabjected to many external loads
(mechanical, thermal, hydric, etc.) and weathe(eng., action of water, bacteria), which may
degrade their mechanical properti€asgtellanza et al. (2008)A dangerous phenomenon in
case of abandoned gypsum and anhydrite mines isrvilaoding. In the case of time-
continuous flooding, the underground water will gmessively dissolve pillar rock until
failure. To access the short- or long-term stabitif the mine, the time evolution of the
dissolution process and the recession rate of #iervgypsum interface must be investigated.
These natural processes are of direct relevangggsum mining. Because gypsum dissolves
readily in flowing water, any gypsum mine which bees flooded on abandonment should
be subject to a hydrological survey as advised bgp€r (Cooper, 1988).

Whatever the hydro-geological configuration, thesdiution of gypsum (lenses, pillars,
etc.) in the ground raises the questions in terfrgeomechanical consequences: subsidence,
sinkholes, pillar or cavities stability, etcsysel (2002) Walthan et al., (1981), Toulemont,
(1987,1981), Cooper (1983 ¢ll et al. (2002). The purpose of the last section of this article
is to show theoretically on several 2D and 3D exas)pghe robustness and the potentialities
of the proposed numerical dissolution approach.

The problems to be dealt with from a mechanicahipof view will be either elastic or
elastoplastic. We will illustrate these questionsthie case of subsidence induced by the
dissolution of one or several gypsum lenses. Isghexamples, gypsum lenses are located

between porous rock layers. We analyze the evalubiothe stability of the recovery as a
4



function of spatial evolution of the dissolutioromit (water-gypsum interface). We finally
analyze the evolution of the stability of an isethtgypsum pillar. All these models have a
predictive feature, as they provide the evolutibthe deformation mechanisms as a function
of time.

2. Dissolution models

This section first describes a generic pore-scassotution model corresponding to
dissolution of a soluble solid species consideredh asingle component (either a true one
component system or a mixture that behaves aggéesiomponent, in this case referred to as
a pseudo-component). The approach can be exterally éo a material having several
components (multi-components). In this latter mattmponent case, conservation equations
(mass, momentum, etc.) should be applied to eactpeoent of the physical system. In this
paper, only a general idea is given about the Uipgcaf the pore-scale equations into a
macro-scale diffuse interface model. The resulfregcy scale model can be used to model
the dissolution of large cavities or porous formas. The methodology is available for salt,
gypsum and even carbonate rocks, provided thal lomaditions are compatible with the
assumption of a pseudo-component. Otherwise, tine saethodology must be extended to a
multicomponent treatment, which is beyond the sadphis paper.

As introduced earlier, we may consider various sgasof dissolution models. The first
one corresponds to the original dissolution problawolving a sharp liquid/solid interface
(Figure 3). In this case, the solid-liquid intedais defined mathematically by a surface at
which the liquid concentration is equal to the &Qium concentration, given our assumption
of large Da. To describe the dissolution state,ma introduce a scalar “phase” indicator

defined in the whole domain (rocks and fluid). Egample, if this scalar is the porose,, it

has a value of 1 in the liquid phase and zero disesv(or a non-zero value if the “solid” is a
true permeable porous medium), with a jump at tleddiquid interface (left column of
Figure 3). Solving the mathematical problem recuspecial front tracking, front marching
numerical techniques, which are often computatigriahe consuming. This method can face
numerical difficulties, in the presence of geonwatrisingularities (near non-soluble layers).
Such difficulties can be circumvented if we do rexjuire an explicit treatment of the moving
interface. Instead, partial differential equati@e written for continuous variables, such as

£, and themass fractior w,, (mass fraction of specigsin the g-phase), which leads to a
diffuse interface description as illustrated inu¥ig 3 (right).
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Figure 3. Original dissolution model (sharp intecgaon the left) and diffuse interface model (on
the right).

The original solid/liquid dissolution problem cae kescribed by classical convective-
diffusive mass balance and Navier-Stokes (momentougtions, etc. To develop the DIM
model, we start from these original solid/liquiclatjons to generate averaged or Darcy-scale
equations involving effective coefficients (Luo,at 2012, Guo et al. 2015) and considering
the density as a function of concentration. In tingt subsection, the original pore-scale
model for the dissolution problem is introduced. the second subsection, we briefly
introduce the upscaling of the pore-scale model ihé Darcy-scale equations which are used
as the basis for the DIM formulation.

2.1. Theoriginal multiphase model

Following our assumption of a pseudo-component Wiehalet us consider a binary
liquid phasef containing chemical species and B, and a solid phase containing only
chemical specie4, as illustrated in Figure 4 (right).

Figure 4: Large-scale (left) and near interface kecéight)
The total mass balance equation for ghghase, the mass balance for spegias the -
phase, and the general mass balance equatienpioase can be expressed by Eqgs. 2(a)-(c),

respectively.

0

op
(a)a—t”’ +08p,v,)

0
(b)%"' 0 p,w,v,) =04 0,00,

©%+01(p,v,) =0

Erreur ! Signet non défini(2)

Here,pz andp, denote the density of the ando-phase, respectively; andv, denote bulk
velocity of thes- ando-phase, respectively. In the following analysig dkfphase is supposed

immobile, i.e.v, =0. wyzdenotes the mass fraction of spedleis f-phaseD,; denotes the
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diffusion coefficient. For the pure fluid flow, weill use the Navier-Stokes equations for the

momentum balance, i.e.,
av[,, 5
Ps E+vﬂ[ﬂ]vﬁ :—Dpﬂ+pﬁg+ZﬂD Vg 3)

wherev,; Up, represents the pressure gradient in fhghase,d,; the dynamic viscosity

(supposed constant) of tifephase and@y the gravity vector. At th@-o interfaceA,, , the

chemical potentials for each species should beldquéhe different phases. In this case and
for the special binary case under investigation, hage the following equality at a given
pressure and temperaturé:

ﬂAﬂ(wAﬂ’p’T):'uM(wM’ p.T) at A, (4)
where,w, , is equal to 1. It must be emphasized that in tirepdete binary case, i.e., when
w,, 1S not equal to 1, there is also a relation simitathe above equation for the other
components. The binary case results in the cldssigalibrium condition, i.e.,

Wy =W, at A, 5)
where, @, is the thermodynamic equilibrium concentration fpeciesA. Note that this

equation is also fulfilled in the reactive case wita >>1|.
The boundary conditions for the pseudo-componenssnizalance at the solid-liquid

interface (of outward normin ;,) can be written as:

Ngo [@pﬂa’Aﬂ (Vﬁ _Wﬁﬂ) _pﬁDAﬂDwAﬂ) = Ngo [G_'Oﬂwﬁﬂ) at Ay, (6)
where, w,, is the interface velocity. This equation can beduso calculate the interface

velocity. We can remark that in general we havefdhewing inequalitwa UH < HvﬁH

For gypsum, for instance, the maximum value‘nﬁg Evvﬁg‘ is about9.7x10® m/s

which is negligible compared to seepage velocitidsydrogeology, which is on the order of
10° to 10° m/s. A boundary condition corresponding to no jumghe tangential velocity has

to be enforced ¢ A, .

The recession velociiw,, can be expressed as :

o 1

= lew) Dys Ny My, (7)
o s

Bo =" po



This last equation relates explicitly the recessielocity to the transport flux and can be
used to compute the interface movement in ALE nukthbhe dissolution problem is
completed with the set of equations to describébthendary and initial conditions of the fluid
domain. Because of the complex movement of thefade, frequent re-gridding is required
and the resolution near the interface cannot by fiee, or else it creates rapid unacceptable
distortion of the mesh.

Some of the numerical difficulties associated wiéiny sharp fronts can be circumvented
by using a Diffuse Interface Method (DIM). Contray “interface tracking methods", a
diffuse interface method considers the interfaceaasmooth transition layer where the
guantities vary continuously. The whole domain tiluied by the two phases is considered
to be a continuous medium without any singularities a strict distinction of solid or liquid

(see Figure 3).

2.2. Darcy-scale non-equilibrium model

A DIM model can be written in an ad’hoc manner eveloped more accurately following
a porous-medium type of approach. In this subsectve briefly describe the macroscopic
Darcy-scale equations obtained by upscaling thealset of pore scale equations, using the
volume averaging theory (Quintard and Whitaker, 4,99/hitaker, 1999). The reader will
find in paper (Guo et al., 2016) the details ofstlthange of scale. The representative
elementary volumes are schematically illustratioffrigure 5. We define the intrinsic average

of the mass fraction as

Q,, :<a)A/3>5 :£;1<w,w> :Vifa)w(r) dv (8)
B Vg
and the superficial average of the velocity as
V, :<v5> = £5<v5>/3 :Vlj v, (r)dv (9)
Vs

where,V, is the filtration velocity aniU , = <vﬁ>ﬁ is thep-phase intrinsic average velocity.

Figure 5. Averaging volume at pore scale level araterial point position vector (left) and 3-phases

model (the third phase may be insoluble speciemftance) (right

After transformation, the averaged form of balaegaation of specie& can be expressed as
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0{ p,w
% +00ppwV) =1 EqpﬁDABDwAﬂ> [ N 2505 (V.0 = W) dA (10)

T — b © Vi

(d)
The different terms expres@) accumulation, (b)convection, (c) diffusion, gl the phase
exchangeterms, respectively. Based on several assumptiomd some mathematical
treatments of the different equations, we obtaenftllowing control equations for the diffuse
interface model (DIM) (Luo et al. 2012)

, 0 , s
gﬁpﬂ%wﬂ MQ,, =00e,0,0,,00,,)+ £,0(1-Q ) (0= Q ) (11)
0,0, .
gt 400 pN,) = Apa (@ =2 ) 12)
and
_ agcr — agﬁ — _
Ly E =Py ot pﬂa(a)eq Q AG) (13)

where,p; is such tha<pﬂwAﬂ>:£ﬂp2,QM and a is the exchange term between the two

phases, which is a non-linear function mj}.D;ﬂ is the macroscopic diffusion/dispersion

coefficient, which can be expressed as

Das =

T—I+a ”VﬁHHa -a;) VV (14)

s €5 \MH%
where the tortuosit7,, the longitudinéa, and transversa; dispersivities a, and a; )
depend on the pore-scale geometry and posséyly The macroscopic effective coefficients

are obtained by solving “closure problems” providigthe theory over different types of unit
cells representative of the porous medium, astrdted in Figure 6.

Figure 6. Examples of various f 1D, 2D and 3D weils (after Courtelieris and Delgado (2012)

Closure problems correspond to an approximate isalubf the coupled problem:
averaged variables/deviations. The approximatetisoliakes often the form of a mapping
such as

@y =0,y [0Q ,, +8, (@0, Q ) (15)



where, &, is the concentration deviation ab, ands, are two closure variables. Solving
two sets of boundary value closure problems b,rand s, allows us to express the

macroscopic effective values according to the attarestics at the pore scale.
In other words, the physical properties at the wswpic level are not

"phenomenological” values but built on the basiploysical properties observed-defined at

the microscopic scale. In our case, we obtain tfeeteve macroscopic diffusion tens D;ﬂ,

the macroscopic effective exchange coeffic aand the effective densi ,0;, such as:

D}, =D, { ALy ﬁgbﬁ)dAJ by, (16)
o
1
VAJ; WDM(% s, ) dA (17)
1
Pp = Py (18)
B 5,3 QAﬁ< B Aﬁ>

We observed that when the saturation at a majauiat is reached then:
a)eq:QAﬁ:aﬁ:O@ £, =Cte
ot (19)
In the case of DIM use for a large-scale cavitysdlistion problem involving an
impervious rock formation, i.e., not necessarilyeal porous medium problem application,
the choice of the exchange coefficicat expression as a function of porosity is more
arbitrary. It must, however, be observed a nulldibon when the material point is considered

strictly in the fluid phase or strictly in the sblbhase. This is illustrated in Figure 7.

Figure 7. Porous domains: "fluid"-interface-soliti@ expression of volume fractien

We must underline that, in the DIM model, therena “pure liquid phase” (Figure 7)

since¢, is used continuously to represent the fluid ad aethe solid regions. Therefore, the

Navier-Stokes equations are not suitable in th& dmmain region. We must add a Darcy
term in the momentum equation. For instance, we adopt a Darcy-Brinkman model

(Brinkman, 1947) such as
10



'uﬂ(QAﬁ)

s

Avﬂ_(DPﬂ_p;?g)_'uﬂ(QAﬂ)K_l W, =0 (21)

where the permeability tensdt is a function ole,. The Darcy-Brinkman equation will

approach to Stokes equation whers very large and will simplifies to Darcy’s lawhenK

is very small. If inertia terms are not negligibdesimilar Darcy penalization of Navier-Stokes
equations may be used. The resulting DIM equatioag be solved with various numerical
techniques but in this paper, we will use a COM3@iltiphysics® implementation. Results

are presented and discussed in the next section.

To summarize, the most important assumptions bethiednodel used in the examples are:

1. the possibility of using a pseudo-component,

2. Damkhdler and Péclet numbers so dissolution isectosghe thermodynamic equilibrium
boundary condition case,

3. Darcy-scale heterogeneities at a scale smaller thartypical formation scale are not

included.

Cases with more complex chemistry may be handletasindicated in the paper by moving
to a multicomponent system. In this paper, we hessentially proposed examples with thin
dissolution fronts. In this case, the actual « ggwale » dissolution has not a great impact
(i.e., boundary condition at the solid surface geof reactive form or thermodynamic
equilibrium form). This would change the dynamitdhe pore-scale but not at a larger scale
(a Darcy-scale dissolution front, even very sharpolves several pore length-scales). This is
why we restricted our examples to such cases., 8tilbrder to compare to an actual site
situation, a good characterization of the siteasassary mainly because heterogeneities will

impact on the recession velocity.

3. Dissolution modelling and geomechanical issues

The main goal of this section is to show the po&taipplication of the method outlined in
the previous section in terms of mechanical conseces induced by rock dissolution, i.e.,
the coupling of dissolution processes with geomeitah boundary value problems. The
"theoretical" configurations considered below arffisiently representative of real cases. The
cases of flooded rooms in gypsum quarries, voidtere by dissolution and sinkholes as
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illustrated in Figures. 8 and 9 are common. In,fatany ground surface failures occur over
gypsum beneath Paris (France) (Toulemont, 1987%), iavestigation of a cavity found in
1975 beneath railway engineering works revealedilaré migrating upwards through the
cover rocks from dissolution cavities in a numbegypsum horizons. As advised by Cooper
(1988), gypsum mine, which becomes flooded on atament, should be subject to a
hydrologic survey. Whatever the hydro-geologicaifaquration, the dissolution of gypsum in
the ground raises the question of consequencemnmstof geomechanical behavior: surface
subsidence, sinkholes, caverns or pillar stabiltg, In the 2D or 3D numerical examples
under consideration, the dissolution process vaheayate growing cavities (case of gypsum
lenses) or decreasing cross-section of pillarse(@sooms and pillar quarries). Numerous
caprock sinkholes at Ripon, U.K. are reactivated doyitinuous dissolution of gypsum
(Cooper, 1988). The mechanical consequences ofldismn can be either a gentle

deformation of soil surface or recovery failure aotlapse leading to sinkholes (Figure 9).

Figure 8. Views of a pillar in the Rocquevaire abaned quarry (Bouches-du-Rhone, France)
with two different water flooding levels (at twdfdrent times 1996 and 2010, by courtesy of Watelet
JM, INERIS) and (right) schematic section throughidden void found within cover rocks of gypsum

in Paris (France) railway station underground (Afieoulemont (1987)).

Figure 9. Examples of dissolution consequencesft)(Lseveral sinkholes in wood Buffalo
National Park (Canada). An interstratal dissolutiaf gypsum induce a collapse that propagates
through dolomite cover beds and (right) (after Wal et al. (1981), Van Everdingen (1981))

The non-linear coupled time dependent multiphygosblems are solved within the
framework of porous medium theory. The mechanicaisequences of the dissolution are
approached in our geomechanics framework throwgmplified analysis. For the mechanical
response of the rock mass, we consider only thectefif domain change induced by the
dissolution. The dissolution process will genergt®wing cavities (case of lenses) or
decreasing cross-section of pillars (case of ro@nd pillars quarries). The domain is
supposed saturated and drained. The problems pposed also isothermal. In fact, there is
no particular difficulty to introduce temperatuiiéher in dissolution formalism or mechanical

problems.
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In the following 2D and 3D examples, we consideresal coupled problems. The first
one corresponds to the dissolution of one or mosesgm lenses contained in a porous
horizon, which can be located between two layersnafl for instance. And the flow is
induced by a natural hydraulic gradient. The seamas® corresponds to dissolution under an
elastic and elastoplastic recovery. Finally, thiedttscenario is about the dissolution of an
elastoplastic gypsum pillar. We will analyze theei evolution of subsidence, surface slope,
mass deformation, stability and collapse condifmrthe roof and for the pillar. These simple

examples show the predictive nature of the propaggdoach.

3.1 The case of one gypsum lenswith elastic or elastoplastic recovery

The first theoretical problem considered is thetheomal dissolution of a cylindrical
gypsum lens of 2.5 m thick with a diameter of 5Fig(re 10). The lens is located in a porous
medium located between two permeable domains. Water flow is imposed at the inlet at
the velocityV of 10° m/s, with zero concentration of the dissolved &@sedll the boundaries
of the layer containing the lens are at zero fluith the exception of the inlet and the outlet
boundaries. The permeabiliyof the gypsum is 18 m? and that of the surrounding medium
is 102 m?. The dynamical viscosity of water is3@®a s. All boundaries of the layer are
symmetric from a mechanical point of view. The wpkastic (Mohr-Coulomb)
soil/overburden has a Young's modulus of 25 MAgiason coefficient of 0.3, a cohesion of
0.1 MPa and a friction angle of 30°. The Young'sdulos of the supposed elastic gypsum
lens is equal to 35000 MPa.

Figure 10. Mesh and location of soluble gypsum kemd water level.

The density of all materials is taken to be 2000m&gThe model has a vertical plane of
symmetry passing through the middle of the lengyfg 10). Therefore, we will model only
half of the domain. On all sides of the model tloeenmal component of displacement is zero

(roller plane). The only load is gravity.

3.1.1 One gypsum lenswith elastoplastic recovery
In Figures. 11 and 12, we present the 3D shap#dseajypsum lens at different times and

the temporal evolution of a cross section pasdimgugh the middle of the cylindrical lens,
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respectively. We observe a significant reductiorthef cross-section induced by dissolution,
with the initial cylindrical shape preserved.

Figure 11. Gypsum lens (red) at different timesl@, 40 and 60 years).

Figure 12. Time evolution of a cross section pagsihrough the middle of the
cylindrical lens, with the contours correspondimgtime of 0, 20, 30, 40, 50, 60 and 65 years,

respectively

The size of the cavity increasing with dissolutieitl induces plasticity or failures in the
overburden. If the cavity has a significant sizd/anweak mechanical properties, the effects

of dissolution can result in subsidence or a sitkleceation. In Figure 13 we show the spatial
. : . . —ep. — 2
distribution of the effective plastic strain exmed bye®: £% :'[ —(d‘sijp dé‘ijp) for three
3

time instants (20, 40 and 60 years), where we obsiie extension and the distribution as a

function of the intensity of the lens dissolution.

Figure 13. Effective plastic strain distribution the recovery after 20, 40, and 60 years
(top) and isovalues of the effective plastic strdistribution in the recovery after 20, 40, and

60 years.

In Figure 14 we show the time evolution of the vo&iintegration of the effective plastic

strainInt_EP= j £°°dv.

Overburden
The purpose of this integration is not so muctdétermine a particular value from a
physical point of view but to show the temporal letion of the plasticity in the recovery. We
see that it increases continuously with time, thary with dissolution and remains constant
when the gypsum lens is completely dissolved. Edls shows the evolution of the vertical
displacementv, for pointA on the bottom of recovery and poltat the surface, with both
two points in the middle of the model. One may obsethe vertical displacement as

dissolution proceeds.
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Figure 14. Time evolution of the volume integratmnthe effective plastic strain over
the overburden.

Figure 15. 3D distribution of vertical displacemenhen the gypsum lens is totally dissolved

(left) and vertical displacement w(t) as a functafrtime at two points A and B (right).

3.1.2 Single and multiple gypsum lenses - subsidence

In this subsection, we discuss the evolution ogldgnce as a function of dissolution. We
adopt the same boundary and initial conditions efsrk. In the case of a single lens, they
have a diameter of 5 m and are very close to thiaci (depth of 5 m). The overburden is

assumed elastic with a Young's modulus of 0.5 Migufe 16).

Figure 16. Geometrical model used for the subsideacalysis. Single gypsum lens (top) and

multiple gypsum lenses (down).

Figure 17 shows the spatial distribution of thetieat displacement at the surface for
different moments. We can observe the evolutiosuifsidence both in its form and in its
intensity. The relevance of the numerical modehalgh simple, coupling dissolution and
mechanical response, resides in the time predictngacter of the method. Figures. 18 and
19 give some quantitative values of the displacdgnteom Figure 19 we can observe that the
location of the maximum of the subsidence evolvwesspace when time (dissolution)
increases. The position of these points is importanthe analysis of the soil-structure
interaction and the evaluation of the mechanicalsequences on them. The effects on the
structure depend among other things on the locadiodh the footprint of the structures
(building, railway, bridges, etc.). In the cased@fsolution, these relative positions (positions
of structures in surface basin) are not constadteaolve with time, due do dissolution. It is
therefore interesting to be able to estimate ispi@al evolution in order to prevent possible
damage of the structures. The proposed methodataeve this goal. Figure 20 depicts a 3D
representation of the spatial distribution of thertical displacement at the surface for
different times. We can observe the time evolutadnthe vertical displacement with the
evolution of the lens’s dissolution (boundariesd-cacles).
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Figure. 17. Spatial distribution of the verticalsplacement at the surface at t= 20, 40, 60, 100

years.

Figure 18. Time (every 10 years) and space evaiutiothe vertical displacement (left) and the

derivative of the vertical displacement with redpgecx along line CD (right).

Figure 19. Time (every 10 years) and space evaiutiothe vertical displacement (left) and the

derivative of the vertical displacement with resggecx along line AB (right)

Figure 20. 3D Spatial distribution of the vertiadisplacement at the surface and state of gypsum
(red circle) at t= 10, 30, 50, 60 years.

We see that the subsidence evolves with time affidrifom being uniform. It is more
significant in upstream than in downstream. Theceotration of the fluid increases (from
upstream to downstream) while the rate of dissotutdecreases. Consequently, the
mechanical effects in terms of subsidence on thfaselialso undergoes this shift over time. A
steady state will be reached only if all gypsurdissolved. Figure 21 illustrates quantitatively
this last remark. It depicts the spatial distribatiof the normalized concentration on a
horizontal cross plane passing through the middllthe lenses and state of gypsum (black
circle) for different moments (t= 0, 10, 30, 50, \Gfars).

Figure 21. Spatial distribution of the normalizedncentration on a horizontal cross plane
passing through the middle of the lenses and baugslaf gypsum (black circle) at t= 0, 10, 30, 50,
60 years.

For a more quantitative understanding, we focughenvertical displacement evolution
computed at particular locations of the surfacer this, we consider six points (P1-P6)
located on the surface and in the center of sigdsnFigure 22 not only gives the maximum
vertical displacement value but also the time nexglito reach it. We also observe the time

difference induced by the flowing of partially seted fluid and pure water.

Figure 22. Location of six points P1-P6 (left) aheir vertical displacement (right)
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3.2 2D planestrain - elastoplastic recovery

In this subsection, we discuss the evolution ofsgignce as a function of dissolution in
plane strain condition. The boundary and initiahditions are depicted in Figure 23. The
water level is located at the gypsum layer roofe Glgpsum layer is bounded at the top by a
soft elastoplastic soil. For this soil an associaohr-Coulomb failure is used. It has a
Young's modulus of 100 MPa, a Poisson coefficiehD@, a friction angle of 25° and a
cohesion equal to 0.04 MPa. The upstream velV itig 5107 m/s.

In this case the gypsum has a height of 2 m anéng close to the surface (depth of 7.5
m). Note that in many countries (Toulemont, 198387) there exists gypsum layer very

close to the surface.

Figure 23. 2D plane dissolution-mechanical modiftY and finite element mesh and location of

the gypsum lens.

Figure 24. Evolution of dissolution of gypsum lagiarred) and induced effective plastic strain in

the recovery

As expected, the faster the dissolution, the mdastigity develops in the soil recovery
(Figure 24). The method gives also information be history of plasticity development
within this recovery. The maximum dissolution oétgypsum layer is approximately 12 m.
Then there is no longer convergence of the nunlemrdgorithm. If the problem is
mathematically well posed, we can attribute theslo$ convergence to the loss of soll
stability. The soil can no longer support the escesess generated by the growth of the
cavity. This fact is corroborated by the evolutafrthe subsidence located in the center of the
model (Figure 28).

Note that the stability analysis is carried outdahen the plastic limit and not on the basis
of the second order work criterion (Prunier (2009ouafa (2011)). In order to compare the
distribution and intensity of the plasticity withithe soil layer, we compared that resulted
from dissolution and that resulted by carrying aut instantaneous extraction of 12 m of
gypsum (Figure 25). The comparison in terms of ldisgment and slope is depicted in Figure
26.
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Figure 25. Effective plastic strain in the recover@btained by dissolution (left) and

instantaneous extraction (right)

The first remarks that can be made when examiniggré€ 25 are as follows. The critical
void sizes are very similar regardless of the mebthibis however difficult, even dangerous,
to generalize this result in the case of diffegedmetrical and hydrodynamic configurations.
However, a significant difference exists in the tepadistribution of the effective plastic
strain. If the recovery is constituted by a moggiie, brittle rock, early damage could give
rise to fracturing. Furthermore, if the hydrauli@gsure is high then rupture could be reached
more quickly in time and space. This mechanism canme described by adopting
instantaneous excavation. Let us also emphasizekasticity develops at places but also at

given times (results of computation).

Figure 26. Vertical displacement, comparison betwdessolution and instantaneous extraction

(left). Evolution slope in % during dissolution.

Figure 27 gives the time evolution of the void @dhe line AB (denoted in Fig. 16) and
the location and shape of normalized porosity alaBgevery 10 years. The S shaped curves

are intrinsic to our DIM approach.

Figure 27. Time evolution of the void along line #Bg. 16) (left) and normalized porosity

(diffuse interface) along AB every 10 years. 1 rsdhrid and 0 means solid.

Figure 28 depicts the time evolution of verticatglacement of a point located in the
surface and the middle of the model. The shapesplatement versus time and the velocity

indicate clearly a loss of stability. This kindafllapse may lead to classical sinkholes.

Figure 28. Time evolution vertical displacementtflend velocity (right) during dissolution

process

3.3 Elastoplastic gypsum pillar
The problem considered in this subsection is tbhéheymal dissolution of a cylindrical
gypsum pillar of height 2.5 m and diameter of SFg(re 29). The pillar is located between

two supposed non permeable domains (above and pélbw imposed upstream flow (inlet)
18



velocity V is equal to 18 m/s. The concentration of the dissolving speaiethé inlet fluid is
zero. All the boundaries of the layer containing kans are zero flux, except for the inlet and
the outlet boundaries. The permeability of the gypsum is I& m? and that of the
surrounding medium is 8 n?. The dynamical viscosity of the fluid is that o&ter (10° Pa

s). All boundaries of the layer from a mechaniaainp of view are rollers. The elastoplastic
(Mohr-Coulomb) gypsum pillar has a Young's modwt85000 MPa, a Poisson coefficient
of 0.3, a cohesion of 2000 MPa and a friction arajl&5°. The overburden (height 2 m) is
supposed elastic (35000 MPa, a Poisson coeffiokdt3,). A pressur® equal to 4.8 MPa is
applied on the top of the surface.

Figure 29. Gypsum pillar model and boundary comah§ (left), mesh and zoom (right)

During continuous injection of fresh water, thesoisition of gypsum pillar is strongly
controlled by the concentration of the flowing duiear the pillar surface. We can observe in
Figure 30 the time evolution of the pillar shape aoncentration distribution.

Figure 30. Normalized concentration field and shapgypsum pillar (black) at different times.

Values in horizontal plane cross section passimgugh the middle of the pillar.

Figure 31. Example of streamline and fluid velocitgctor field around the pillar at three

instants.

Due to the low Reynolds numbeRe (mainly linked to very low fluid velocity),

6
Re=pv H :10001;_2 X 2'5= 2.t the flow is smooth and laminar, and symmetry is
U

conserved (Figure 31) since no eddies develop dehmcylinder.

Figure 32 shows the plasticity evolution inside pgikar with dissolution. As expected,
under a constant external loading, when dissolutiorease, plasticity increases. We observe

that distribution is not symmetric, but more import at the upstream of the pillar.

Figure 32. Evolution of Plastic deformation in th@lar for three times (15, 18 and 25 years).

The black line denotes the initial pillar configticn.
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The last configuration is the last converged NewRaphson solution. When analyzing
the displacement history, this non-convergence sieatlapse of the pillar. The main lesson
of this last simulation is that we can predict (@ndome conditions) the collapse of the pillar

(Figures 32 and 33) and eventually its consequendie stability of the recovery.

Figure 33. Time evolution of the vertical displa@grnof the material located on top of the pillar

In the above examples (cylindrical gypsum lensed eylindrical pillar) we see that
symmetry of the fluid flow is preserved. We obserlso that the rate of dissolution is
uniform along the height of theses rocks structuféss is mainly due to the very low fluid
velocity and very low Rayleigh number in case opgiym, which indicates that no natural
convection occurs). Figure 34 depicts the shapaimdéd with ALE method and considering a
more soluble pillar rock, halite (salt) for instandn this purely dissolution problem, we
observe a significant change in the final shapdhefillar.

Figure 34. 3D and top views. Example of effect ayl&gh (Ra) and Reynolds number
(Re) on the intensity and on the shape of the lWissn on an initial cylindrical salt pillar.

Ap |g| Aplg/K L LcV

and Pe=——
MDD D

In such case the failure mode may be quite differEhese cases are under study. In the

Recall that Ra= or in porous medi Ra=

first modeling we used an isotropic elastoplastiodel for gypsum. No mechanical

volumetric strairg, was consider affecting in the permeability. Inufet work we will use a

model proposed by Chin et al. (2000) where
p=1-1(1-¢)e" K= Ko(ﬂ) (22)
%

Expression in which is in the range to 5 to 15, or a more relevantresgion of the
permeability function of the dissolution processdato the mechanical deformation:
K=K(g(wt),g,)
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4. Concluding remarks

In this paper, we have discussed the problem ofligsolution of rock materials and rock
formations, with a focus on gypsum material. A mModgapproach was developed using a
weak coupling (impact of dissolution on mechanibahavior) between dissolution and
geomechanical behavior. The dissolution model setiaon a macro-scale or Darcy-scale
model obtained by upscaling the microscopic scalgooe scale equations, using the volume
averaging theory, which allows to relate explicittye form of the macro-scale equations and
the effective properties to the pore-scale physidse application to several problems
typically encountered in engineering shows the irtgpe of the rock solubility on the cavity
formation and the coupling between transport inicigddissolution and geomechanics.
Numerous theoretical examples treated in this detnated the potentialities of the
methodology. It must be emphasized that the fieidapplication of the DIM method are
much broader.

The weakly coupled sequential approach for solvitigsolution and geomechanics
allowed us to obtain already interesting resultserms of risk analysis. Better accuracy, or
further applications, would require the introduntioof a stronger coupling between
geomechanics and dissolution. We expect to integratthe short term a strong coupling
between dissolution and geomechanics, mainly incibretext of leaching. In the case of
matrix dissolution, work is under way to descriliesdlution of multi-scale heterogeneous
media. The case of handling heterogeneities, ¥ ttennot be included in the Darcy-scale
mesh representation is an open subject, i.e., lvomddify the Darcy-scale mathematical
model to take into account, let us say, centimdigterogeneities such as nodules or strata.
Work is in progress to achieve this goal.

In such a configuration, another problem for @&vaht coupling is the description of the
evolution of the mechanical behavior of the mateatathe material point level. For porous
materials, dissolution results in a reduction-micdiion of the frontiers of the domain but
also into a modification of the pore volume. Ttatér mechanism, depending on its intensity,
can radically change the behavior of the matenmadulus, yield surface, flow rule, etc.) and
pose a difficult challenge for the development ofmadel. Another point that seems
interesting to investigate is dissolution in mediath several significantly different
characteristic porosity scales. For example, diggni in fractured media and in the case of

double or multiple porosities media.
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Figure 1. Land subsidence (sinkhole) in Central 8@mrelated to underground rock dissolution (after

USGS water science).

Upscaling

Macro/Darcy scale level Mega/real scale level

Pore scale level
Mathematical fo.rmulatlon of the Mathematical problem Nonlinear 18VP
problem at micro scale level at macro/Darcy scale level

Figure. 2. Problem: From micro-scale to large-stalels
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Figure 3. Original dissolution model (sharp integan the left) and Diffuse Interface Model
(on the right).

Figure 4: Large-scale (left) and near interfacdes@aght)

B-phase

-----

volume averaging space

Figure 5. Averaging volume at pore scale level amaderial point position vector (left) and 3-

phases model (the third phase may be insolubléespfar instance) (right).
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loose fallen sand —.__ <

Figure 8. Views of a pillar in the Rocquevaire atb@med quarry (Bouches-du-Rhoéne, France)
with two different water flooding levels (at twofi@girent times 1996 and 2010, by courtesy of
Watelet JM, INERIS) and (right) schematic sectibrotigh a hidden void found within cover

rocks of gypsum in Paris (France) railway statioderground (After Toulemont (1987)).

Figure 9. Examples of dissolution consequencestt)(lseveral sinkholes in wood Buffalo
National Park (Canada). An interstratal dissolutioh gypsum induce a collapse that
propagates through dolomite cover beds and (rightjler Walthan et al. (1981), Van
Everdingen (1981))
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the derivative of the vertical displacement witBpect to x along line CD (right).
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Figure 19. Time (every 10 years) and space evalutiothe vertical displacement (left) and

the derivative of the vertical displacement witBpect to x along line AB (right)
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Figure 20. 3D Spatial distribution of the vertiadikplacement at the surface and state of
gypsum (red circle) at t= 10, 30, 50, 60 years.
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Figure 21. Spatial distribution of the normalizeahcentration on a horizontal cross plane

passing through the middle of the lenses and stajgpsum (black circle) at t= 0, 10, 30, 50,
60 years.
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Figure 22. Location of six points P1-P6 (left) ahdir vertical displacement (right)
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Figure 23. 2D plane dissolution-mechanical motit)(and finite element mesh and location
of the gypsum lens
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Figure 24. Evolution of dissolution of gypsum lay@r red) and induced effective plastic

strain in the recovery
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Figure 25. Effective plastic strain in the recove@btained by dissolution (left) and

instantaneous extraction (right)
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Figure 26. Vertical displacement, comparison: digsmn vs instantaneous (left). Evolution

slope in % during dissolution.

1M r
0] \

0.8 \

. 0.5F \

0.4+
0.3r
0.2

0
0 20 40 60 80 100 120 140 160 180 200 0.1+

0-1 1 l 1

0 5 10 15
Arc Length (m)

Location of the gypsum front [m)

Figure 27. Time evolution of the void along line ABigure 16) (left) and normalized

porosity (diffuse interface) along AB every 10 y&dr mean fluid and 0 solid.
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Figure 28. Time evolution vertical displacementtjland velocity (right) during dissolution

process
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Figure 29. Gypsum pillar model and boundary coodgi(left), mesh and zoom (right)
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Figure 30. Normalized concentration field and shapgypsum pillar (black) at different

times. Values in horizontal plane cross sectiorsipgsthrough the middle of the pillar.
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Figure 31. Example of streamline and fluid veloorgctor field around the pillar at three

instants.
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Figure 32. Evolution of Plastic deformation in th#lar for three times (15, 18 and 25 years).

The black line denotes the initial pillar configtioa.
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Figure 33. Time evolution of the vertical displaaamhof the material located on top of the

Pillar
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Figure 34. 3D and top views. Example of effect afy/Righ (Ra) and Reynolds number (Re) on the iitieasd

on the shape of the dissolution on an initial ayfioal salt pillar.
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