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Abstract 

Safety testing of nanoparticles (NPs) relies on robust, predictive, and reproducible methods. 

Integrated test strategies usually start with the assessment of in vitro cytotoxicity. Methods 

for this purpose are only partially established for NPs. The aim of this study was to evaluate 

three cytotoxicity assays for their applicability to NPs in several human cell models 

representing the most important NP target organs and to compare cell responses. 

The assays covered different biological principles, i.e. ATP content, redox metabolism, and 

membrane permeability, as well as different read-out principles, i.e. luminescence, 

colorimetry, and fluorescence. For all assays standard operating procedures were 

developed. A549 and NCI-H441 lung epithelial cells in single and in co-culture with THP-1 

derived macrophages served as lung epithelial models. Normal human epidermal 

keratinocytes and in vitro reconstituted human epidermis were employed as skin models. 

Naïve and differentiated Caco-2 gut epithelial cells were applied as gut epithelial models. 

Primary CD34-derived dendritic cells (CD34-DCs) served as an immune model. We used 

well-characterized model NPs, i.e. 50 nm amine-modified and 40 nm carboxyl-modified 

polystyrene NPs (PS-NH2 and PS-COOH, respectively). 

PS-COOH NPs showed no effect in any test while PS-NH2 displayed cytotoxicity in most cell 

models. CD34-DCs was the most sensitive cell model tested. The tetrazolium-based MTS 

assay was the most robust assay in our study, applicable to all cell models investigated. 

Therefore, this assay could become an integral part of a NP testing strategy. Other assays 

might be also useful, depending on the cell model or the type of investigation. 

 

Keywords: Nanoparticles, cytotoxicity, cell viability, reproducibility  
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1. Introduction 

The development of in vitro methods for toxicological testing of nanoparticles (NPs) is a 

major research endeavor. NPs can be synthesized in many different variants by varying size, 

shape or by applying chemical surface modifications. Therefore in order to save costs and 

time and to reduce animal testing reliable in vitro methods are urgently needed to screen for 

hazardous NPs, to prioritize NPs for further testing and also to obtain initial data for risk 

assessment. Most toxicological endpoints require prior knowledge of the acute toxicity of the 

test compound. Many pathways of (regulated) cell death have evolved in multicellular 

organisms. Some can be specific for certain cell types and/or stimuli, including several types 

of regulated necrosis and apoptosis (Galluzzi et al. 2014; Green et al. 2014). While 

mechanistic insight is important in some cases, a mechanism-independent measurement 

often gives an initial starting point for more elaborate testing. In vivo, many forms of cell 

death (e.g. apoptosis) lead to early removal of the dying cells by macrophages. However, in 

vitro, in the absence of macrophages, all forms of cell death will eventually cause loss of 

integrity of the cellular membrane. Certain dyes such as trypan blue and propidium iodide will 

cross only compromised membranes and can be used to specifically stain dead cells. In 

addition, the concomitant release of cytosolic enzymes into the cell culture medium can be 

used as a read-out since the released enzyme activity correlates with the extent of 

membrane rupture and therefore is a measure for cell death. Most often lactate 

dehydrogenase (LDH) activity is measured in cell culture medium using the NADH-

dependent conversion of a dye (Korzeniewski and Callewaert 1983). Another approach is the 

measurement of the number of viable cells after treatment. Arguably the most popular 

method is based on the reduction of a tetrazolium salt to a colored formazan salt derivative 

by cellular NAD(P)H-dependent oxidoreductase enzymes, introduced by Mosmann (1983). 

The reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

represents a measure for the cellular metabolic capacity and correlates with the number of 

cells (Mosmann 1983). Oxidoreductases responsible for the dye reduction are mainly located 

in the cytoplasm, i.e. in the endosomal/ lysosomal compartment and at the plasma 
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membrane, and are also partly associated with oxidative phosphorylation in mitochondria 

(Stepanenko and Dmitrenko 2015). Meanwhile a couple of assays using similar dyes such as 

MTS, WST or XTT are available as well. In some forms of cell death such as apoptosis 

mitochondria play an important role. During apoptosis cellular proteins involving the pro-

apoptotic bcl-2 family disrupt mitochondrial function (Galluzzi et al. 2014; Green et al. 2014). 

In other forms of cell death such as necrosis, loss of mitochondrial function and of 

oxidoreductases is a later event coinciding with plasma membrane rupture (Aki et al. 2015; 

Green et al. 2014). Thus, dyes, that accumulate in mitochondria to test their function can be 

used as well to assess cell viability (Petronilli et al. 2001). Finally, metabolic capacity can 

also be measured by determination of the intracellular ATP content using luciferase or other 

ATP consuming reactions (Kangas et al. 1984). Viable cells under normal culture conditions 

maintain a relatively constant amount of ATP. It is assumed that the capacity for ATP 

synthesis is lost early during cell death and remaining ATP is rapidly used up or eliminated 

by ATPases. 

For cytotoxicity measurements it would be optimal to use non-dividing cells as otherwise it 

may become difficult to distinguish effects on cell viability from effects on cell proliferation. 

However, often this is not possible. Thus, it is very important to understand and to precisely 

describe how a particular assay is performed, as this affects the interpretation of the results. 

Furthermore, cytotoxicity should be assessed under similar conditions (i.e. concentrations, 

time points) as other toxicological endpoints of interest, which might be exploited later on in 

the test strategy. 

It should be noted that specific issues arise when testing cytotoxic effects of NPs in vitro. In 

particular, enzyme- and dye-based assays need to be carefully checked for possible 

interferences from NPs. Assay reagents might react or be immobilized on the NP’s surface. 

Especially assays using spectrophotometric read-out might be impaired as NPs can scatter 

or absorb light or exhibit interfering plasmon resonance (Bonvin et al. 2017; Kroll et al. 2012; 

Monteiro-Riviere et al. 2009; Stone et al. 2009; Tournebize et al. 2013). Several consortia 

have already worked on evaluation and harmonization of cytotoxicity assays for NPs (Elliott 
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et al. 2017; Piret et al. 2017; Rösslein et al. 2015; Xia et al. 2013). Moreover, a standard 

assay specifically dedicated to NPs is currently in preparation using the MTT variant 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) 

assay as an in vitro cytotoxicity assay (ISO/AWI 19007 Modified MTS assay for measuring 

the effect of NPs on cell viability, ISO, Geneva, Switzerland).  

In this study we decided to further explore three assay types. As a late response assay the 

LDH assay was chosen. For an earlier response assay the MTS assay was chosen. Finally, 

ATP level measurements were selected as an early marker of cellular stress. 

In toxicology, automated testing based on high-throughput screening (HTS) or high-content 

screening (HCS) is becoming increasingly important (Hartung 2008, Judson et al. 2013). It 

may be considered that in the future HTS/ HCS might be an integral part of the decision-

making tools used routinely for the toxicity screening of chemicals, as well as NPs (Judson et 

al. 2013). Thus, another goal of this study was to identify assays which can be used in HCS 

approaches to investigate the cytotoxicity of NPs. The cell membrane impermeable TOPRO 

nucleic acid stain may be considered as an LDH equivalent assay for an HCS approach 

(Anguissola et al. 2014). As an HCS equivalent for the MTS assay cyanine monomers as 

nucleic acid counterstains such as TO-PRO-1/3/5 and similar dyes may be considered 

(Anguissola et al. 2014). For the ATP assay we have not identified an HCS equivalent. 

To generate data relevant to toxicological problems, the route of exposure should be taken 

into account. In terms of potential NP hazards, inhalation has been identified as the most 

important exposure route. Experimental studies suggest that NPs can cross from the lung 

into the bloodstream (Balasubramanian et al. 2013; Kendall and Holgate 2012; Kreyling et al. 

2014). Cutaneous and oral exposure to NPs, which may be a fraction of bulk materials and 

not necessarily specifically engineered NPs, are already commonplace for some materials 

such as silica and titanium dioxide (Peters et al. 2012; Weir et al. 2012). Historical data for 

oral intake of these materials show no adverse effects (Lewinson et al. 1994; Martin 2007; 

Skocaj et al. 2011). Dermal penetration is considered negligible at least for healthy skin and 

for the most commonly used metal and metal oxide NPs (Labouta and Schneider 2013; 
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Nohynek and Dufour 2012; Piret et al. 2014). In the case that NPs breach the barriers of the 

first-line exposure organs, blood and lymphatic system are usually the first compartments 

reached, prior to secondary organs such as liver and kidney. In order to take into account 

different possible routes of exposure we tested several widely used cell lines representing 

first-line exposed organs, skin, intestinal tract and respiratory tract, and also the immune 

system. A549 and NCI-H411 are epithelial cells derived from human, male, lung carcinomas, 

and were used to represent lung epithelial models. A549 cells have an alveolar type II-like 

phenotype (Foster et al. 1998) and NCI-H411 exhibit both alveolar (i.e. type II cell) and 

bronchiolar (i.e. club cell) epithelial phenotype (Hermanns et al. 2004; Salomon et al. 2014). 

Caco-2 cells are epithelial cells derived from human, male, colorectal adenocarcinoma. 

These cells can undergo enterocytic differentiation (Jumarie and Malo 1991; Piret et al. 

2012) and represent the gastro-intestinal tract in this study. THP-1 cells are monocytes 

derived from human, male, acute monocytic leukaemia, and can be differentiated into 

macrophage-like cells (Chanput et al. 2014).  

Generally, primary cells are considered to closer resemble the in vivo phenotype while cell 

lines are mostly of tumor origin and/or virus-transformed. Therefore, in this study we also 

included two primary cell types. Normal human epidermal keratinocytes (NHEK) from a pool 

of three donors were used as skin in vitro model. CD34 dendritic cells (CD34-DCs) were 

derived through differentiation of progenitor cells from different human cord blood donors. 

Dendritic cells are part of the immune system; they process antigen material and present it 

on the cell surface to the T cells of the immune system. However, when using primary cells in 

toxicology one needs to consider that access to them is often limited and variability in test 

results will be higher due to donor variability.  

In addition, we included a few more complex models of the target organs such as 3D models 

and co-cultures. The use of complex cellular models has been discussed for some time as 

superior to the single layer dish culture (Guguen-Guillouzo et al. 1983). For their use in 

toxicology it is expected that such models could yield more relevant data requiring less 

modelling or extrapolation (Nam et al. 2015). Thereby, they are assumed to more reliably 
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identifying a human hazard (Grainger 2014). As a more complex model we employed a 

commercially available reconstituted human epidermis (RHE) produced from a pool of 

human keratinocytes from different donors. These RHE are characterized by the presence of 

the 4 typical epidermis layers (basal, spinous, granular, and topical cornified layer) observed 

in in vivo epidermis and express specific differentiation markers such as keratin 14, keratin 

10 or involucrin (Poumay et al. 2004). RHE were treated at the air-liquid interface. 

Furthermore, Caco-2 cells were differentiated on filters forming continuous polarized 

monolayers, and acquire several of the characteristics of normal enterocytes (Hillgren et al. 

1995; Volpe 2008). Co-cultures of aforementioned A549 and NCI-H411 lung epithelial cells 

with THP-1 cells differentiated into macrophage-like cells were used to represent a situation 

more close to the lung surface (Hjort et al. 2003; Wottrich et al. 2004). 

All cell models employed in our study are listed in Supplemental Table 1. The selection of 

cell models was based on a literature survey, initial experiments, as well as on availability 

and experience in the participating laboratories. The aim of our study was to investigate the 

applicability of three cytotoxicity assays in a variety of different cell models representing the 

most important target organs for NPs. Amine-modified polystyrene NPs (PS-NH2) and 

carboxyl-modified polystyrene NPs (PS-COOH) were used as ‘model’ NPs as they exhibit 

narrow size ranges and low agglomeration (Bexiga et al. 2014; Kim et al. 2013; Wang et al. 

2013). Moreover, the cationic PS-NH2 have been demonstrated to induce cytotoxicity at 

doses below 50 g/ml (Anguissola et al. 2014; Bexiga et al. 2011; Ruenraroengsak et al. 

2012; Wang et al. 2013; Xia et al. 2008). We have developed standard operation procedures 

(SOPs) and discussed some limitations and pitfalls. All SOPs are included in the 

Supplementary Information.  
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2. Material and methods 

2.1. Chemicals and nanoparticles 

Benzalkonium chloride (BC, Sigma-Aldrich), known to induce cell death in multi-layered 

engineered tissues like RHE and in differentiated Caco-2 monolayers was used as positive 

control (Supplemental Table 2) (Coquette et al. 2003; Piret et al. 2012; Vankoningsloo et al. 

2010). Zinc sulphate (Sigma-Aldrich) and Triton X-100 were used as positive chemical 

control for CD34-DCs or A549/THP-1 cells respectively (Supplemental Table 2). 

Monodisperse aqueous dispersions of polystyrene (PS) NPs with amine (PS-NH2) and 

carboxyl (PS-COOH) surface functionalization (nominal size of 50 nm diameter) were 

obtained from Bangs Laboratories (catalog number PA02N) and Polysciences, Inc. (catalog 

number 15913-10), respectively. These NPs can be easily dispersed by simple vortexing as 

has been assured in an accompanying round robin using Dynamic Light Scattering (DLS) 

and Differential Centrifugal Sedimentation (DCS) (Langevin et al., under review). NPs were 

dispersed in cell culture media by vortexing for 30 sec immediately prior to experiments. 

Particle size distributions in water and in cell culture medium with FCS were determined 

using Dynamic Light Scattering (Langevin et al., under review). 

2.2. Cell culture 

2.2.1. A549 cell line 

Human lung epithelial A549 cells (obtained from LGC Standards, catalog number: ATCC® 

CRM-CCL-185TM) were cultured in RPMI 1640 medium (Gibco) supplemented with 10% (v/v) 

heat-inactivated (20 min, 56°C) fetal calf serum (FCS) (Sigma-Aldrich), 1% (v/v) penicillin-

streptomycin (Invitrogen). Cells were seeded at 104 cells/well in 96-well plates 42 h prior to 

exposure.  

2.2.2. NCI-H411 cell line 

Human lung epithelial NCI-H411 (catalog number: ATCC® HTB-174TM) cells obtained from 

LGC Standards were cultured in RPMI 1640 medium (Gibco) supplemented with 10% (v/v) 
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heat-inactivated FCS (Sigma-Aldrich), 1% (v/v) penicillin-streptomycin (Invitrogen). Cells 

were seeded at 104 cells/well in 96-well plates 42 h prior to exposure. 

2.2.3. Naïve Caco-2 cell line and differentiated monolayers 

Human colon carcinoma Caco-2 cells were purchased from European Collection of Cell 

Cultures (ECACC, Salisbury, UK, catalog number: ECACC 86010202). Caco-2 cells were 

maintained in culture in 75-cm2 polystyrene flasks (Costar) with DMEM High Glucose (Gibco) 

containing 100 U/ml penicillin, 100 µg/ml streptomycin (BioWhittaker), 1% (v/v) non-essential 

amino-acids (Gibco) and 10% FCS (Gibco).  

To obtain a tight intestinal epithelium, Caco-2 cells were differentiated as described 

previously (Piret et al. 2012). Briefly, 50,000 Caco-2 cells were grown on transwell 

polycarbonate filters (12 wells, pore diameter of 3 µm, 1.12 cm2 growth area, Corning Costar) 

for 16 days. Medium (500 µL in the insert -apical side-, and 1.5 mL in the well -basolateral 

side) was renewed every 48 h. The tightness of the intestinal monolayers was controlled by 

transepithelial electrical resistance (TEER) measurement, performed with probes connected 

to a Millicell-ERS Volt-Ohm meter (Millipore). TEER data were calculated by subtracting the 

value of blank inserts and normalized for growth area (.cm2). For toxicity assays, intestinal 

epithelia were incubated for 24 h with 500 µL of complete DMEM containing increasing 

concentrations of PS-NH2. 

2.2.4. THP-1 cell line-derived macrophages and co-culture with lung epithelial cells 

Human acute monocytic leukaemia THP-1 cells (obtained from LGC Standards, catalog 

number: ATCC® TIB-202TM) were cultured in RPMI 1640 medium (Gibco) supplemented with 

10% FCS (Sigma-Aldrich), 1% L-glutamine, 1% penicillin/streptomycin (Invitrogen), 1% 

Hepes. THP-1 cells (non-adherent monocytic cells) were seeded at 8×104 cells/well in a 96-

well plates and differentiated in macrophage-like adherent cells according to the method 

previously described (Lanone et al. 2009) with 30 ng/mL of phorbol-12-myristate 13-acetate 

(Sigma-Aldrich) in RPMI medium 40 h prior to exposure. For co-culture, differentiated THP-1 

cells were detached with 0.25% trypsin and seeded for 2 h on top of epithelial cells at a ratio 

of 1 macrophage for 2 epithelial cells on the day of exposure. 
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2.2.5. Normal human epidermal keratinocytes (NHEK)  

Neonatal NHEK (pool of three donors) were purchased from Lonza (catalog number: 

192906). NHEK were grown in 75 cm2 flasks (Corning) to 80% confluence in presence of 

keratinocytes SFM medium supplemented with bovine pituitary extract and recombinant 

human epidermal growth factor (Gibco). Importantly, all steps were performed at 4°C when 

splitting NHEK in order to prevent differentiation. 

2.2.6. Reconstituted human epidermis (RHE) 

RHE (EPI/001) differentiated for 14 days and the related culture media were purchased from 

StratiCELL s.a. (Les Isnes, Belgium). RHE were produced from a pool of human 

keratinocytes from different donors seeded on a 0.63 cm² polycarbonate filters and grown at 

the air-liquid interface. RHE were maintained in culture according to the manufacturer’s 

recommendations. 

2.2.7. Primary CD34-derived dendritic cells (CD34-DCs) 

CD34+-progenitor-cell isolation and culture procedures have been described previously 

(Nelissen et al. 2009). Briefly, human cord blood samples were collected from umbilical blood 

vessels of placentas of full-term infants, born at the Heilig Hart hospital in Mol and the St. 

Dimpna hospital in Geel, Belgium. Informed consent was given by the mothers and the study 

was approved by the ethical commission of both hospitals. Mononuclear cells were 

separated from the cord blood by density gradient centrifugation (Ficoll-Paque™ plus, GE 

Healthcare). Subsequently, CD34+ progenitor cells were extracted using positive 

immunomagnetic selection (EasySep® human CD34 positive selection kit, Stemcell 

Technologies, Grenoble, France) according to the manufacturer’s guidelines. The progenitor 

cells were cultured for 12 days in Iscove’s Modified Dulbecco’s Medium (IMDM, Gibco) 

supplemented with 10% fetal bovine serum (PAA laboratories, Pasching, Austria), 2% 

penicillin/streptomycin (Gibco) and 1% bovine serum albumin (Sigma-Aldrich) in the 

presence of TNF-α (250 U/ml, Roche applied science), granulocyte macrophage colony-

stimulating factor (5000 U/ml; Gentaur, Brussels, Belgium), stem cell factor (5 U/ml, 
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Biosource, Nivelles, Belgium) and interleukin 4 (1000 U/ml, Biosource) to induce proliferation 

and differentiation towards immature CD34-DCs. 

All cell lines and complex in vitro models were maintained at 37°C in a 5% CO2 incubator 

with humidified air. 

2.3. Cytotoxicity testing 

The detailed SOPs for MTS, LDH and ATP assays are included in supplemental files.. Cells 

were seeded as described above and treated with NPs in concentrations ranging from 1- 

100 µg/ml, corresponding solvents or control chemicals, or left untreated for a period of 24 h. 

Afterwards the different assays were applied. We have carefully checked for possible 

interferences for each of the assays, instructions are included in the SOPs. 

2.3.1. MTS assay 

For the MTS assay CellTiter 96® AQueous One Solution Reagent from Promega was used. 

After 24 h treatment with NPs, the medium was removed from each well and replaced by 

MTS solution, which has been prepared according to manufacturer instructions. The plate 

was then incubated at 37°C in a cell incubator for another 1 h. The absorbance was read at 

490 nm. This SOP has been tested in an inter-laboratory comparison study (Nelissen et al, 

under review). 

2.3.2. LDH assay 

For the LDH assay, CytoTox-ONETM Homogeneous Membrane Integrity Assay from 

Promega was used. After 24 h treatment, the medium was collected from each well and 

centrifuged at 15,700×g for 30 min to remove potentially interfering NPs and also cell debris. 

Afterwards 100 l cell supernatant was mixed with 100 l CytoTox-ONETM Reagent, 

incubated for 10 min at room temperature. Then, 50 μl stop solution was added and 

fluorescence was recorded within one hour with an excitation wavelength between 530-

570 nm and an emission wavelength between 580-620 nm. 
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2.3.3. ATP assay 

For this purpose, ATPliteTM kit (PerkinElmer) was used according to the manufacturer’s 

instructions. Additionally, total cellular protein content was assessed according to the 

Bradford method (BioRad) (Bradford 1976), and the ATP content normalized to it. 

 

2.4. Data analysis 

Half maximal effective doses (ED50 values) were determined by curve fitting performed in the 

R statistical computing environment (R Development Core Team, 2009) in combination with 

the drc package (Ritz and Streibig, 2005) using the five parametric logistic function. Mean 

ED50 values were calculated from the averages of the logarithm of the ED50 of independent 

biological experiments. Upper and lower bounds correspond to the standard deviation of the 

logarithmic mean. Student’s t-test with a significance cut-off level p of 0.05 was used to 

compare mean values of NP-treated with those of untreated cells. 
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3. Results 

In this study we evaluated the suitability of three different cytotoxicity assays for NP testing. 

We included six different single cell models and four complex cell models (Supplemental 

Table 1).  

3.1. Skin cell models 

For the skin models we used NHEK and RHE and applied three different assays (i.e. MTS, 

LDH and ATP assay). The quaternary ammonium compound and surfactant BC was used at 

0.005 mg/mL (NHEK, MTS and LDH assays; 0.0025°mg/mL ATP assay) or 1 mg/mL (RHE) 

as a positive control and quality control to verify the performance of the assays 

(Supplemental Table 2).  

In NHEK cells, we detected a clear dose dependent effect of PS-NH2 on cell viability using 

the ATP and MTS assays (Figure 1 A and B), with ED50 values of 37 µg/mL and 25 µg/mL, 

respectively (Table 1). For PS-COOH we could not observe any effect for all the tested 

concentrations. Please note, that although the manufacturer of the ATP assay recommended 

the normalization of the results using the sample’s protein content, in our experience 

normalization introduced high variation in the results as seen for NHEK (Supplemental Figure 

1A). Therefore, and because plated cell numbers were tightly controlled in the experiments, 

the ATP assay results are reported without such normalization. However, reduced ATP 

levels and reduced cell numbers cannot be distinguished in our results. The LDH assay 

proved to be less sensitive and a cytotoxic effect was only detected for PS-NH2 at a dose of 

100 µg/mL (Figure 1C). 

In parallel, in vitro RHE were treated with PS-NH2 or BC at the air-liquid interface. As the use 

of RHE was cost intense and all previous tests using PS-COOH on NHEK did not show an 

effect on viability, only PS-NH2 at a dose of 31.25 µg/cm2 (equivalent to 100 µg/mL inducing 

the highest toxic effect on NHEK, Figure 1) was tested. NPs were added topically as a liquid 

dispersion on the cornified layer and incubated for 24 h. Phosphate Buffered Saline (PBS) 

solution was used to evaluate the potential effect of a buffered liquid on RHE viability. No 

toxic effect of PS-NH2 on epidermises was detected using either the MTS or LDH assay 
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(Figure 2), while the positive control BC caused a dramatic loss of epidermis viability 

measured with both assays (Supplemental Table 2). 

 

3.2. Lung cell models  

As a model for lung exposure we used two lung related cells lines (A549 cells or NCI-H411 

cells) in monoculture as well as in co-culture with THP-1-differentiated macrophages. Triton 

X-100 was used as a positive control in the lung cell experiments (Supplemental Table 2). 

The lung cells models alone (i.e. A549 or NCI-H441 cells) reached ED50 values of 117 µg/mL 

and 77 µg/mL in the MTS assay, respectively (Figure 3, Supplemental Figure 2, and Table 

1). In contrast, monocultures of THP-1 cells were observed to be more sensitive with an ED50 

of 54 µg/mL in the MTS assay (Table 1). Co-cultures showed similar effects compared to the 

lung cell models (i.e. A549 and NCI-H441) alone with ED50 values of 112 µg/mL and 

64 µg/mL in the MTS assay, respectively (Table 1). Similar results were derived in the ATP 

and the LDH assays (Figure 3, Supplemental Figure 2, and Table 1). In all assays THP-1 

cells alone were the most sensitive cells. In addition, PS-COOH were tested in the three 

assays and the five airway cell models, and no cytotoxicity was detected (Figure 3, 

Supplemental Figure 2).  

3.3. Intestinal cell models  

The response of Caco-2 cells to NPs was tested using undifferentiated and differentiated 

cells as intestinal model, representing oral intake. BC was used at as positive control (Piret et 

al. 2012) to verify the performance of the assays (Supplemental Table 2). In addition, TEER 

was measured on differentiated Caco-2 cells to evaluate the effect of NPs on the intestinal 

epithelium integrity. 

Undifferentiated Caco-2 cells exhibited a dose dependent loss of viability after PS-NH2 

exposure with an ED50 of 73 µg/mL in the MTS assay and a somewhat higher ED50 of 

103 µg/mL in the ATP assay (Figure 4A and B, Table 1). PS-COOH did not show any 

cytotoxicity in both assays (Figure 4A and B). Using the LDH assay, low levels of 

fluorescence signals and high background were encountered with this cell line. 
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Recommended changes to the protocol to overcome these issues such as reduction of 

serum (that may contain LDH) to reduce high background and the use of pyruvate-free 

medium together with an increase of incubation time and temperature to reduce low overall 

fluorescence signals were unsuccessful. Therefore, no LDH assay results were obtained for 

this cell line.  

The impact of PS-NH2 on viability and integrity of intestinal Caco-2 monolayers obtained after 

differentiation was evaluated by the MTS assay and measurement of the TEER, respectively. 

In order to respect the same NP doses/cm² used with undifferentiated Caco-2 cells during 

viability assays (using 96-well plates), intestinal monolayers (using transwells) were exposed 

to PS-NH2 concentrations between 70 µg/mL (i.e. 100 µg/mL on undifferentiated Caco-2 

cells, corresponding to 31.25 µg/cm² in both the cases) and 0.7 µg/mL (i.e. 1 µg/mL on 

undifferentiated Caco-2 cells, corresponding to 3.125 µg/cm² in both the cases). No effect on 

intestinal epithelium viability and integrity was observed with PS-NH2 independently of the 

concentration (Figure 4B and C, respectively), while BC reduced viability to 20% and caused 

complete breakdown of the electrical resistance (Supplemental Table 2). PS-COOH were not 

tested since no effect was seen on naïve Caco-2 cells (Figure 4A and B).  

3.4. Immune cell models  

In addition to the THP-1 cells discussed earlier (Figure 3, Supplemental Figure 2), CD34-

DCs prepared from different human cord blood donors were investigated as models of the 

immune system. As expected, donor variability had a strong impact on the quality of the 

assay results. However, similar trends to THP-1 cells were observed as PS-NH2 induced 

cytotoxicity at low doses for some donors (Figure 5). Zinc sulphate (144 nM) was used as a 

positive control showing less than 20% cell viability or of ATP content compared to untreated 

controls cells in all donors (Supplemental Table 2). 

The average ED50 for PS-NH2 in the ATP assay was 26 µg/mL (Figure 5A and Table 1), and 

for the MTS assay the ED50 was 82 µg/ml (Figure 5B and Table 1). LDH release was 

observed only at doses of 100 µg/mL (Figure 5C and Table 1), which was not significant. In 

all cases, PS-COOH did not display any cytotoxic effect to the cells (Figure 5). 
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4. Discussion 

We compared three cytotoxicity assays (MTS, ATP, and LDH assays) that cover different 

biological principles (redox metabolism, ATP content, membrane permeability) and different 

read-out principles (absorption, fluorescence and luminescence) on different cell models 

(Supplemental Table 1). The cell models covered the main routes of exposure to NPs 

(cutaneous exposure, ingestion, inhalation, and i.v. injection) and therefore represented the 

most important target organs. PS-NH2 and PS-COOH were used as an example of ideal NPs 

as they were available with a perfect spherical shape with a very narrow size distribution and 

were easy to disperse by vortexing yielding stable dispersions. Moreover, previous studies 

already suggested that PS-NH2 induce cytotoxicity and PS-COOH are of low or no 

cytotoxicity (Anguissola et al. 2014; Bexiga et al. 2011; Ruenraroengsak et al. 2012; Wang et 

al. 2013; Xia et al. 2008). Indeed, in this study all assays showed that PS-COOH had no 

effect on the cell viability within the tested dose range up to 100 µg/mL in none of the cell 

models. In contrast, PS-NH2 induced a dose-dependent cytotoxicity in most cell models 

tested in all assays. We thoroughly tested for possible interference of the NPs in all the test 

assays and we could confirm absence of interferences. Therefore, our data confirm that PS-

COOH and PS-NH2 are very good candidates for negative and positive control 

nanomaterials, respectively, for in vitro cytotoxicity measurements. 

The ATP assay was the most sensitive assay, yielding the lowest ED50 values in most cell 

models. However, ED50 values of the MTS assay were often in the same range as those of 

the ATP assay. This might be related to the fact that ATP results were not normalized by the 

protein content. Importantly, for a conclusion on general cytotoxicity such a conflation is 

unproblematic provided that cells were not significantly proliferating during the treatment 

period. Therefore, the MTS and the ATP assays both appear suitable for cytotoxicity testing 

of NPs as previously described (Piret et al. 2017). While the LDH assay also indicated 

cytotoxicity in most cell models it proved to be the least sensitive assay. Often ED50 values 

were not reached within the tested dose range. These results are in line with the biological 

basis of the methods which suggests ATP levels to be affected earliest, NAD(P)H 
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oxidoreductases somewhat later and loss of membrane integrity as a late effect. However, 

some issues of high background and low overall levels of fluorescence signals in the LDH 

assay were encountered with certain cell models, i.e. Caco-2 cells and CD34-derived 

dendritic cells. These render this assay not recommendable for those cell models. 

The two tissue models involving monocultures of differentiated cells, i.e. reconstituted 

epidermis and differentiated (intestinal) Caco-2 cell monolayer were unaffected by PS-NH2 in 

the tested dose range regardless of the type of viability assay. This was in contrast to the 

results obtained in the respective cell models that were used to grow these more complex 

models, i.e. NHEK and Caco-2 cells. In vitro reconstituted human epidermises exhibit the 

barrier function of cornified cells, emphasizing the excluding/protective role of the upper layer 

of the epidermis in case of acute exposure to PS-NH2 The susceptibility of NHEK cells 

indicated a potential toxic effect in case of a breach of the barrier function. In the case of 

differentiated Caco-2 cells (Jumarie and Malo 1991), the change of cellular features such as 

cell polarity, microvilli formation, tight junctions, domes and increased brush-border 

membrane enzymatic activities, and the secretion and assembly of an extracellular matrix 

because of the long undisturbed culture period might be responsible for protecting them from 

the cytotoxic effect of PS-NH2 that was observed in the undifferentiated counterparts. In 

addition, the integrity of the intestinal epithelia generated by the Caco-2 differentiation was 

not affected by the NPs as confirmed by TEER measurements. All together, these data 

underline the importance of considering more complex cell models in the evaluation of NP 

toxicity as differences were observed depending on the differentiation status and complexity 

of cell models. 

Cells of the immune system are expected to be among the first cells to encounter NPs after 

they breach barriers and become systemically available. Here we tested two types of models 

for immune cells, phorbol ester-primed THP-1 monocytes and CD34-DCs. Both cell types 

showed a higher sensitivity towards PS-NH2 compared to the epithelial cell types. However, 

in a co-culture of THP-1 cells with lung cells the co-cultures exhibited ED50 values more 

comparable to the lung epithelial cells alone, arguing that within the incubation time the effect 
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of the immune cells is rather low (Loret et al. 2016). However, immune cells, especially 

macrophages, can elicit a so-called respiratory burst during which they release reactive 

oxygen species and cytokines into the surrounding tissue (Forman and Torres 2002). The 

respiratory burst has been observed in response to NP treatment (Cruz et al. 1997; Prietl et 

al. 2014). Prolonged exposure and hence release of reactive oxygen species and cytokines 

can lead to inflammation. Upon chronic stimulation this might lead to tissue scarring and 

reduced organ function and possibly tumorigenesis (Babior 2000). This argues, that 

macrophages should always be included when testing NPs because of the necessity to 

record possible respiratory burst reactions at least for lung epithelial models. 

Table 2 summarizes the findings of this study with respect to the different cell models. 

Overall, we achieved to develop robust SOPs for all three assays, i.e. MTS, ATP and LDH 

assays, which have been tested for a variety of important cell models. However, several 

possible improvements of these SOPs can be considered in future. Improvements could 

concern the exposure of the NPs, such as pre-incubation of the NPs with a more realistic 

biofluid prior to cell treatments. For instance, surfactant can be used in the case of lung 

models (McKenzie et al. 2015; Raesch et al. 2015) and for oral uptake the different 

consecutive pH values encountered along the stages of the gastro-intestinal tract can be 

simulated (Peters et al. 2012). Furthermore, skin and lung models may be exposed at the air-

liquid interface (Stoehr et al. 2015) while ingestion models could include a more realistic 

digestion fluid on one side. Finally, cell models are being refined, and new developments 

such as microfluidic systems and organoids promise to allow more realistic models and to 

eliminate the species differences in toxicological data by using human cells (Esch et al. 2014; 

Tralau et al. 2015). 

5. Conclusions 

All assays investigated here should be applicable for all NPs when known issues of 

interference and artefacts have been controlled for (Bonvin et al. 2017; Kroll et al. 2012; 

Monteiro-Riviere et al. 2009; Stone et al. 2009; Tournebize et al. 2013). In summary, the 

MTS assay was applicable for all tested cell models, including primary cells and more 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

- 19 - 

complex models and therefore represents the most robust and reproducible assay out of the 

three tested assays. Thus, our data confirm previous findings that the MTS assay should be 

integrated in an in vitro NP test strategy (Piret et al. 2017). However, other assays can be 

useful as well, depending on the NP type and the cell model. The ATP assay proved to be 

more sensitive in several cell models investigated here and thus could be useful in a test 

strategy too, provided that the issues with normalization can be overcome. Our data also 

show that combining different assays, which represent different biological read-out gives a 

more complete picture especially on the chronological sequence of different events and 

allows already first conclusions on possible underlying mechanisms of cytotoxicity.  

Furthermore, our data suggest that PS-COOH and PS-NH2 may be used as negative and 

positive control NPs, respectively, for NP cytotoxicity testing. 
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9. List of abbreviations 

BC:  benzalkonium chloride 

CD34-DCs: CD34-derived dendritic cells 

FCS:  fetal calf serum 

HTS:  high-throughput screening 

HCS:  high-content screening 

ISO:  International Organization for Standardization 

LDH:  lactate dehydrogenase 

MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium 

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NP: nanoparticle 

NHEK: normal human epidermal keratinocytes 

PS-COOH 40 nm carboxyl-modified polystyrene nanoparticles 

PS-NH2 50 nm amine-modified polystyrene nanoparticles 

RHE reconstituted human epidermis 

SOP standard operation procedure 

TEER transepithelial electrical resistance 
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11. Tables 

Table 1: Cytotoxicity of PS-NH2 in different cell models. Average ED50 values and lower and 

upper bounds in µg/mL.  

 ATP MTS LDH 

 avg lower upper avg lower upper avg lower upper 

NHEK 37 27 52 25 23 28    

A549 40 22 71 117 92 149 155 143 167 

A549 + 
THP-1 

47 24 90 112 95 133 191 165 220 

NCI-H411 65 58 71 77 73 81 104 96 113 

NCI-H411 + 
THP-1 

52 46 59 64 58 71 120 94 153 

Caco-2 103 101 106 73 62 85    

CD34-DCs 26 13 53 82 38 174    

THP-1 23 12 42 54 43 68 96 41 218 

 

 

Table 2: Cytotoxicity of PS-COOH and PS-NH2 in the different cell models. Negative: no 

cytotoxicity observed up to 100 µg/mL; positive: average ED50 determined (see Table 1), 

n.d.: not determined.  

 PS-COOH PS-NH2 

 ATP MTS LDH ATP MTS LDH 

NHEK negative negative negative positive positive positive 

RHE n.d. n.d. n.d. n.d. negative negative 

A549 negative negative negative positive positive positive 

A549 + THP-1 negative negative negative positive positive positive 

NCI-H411 negative negative negative positive positive positive 

NCI-H411 + THP-1 negative negative negative positive positive positive 

Caco-2 negative negative n.d. positive positive n.d. 

Differentiated Caco-2 n.d. n.d. n.d. n.d. negative n.d. 

CD34-DCs negative negative negative positive positive n.d. 

THP-1 negative negative negative positive positive positive 
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12. Figure legends 

Figure 1 

Cytotoxicity of surface-modified polystyrene nanoparticles in normal human epidermal 

keratinocytes.  

Cells were exposed to increasing concentrations (0, 1, 10, 25, 50 and 100 µg/ml) of PS-

COOH (filled symbols) or PS-NH2 (open symbols) for 24 h. Effects on cells were assessed 

using the (A) ATP assay, (B) MTS assay, and (C) LDH release assay. Results were 

expressed as percentages (ATP –A- and MTS –B- assays) or as fold induction levels of 

control cells (LDH assay). For the ATP assay and the LDH release assay, 2 independent 

experiments were performed each (diamonds and triangles, respectively); individual data 

points are shown. The MTS assay was performed in 3 independent experiments; mean 

values with standard deviation are shown (circles). Curves are regressions over mean 

values. 

 

Figure 2 

Cytotoxicity of amine-modified polystyrene nanoparticles in reconstituted human epidermis 

(RHE).  

RHE were incubated for 24h with an equivalent volume of vehicle (phosphate buffered 

saline, PBS), 1 mg/ml benzalkonium chloride (BC, positive control), or 31.25 µg/cm2 PS-NH2 

for 24 h. Effects on cells were assessed using the (A) MTS assay, and (B) LDH release 

assay. Results expressed as percentages (MTS assay) of untreated control RHE or as fold 

induction levels of control RHE (LDH assay). For the MTS assay and the LDH release assay 

one experiment was performed each, error bars represent the standard deviation of technical 

replicates. 

 

Figure 3 

Cytotoxicity of surface-modified polystyrene nanoparticles in A549 cells, THP-1 cells and 

A549/THP-1 co-cultures.  
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Cells were exposed to increasing concentrations (0, 1, 10, 25, 50 and 100 µg/ml) of PS-

COOH (filled symbols) or PS-NH2 (open symbols) for 24 h. Effects on cells were assessed 

using the (A) ATP assay, (B) MTS assay, and (C) LDH release assay. Results of the ATP 

and MTS assays expressed as percentages of untreated control; LDH release was 

normalized to maximum activity after Triton X-100 treatment and expressed as percentages 

of untreated control. Mean values of 3 independent experiments each with standard 

deviation are shown. Curves are regressions over mean values. 

 

Figure 4 

Cytotoxicity of surface-modified polystyrene nanoparticles in Caco-2 cells and differentiated 

Caco-2 cells.  

Cells were exposed to increasing concentrations (0, 1, 10, 25, 50 and 100 µg/ml) of PS-

COOH (filled symbols) or PS-NH2 (open symbols) for 24 h. Effects on cells were assessed 

using the (A) ATP assay, (B) MTS assay, and (C) TEER assay. Results were expressed as 

percentages of untreated control. For the naïve Caco-2 cells (diamonds) 3 independent 

experiments were performed each; mean values with standard deviation are shown. For the 

MTS assay and TEER measurement on differentiated Caco-2 cells (triangles) one 

experiment of each is shown. Curves are regressions over mean values. 

 

Figure 5 

Cytotoxicity of surface-modified polystyrene nanoparticles in CD34-derived dendritic cells 

(CD34-DCs).  

Cells were exposed to increasing concentrations (0, 1, 10, 25, 50 and 100 µg/ml) of PS-

COOH (filled symbols) or PS-NH2 (open symbols) for 24 h. Effects on cells were assessed 

using the (A) ATP assay, (B) MTS assay, and (C) LDH release assay. Results were 

expressed as percentages (ATP –A- and MTS –B- assays) of non-treated cells or as fold 

induction levels of control cells (LDH assay). Mean values of 3 independent experiments 

each with standard deviation are shown. Curves are regressions over mean values. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

- 33 - 

 

Graphical abstract 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

- 34 - 

A guide to nanosafety testing: considerations on cytotoxicity testing in 

different cell models 

Christian Riebeling1*
, Jean-Pascal Piret2

*
, Bénédicte Trouiller3*

, Inge Nelissen4*
, Christelle 

Saout2, Olivier Toussaint2†, Andrea Haase1# 

 

1) German Federal Institute for Risk Assessment (BfR), Department of Chemical and 

Product Safety, Berlin, Germany 

2) University of Namur, Namur Research Institute for Life Sciences (NARILIS), Namur 

Nanosafety Center (NNC), Research Unit in Cellular Biology (URBC), Namur, Belgium  

3) Institut National de l’Environnement Industriel et de Risques (INERIS), Experimental 

Toxicology Unit, Verneuil-en-Halatte, France 

4) Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, 

Mol, Belgium 

 

* authors contributed equally 

 

#Correspondence should be addressed to:  

Dr. Andrea Haase 

German Federal Institute for Risk Assessment (BfR) 

Department of Chemical and Product Safety 

Max-Dohrn-Strasse 8-10 

10589 Berlin 

Germany  

phone:  +49 30 18412 3423 

fax:  +49 30 18412 6 3423 

e-mail:  andrea.haase@bfr.bund.de  

 

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

- 35 - 

 

Highlights 

 

1) Comparison of three cytotoxicity assays covering different biological principles  

2) Comparison of ten cell models, i.e. cell lines, primary and complex cell models  

3) Cell models are representative of the main routes of exposure to NPs  

4) MTS assay was applicable to all, and was the most robust and reproducible assay  

5) PS-COOH and PS-NH2 are useful negative and positive controls for cytotoxicity 

testing  
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