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Abstract. Through the comparison of several regional-scale
chemistry transport modeling systems that simulate meteo-
rology and air quality over the European and North Ameri-
can continents, this study aims at (i) apportioning error to the
responsible processes using timescale analysis, (ii) helping
to detect causes of model error, and (iii) identifying the pro-
cesses and temporal scales most urgently requiring dedicated
investigations.

The analysis is conducted within the framework of the
third phase of the Air Quality Model Evaluation International
Initiative (AQMEII) and tackles model performance gauging
through measurement-to-model comparison, error decompo-
sition, and time series analysis of the models biases for sev-
eral fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind
speed, and temperature). The operational metrics (magnitude
of the error, sign of the bias, associativity) provide an overall
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sense of model strengths and deficiencies, while apportion-
ing the error to its constituent parts (bias, variance, and co-
variance) can help assess the nature and quality of the error.
Each of the error components is analyzed independently and
apportioned to specific processes based on the correspond-
ing timescale (long scale, synoptic, diurnal, and intraday) us-
ing the error apportionment technique devised in the former
phases of AQMEII.

The application of the error apportionment method to the
AQMEII Phase 3 simulations provides several key insights.
In addition to reaffirming the strong impact of model in-
puts (emission and boundary conditions) and poor represen-
tation of the stable boundary layer on model bias, results also
highlighted the high interdependencies among meteorolog-
ical and chemical variables, as well as among their errors.
This indicates that the evaluation of air quality model per-
formance for individual pollutants needs to be supported by
complementary analysis of meteorological fields and chemi-
cal precursors to provide results that are more insightful from
a model development perspective. This will require evalua-
tion methods that are able to frame the impact on error of
processes, conditions, and fluxes at the surface. For exam-
ple, error due to emission and boundary conditions is domi-
nant for primary species (CO, particulate matter (PM)), while
errors due to meteorology and chemistry are most relevant
to secondary species, such as ozone. Some further aspects
emerged whose interpretation requires additional consider-
ation, such as the uniformity of the synoptic error being
region- and model-independent, observed for several pollu-
tants; the source of unexplained variance for the diurnal com-
ponent; and the type of error caused by deposition and at
which scale.

1 Introduction

The Air Quality Model Evaluation International Initiative
(AQMEII; Rao et al., 2011) has been active since 2008 with
the aim of promoting research on regional air quality model
evaluation across the modeling communities of Europe and
North America. It is coordinated by the European Joint Re-
search Centre (JRC) and the US Environmental Protection
Agency (EPA) and it has now reached its third phase, re-
ferred to as AQMEII3 hereafter. The experience gathered in
the first two phases consisted of important advancement in
the model evaluation research as well as establishing a large
community of participating regional modeling groups. This
has made AQMEII a natural candidate for collaborating with
the Hemispheric Transport of Air Pollutants (HTAP) initia-
tive. HTAP, a task force of the Long Range Transport of
Air Pollutants (LTRAP) program acting within the United
Nations Economic Commission for Europe (UNECE) pro-
gram, relies on a community of global-scale chemical trans-
port models to investigate the fate of air pollutants emitted in

the Northern Hemisphere and to determine the contribution
of remote sources as well as their impacts on background
concentration in different parts of the globe. HTAP is in its
second phase and the activities undertaken during this second
phase include coordinating simulations by both global- and
regional-scale models. The regions of interest in the North-
ern Hemisphere are North America, Europe, and Southeast
Asia. The regional-scale modeling component of this activ-
ity for Europe and North America is being coordinated by
AQMEII, while the Asian component is being coordinated by
MICs-ASIA (Model Intercomparison Study Asia). Global-
scale models participating in HTAP are used by the AQMEII
regional models as boundary conditions, and special atten-
tion has been given to the emission inventory to ensure that
it is consistent between the global- and regional-scale simu-
lations as described in Janssens-Maenhout et al. (2015). The
activity described here relates to the evaluation of the base
case scenario set up within the context of HTAP and AQMEII
(Galmarini et al., 2017).

Following the simulation strategy developed over the first
two phases of the AQMEII activity, two continental-scale do-
mains were used in the exercise – one over Europe (EU) and
one over North America (NA; Fig. 1). The modeling groups
participating in AQMEII3 performed air quality (AQ) simu-
lations over one or both of these domains. Each group was
provided the same inputs for anthropogenic emissions and
boundary conditions and was left the choice of the optimal
configuration of the modeling systems, including meteorol-
ogy, grid spacing, and natural emissions. To facilitate the
cross comparison among models, the modeled outputs were
successively interpolated to a common regular grid of 0.25◦

spacing over both continents. The comparison with observa-
tional data is performed by interpolating (or by simply tak-
ing the value from the grid cell where the monitoring sites
are situated) the model values to prescribed observation sta-
tions (receptors) for surface measurements and at specified
vertical heights for comparisons with measured profiles. As
in the previous two phases of AQMEII, the ENSEMBLE sys-
tem (Galmarini et al., 2012) hosted by the JRC was used to
accommodate the data and to pair modeled to observational
values in time and space to provide direct comparison and
statistical analysis.

The model evaluation approach proposed and applied in
this study combines aspects of operational and diagnostic
evaluation as defined by Dennis et al. (2010). It makes use
of the classical statistical indicators typically employed for
operational evaluation based on the direct comparison with
observations, but it also provides more indications on the
processes contributing to model errors, which are the fo-
cus of diagnostic model evaluation (Solazzo and Galmarini,
2016). The data used in the analysis are not process spe-
cific but are ordinary time series of modeled and monitoring
data, which are decomposed into four spectral components:
ID (intraday), DU (diurnal), SY (synoptic), and LT (long-
term), each determined by different physical and chemical
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Figure 1. Subregions of the two continental domains (a) EU and (b) NA. Overlaid are the ozone monitoring stations classified based on the
network.

processes (Rao et al., 1997). The error apportionment applied
to each spectral component can provide indications on the
possible sources of error. The scope of the diagnostic evalu-
ation, as also highlighted by Gupta et al. (2009), is to move
beyond the usual aggregate metrics that only offer a statis-
tical interpretation towards the use of measures selected for
the quality of the information they can provide to model de-
velopers and users.

The evaluation of the AQMEII3 suite of model runs is car-
ried out for surface temperature (Temp), wind speed (WS)
and wind direction (WD), and for the species CO, NO, NO2,
ozone, SO2, PM10 (EU), and PM2.5 (NA). Additional analy-
ses making use of emission reduction scenarios (CO and NO)
and vertical profiles (Temp, WS, ozone) are also presented.

The main scope of the analysis is to present a detailed
overview of the skill of AQ models when compared with

www.atmos-chem-phys.net/17/3001/2017/ Atmos. Chem. Phys., 17, 3001–3054, 2017
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measurements for several regulatory pollutants and their pre-
cursors. For each species, the error is

1. quantified seasonally for three subregions of each con-
tinent;

2. qualified in terms of bias, variance, or covariance type
of error, and

3. apportioned to the atmospheric timescale, i.e., ID, DU,
SY, or LT.

Given the large number of models and species for two conti-
nents and the screening scopes of this work, maps of model
metrics at the individual receptor level are omitted. Instead,
spatial averaging over preselected homogenous sets of mea-
surement points is presented. Investigation of signal associa-
tivity through clustering analysis was performed for ozone
and particulate matter (PM) (PM10 for EU and PM2.5 for
NA) over both continents following the procedure outlined
by Solazzo and Galmarini (2015), allowing the detection of
three subregions (hereafter referred to as EU1, EU2, EU3 and
NA1, NA2, NA3; Fig. 1) where the LT and SY components
showed robust clustering features. For consistency and to fa-
cilitate the interpretation of the results, the same subregions
were adopted for all species.

The error breakdown, the time series decomposition, and
the model and observational data used are presented in
Sect. 2. In Sect. 3, the results of the error apportionment anal-
ysis are presented and discussed. A novel analysis based on
the autocorrelation function (acf) of the LT component is pre-
sented in Sect. 4 for ozone. Conclusions are drawn in Sect. 5.

2 Methodology

The first step of the analysis is the spectral decomposi-
tion of the time series of modeled and observed species, as
outlined in the methodology proposed in Solazzo and Gal-
marini (2016). Because each spectral component represents
a range of processes in a specific spectral range, the devia-
tion of the modeled from the observed spectral component is
informative about the process(es) causing the error. The sec-
ond step is to separate the mean square error (MSE) of each
spectral component into its constituent parts: bias, variance,
and covariance. These timescale-specific errors, expressed in
terms of bias, variance, and covariance, then allow a more
precise diagnosis of their cause.

2.1 Error break down

The MSE is the squared difference of the modeled and ob-
served values:

MSE= E(mod-obs)2 =
∑nt
i=1(modi − obsi)2

nt
, (1)

where E(·) denotes expectation and nt is the length of the
time series. The bias is

bias= E(mod-obs) , (2)

i.e., bias=mod− obs (the overbar indicates temporal aver-
aging). The following relationship holds:

MSE= var(mod-obs)+ bias2, (3)

where var(·) is the variance operator. By applying the known
property of the variance for correlated fields,

var(mod-obs)= var(mod)+ var(obs)− 2cov(mod,obs), (4)

the MSE can be expressed as

MSE= bias2
+ var(mod)+ var(obs)− 2cov(mod,obs), (5)

where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modeled and observed time series. Following Solazzo and
Galmarini (2016), the MSE Eq. (5) is rewritten as

MSE=
(
mod− obs

)2
+ (σmod− rσobs)

2
+mMSE, (6)

where

mMSE= σ 2
obs(1− r

2) (7)

is the minimum error achievable by an accurate (unbiased,
mod= obs) and precise (σmod = σobs)modeling system (r is
the linear correlation coefficient). The first term on the right-
hand side of Eq. (6) is the mean unconditional bias (how
much the time-averaged modeled concentration is shifted
with respect to the averaged observation); the second term
includes variance and covariance types of error (due to differ-
ences in the amplitude and timing between the modeled and
observed signals), and the MSE is the “unexplained” portion
of the error, reflecting the amount of observed variance not
accounted for by a linear model (Murphy, 1995). The mMSE
type of error is caused by the variability of the observation
not reproduced by the models, which includes incommensu-
rability, noise, timing of the signal, and linearization of non-
linear processes, summarized by the coefficient of determi-
nation (Solazzo and Galmarini, 2016).

The decomposition in Eq. (6) includes all the operational
metrics commonly adopted to evaluate the AQ models (bias,
variance, correlation coefficient, and their sum, the MSE),
and is thus suitable to be used as a compact estimator of
model performance.

Atmos. Chem. Phys., 17, 3001–3054, 2017 www.atmos-chem-phys.net/17/3001/2017/
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2.2 Spectral decomposition and error attribution

Spectral filtering was applied to the measured and modeled
hourly averaged time series at the monitoring sites using
the Kolmogorov–Zurbenko (kz) low-pass filter (Zurbenko,
1986). This allows the separation of different phenomena
with distinct signals, such as long-term and short-term fluc-
tuations in the observed and modeled time series (Rao et al.,
1997). Applications of the kz filter to ozone have been de-
scribed in a number of previous studies (Rao et al., 1997;
Wise and Comrie, 2005; Hogrefe et al., 2000, 2003, 2014;
Galmarini et al., 2013; Kang et al., 2013; Solazzo and Gal-
marini, 2015, 2016; Kioutsioukis et al., 2016).

The kz filter depends on the length of the moving aver-
age window m and the number of iterations k (kzm,k) (k also
indicates the level of noise suppression). Since the kz is a
low-pass filter, the filtered time series consists of the low-
frequency component, while the difference between two fil-
tered time series (with different k and m) provides a band-
pass filter. This latter property has been used in this study,
as well as in a number of previous studies, to decompose the
modeled and observed time series as

FT(S)= LT(S)+SY(S)+DU(S)+ ID(S), (8)

where S is the time series of the species being analyzed and
FT is the full (undecomposed) time series. Another possibil-
ity, not explored here, is to avoid the use of the band-pass
property and use the kz filter to filter out the unwanted fluc-
tuations directly from the FT time series.

The base-line component LT is the long-term component
(periods longer than 21 days) and accounts for the temporal
fluctuations determined by low frequencies, such as bound-
ary conditions and seasonal variation in emissions and photo-
chemistry. SY is the synoptic component containing fluctu-
ations related to weather processes and precursor emissions
occurring on scales between 2.5 and 21 days. The DU (di-
urnal) component accounts for fluctuations due to diurnal
periodicity occurring on temporal scales between 0.5 and
2.5 days, and ID is the intraday component, accounting for
fast-acting local-level processes (timescale less than 12 h; the
spectral components have the same units as the undecom-
posed time series).

The decomposition Eq. (8) is such that the undecomposed
time series is perfectly returned by the summation (or by the
exponential product, see Appendix A for details) of the com-
ponents. The band-pass nature of the SY, DU, and ID com-
ponents is such that they only describe the processes in the
time window the filter allows the signal to “pass”. For in-
stance, the DU component is insensitive to processes outside
the range between 0.5 and 2.5 days.

Because the kz filter was originally developed to deal with
ozone, the parameters k andm (Appendix A) are specifically
tailored for ozone, taking into consideration its chemistry and
life-time. In this study we have applied the kz filter to other

species and kept the same values for k and m for consistency
and to facilitate the comparison of the results. Although some
species (e.g., PM, CO, SO2) may be less sensitive to day–
night cycles than ozone, the distinction between DU and ID
are still revealing of emission patterns like vehicular traffic
and industrial activities, as well as diurnal variations in verti-
cal mixing. Moreover, SY and LT are associated with trans-
port and other weather processes common to all species.

Two aspects of the signal filtering with a profound impact
on model evaluation are as follows:

1. The nonorthogonality of the spectral components is
one of the major drawbacks of the signal decomposi-
tion. The relationship among the spectral components
of Eq. (8) is nonlinear in m and k, and thus an or-
thogonal separation is not achievable (Rao et al., 1997;
Kang et al., 2013). The leakage among components
mixes together in different physical processes. Gal-
marini et al. (2013) found that the explained variance
of the spectral components accounts for 75 to 80 % of
the total variance, while the remaining portion of the
variance is due to the interactions between the esti-
mated components. The effect of these interactions on
the error apportionment pursued in this study is out-
lined and quantified in Sect. 3. Other spectral techniques
could be used, but either they do not guarantee the
absence of signal leakage (e.g., anomaly perturbation
method), require special treatment of missing data (e.g.,
wavelet transform method; Rao et al., 1997; Eskridge et
al., 1997), are more convoluted (e.g., kz–Fourier trans-
form), or simply have not been applied as frequently
as the kz filter to air quality data (e.g., Bowdalo et
al., 2016). Hogrefe et al. (2003) provided an exhaus-
tive comparison among four techniques for separating
different timescales in atmospheric variables (kz, kz–
Fourier transform, wavelet transform, and elliptic filter)
and concluded that they all gave qualitatively similar re-
sults in terms of the variance distribution among com-
ponents and that no single filter outperformed the others
for all applications.

2. The bias is calculated as the distance between the time-
average modeled and observed time series. In such a
time average sense, the baseline LT is the only biased
component, containing the entire bias of the original
time series. The other components are zero-mean fluctu-
ations about LT and are unbiased. Although inaccuracy
at each time step can also derive from the SY, DU, and
ID components (Johnson, 2008), in this study the signal
is taken as time-averaged over a finite period, and there-
fore the entire bias is apportioned to the baseline (LT)
component.

www.atmos-chem-phys.net/17/3001/2017/ Atmos. Chem. Phys., 17, 3001–3054, 2017
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Table 1. Participating Modelling systems and key features.

Operated by Modeling
system

Emission Horizontal grid Vertical grid Deposition scheme Global meteo-
rological data
provider

NOx emis-
sion share of
NO and NO2

Gaseous chem-
istry module

EUROPEAN DOMAIN

Finnish Meteoro-
logical Institute

ECMWF-
SILAM_H,
SILAM_M

EDGAR-
HTAP;
TNO-
MACC

0.25× 0.25◦

Lat×Long
12 uneven layers up
to 13 km. First layer
∼ 30 m

Dry: Kouznetsov and Sofiev (2012)
Wet: Kouznetsov and Sofiev (2014)

ECMWF (nudging
within the PBL)

90/10 CBM-IV

Netherlands Orga-
nization for
Applied Scientific
Research

ECMWF-
LOTOS-
EUROS

TNO-
MACC

0.5× 0.25◦

Lat×Long
Surface layer (∼ 25 m
depth), mixing layer,
two reservoir layers
up to 3.5 km.

Wet: below-cloud scavenging
Dry: Zhang et al. (2001) for particles, De-
pac (Van Zanten et al., 2010) for gases

Direct inter
polation from
ECMWF

97/3 CBM-IV

INERIS/CIEMAT ECMWF-
CHIMERE_H
CHIMERE_M

EDGAR-
HTAP;
TNO-
MACC

0.25× 0.25◦

Lat×Long
9 layers up to 500 hPa.
First layer ∼ 20 m

Wet: in-cloud and sub-cloud scavenging
for gases and aerosols (Menut et al.,
2013)
Dry: resistance approach as Ember-
son (2000a, b)

Direct inter
polation from
ECMWF

95 % NO
4.5 % NO2
0.5 % HONO

MELCHIOR2

University of
L’Aquila

WRF–WRF-
Chem1

TNO-
MACC

270× 225 cells,
23 km

33 levels up to 50 hPa.
12 layers below 1 km.
First layer ∼ 12 m

Dry: Wesely (1989)
Wet: Grell and Freitas (2014)

ECMWF (nudging
above the PBL)

95/5 RACM-ESRL

University of
Murcia

WRF–WRF-
Chem2

TNO-
MACC

270× 225 cells
23 km× 23 km

33 levels, from
∼ 24 m to 50 hPa

Dry: Wesely resistance approach,
(Wesely, 1989)
Wet: grid-scale wet deposition (Easter et
al., 2004) and convective wet deposition

ECMWF (nudging
above the PBL)

90/10 RADM2

Ricerca Sistema
Energetico

WRF-CAMx TNO-
MACC

265× 220 cells,
23 km× 23 km

14 layers up to 8 km.
First layer ∼ 25 m.

Dry: resistance model for gases (Zhang
et al., 2003) and aerosols (Zhang et al.,
2001)
Wet: scavenging model for gases and
aerosols (Seinfeld and Pandis, 1998)

ECMWF (nudging
within the PBL)

95/5 CB05

University of
Aarhus

WRF-DEHM EDGAR-
HTAP

16.7 km× 16.7 km 29 layers up to
100 hPa

Wet and dry as in
Simpson et al. (2003)

ECMWF (no
nudging within the
PBL)

90/10 Brandt et
al. (2012)

Istanbul Technical
University

WRF-CMAQ1 TNO-
MACC

184× 156 cells,
30 km× 30 km

24 layers up to 10 hPa Wet and dry as in Foley et al. (2010) NCEP (nudging
within PBL)

95/5 CB05

Kings College WRF-CMAQ4 TNO-
MACC

15 km× 15 km 23 layers up to
100 hPa, 7 layer be-
low 1 km. First layer
∼ 14 m

Wet: taken from the RADM
(Chang et al., 1987)
Dry: electrical resistance analog model

NCEP (nudging
within the PBL)

90/10 CB05

Ricardo E&E WRF-CMAQ2 TNO-
MACC

30 km× 30 km 23 layers up to
100 hPa, 7 layers
below 1 km. First
layer ∼ 15 m

Wet: Byun and Schere (2006)
Dry: Pleim and Ran (2011)

NCEP (nudging
above the PBL)

Road trans-
port: 86/14;
non-road:
95/5

CB05-TUCL

Helmholtz-
Zentrum
Geesthacht

CCLM-CMAQ EDGAR-
HTAP

24 km× 24 km 30 vertical layers from
∼ 40 m to 50 hPa

Wet: Byun and Schere (2006)
Dry: Pleim and Ran (2011)

NCEP (spectral
nudging above free
troposphere)

90/10 CB05-TUCL

University of Hert-
fordshire

WRF-CMAQ3 TNO-
MACC

18 km× 18 km 35 vertical layers from
∼ 20 m to ∼ 16 km

Dry: resistance analog model (Wesely,
1989).
Wet: asymmetric convective model algo-
rithm in CMAQ cloud module

ECMWF (nudging
above PBL)

90/10 CB05-TUCL

NORTH AMERICAN DOMAIN

Helmholtz-
Zentrum
Geesthacht

CCLM-CMAQ SMOKE 24 km× 24 km 30 vertical layers from
∼ 40 m to 50 hPa.

Wet: Byun and Schere (2006)
Dry: Pleim and Ran (2011)

NCEP (spectral
nudging above free
troposphere)

90/10 CB05-TUCL

US Environmental
Protection Agency

WRF-CMAQ SMOKE 459× 299 cells
12 km× 12 km

35 layers up to
50 hPa. First layer
∼ 19 m

Wet: Byun and Schere (2006)
Dry: Pleim and Ran (2011)

NCEP (nudging
above the PBL)

90/10
Calculated by
MOVES for
transport

CB05-TUCL

RAMBOLL
Environ

WRF-CAMx SMOKE 459× 299 cells,
12 km× 12 km

26 layers up to
97.5 hPa

Dry: resistance model for gases
(Zhang et al., 2003)
Wet: scavenging model for gases and
aerosols (Seinfeld and Pandis, 1998)

NCEP (nudging
above the PBL)

90/10 CB05

University of
Aarhus

WRF-DEHM EDGAR-
HTAP

16.7 km× 16.7 km 29 layers up to
100 hPa

Wet and dry as in
Simpson et al. (2003)

ECMWF (no
nudging within
the PBL)

90/10 Brandt et
al. (2012)

Atmos. Chem. Phys., 17, 3001–3054, 2017 www.atmos-chem-phys.net/17/3001/2017/
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2.3 Models and observational data

Table 1 summarizes the modeling systems participating in
AQMEII3. Four modeling groups produced outputs over NA
and 12 modeling groups produced outputs over EU (although
not all fields were made available by all groups). Sensitiv-
ity simulations performed by two groups, in which alternate
emission inventories were used, raise the number of EU con-
tributions to 14.

The “standard” emission inventories are those developed
for the second phase of AQMEII for EU and NA and ex-
tensively described in Pouliot et al. (2015). For EU, the
TNO-MACC-II (Netherlands Organization for Applied Sci-
entific Research, Monitoring Atmospheric Composition and
Climate) inventory of anthropogenic emissions for the year
2009 was used, while biogenic emissions (meteorology-
dependent) were specifically calculated for the year of 2010
by several groups. Five modeling systems used the EDGAR-
HTAPv2.2 emission inventory (Janssens-Maenhout et al.,
2015), which complements the standard MACC inventory in
regions outside EU (Table 1). The two inventories (MACC
and HTAP) are approximately the same over the common
part of EU (the standard MACC inventory does not cover
North Africa, while it does cover eastern Europe, including
Russia and Turkey) and only differ for regions outside Eu-
ropean borders but within the domain boundaries, such as
North Africa. Some discrepancies might exist among the two
inventories (e.g., in the emissions from ships). Two EU mod-
eling systems (CHIMERE and SILAM) made results avail-
able with both the MACC and the HTAP inventories. For
CHIMERE, the MACC inventory over France and the UK
was spatially redistributed considering national inventories
(with higher spatial resolution), while for the other countries
it was redistributed by considering point source locations,
land use, and population. For processing the HTAP inven-
tory, population was not used as a parameter for spatially
distributing the emissions.

For the NA domain, the 2008 National Emission Inventory
was used as the basis for the 2010 emissions, providing the
inputs and datasets for processing with the Sparse Matrix Op-
erator Kernel Emissions (SMOKE) processing system (Ma-
son et al., 2012). Specific updates for the year of 2010 were
made for several sectors, including mobile sources, power
plants, wildfires, and biogenic emissions. Details are given
in Im et al. (2015a, b) and Pouliot et al. (2015).

Typically, emission processors use annual emission total,
while AQ models require hourly input values. Therefore,
proxy variables and surrogate fields are used to spatially dis-
aggregate the annual total and to allocate them temporally.
The overall model accuracy heavily depends on the degree
of similarity between the disaggregation of total emission
and the true spatial and temporal distribution (Makar et al.,
2014). Furthermore, the emissions for EU, being compiled
on a country-wise basis, are affected by gaps and inconsis-

tency across borders, which require further processing and
manipulation (Pouliot et al., 2015).

Emissions from lightning and volcanic sources are not
contained in the EU and NA emission inventories since not
all participating models include robust methods for estimat-
ing these emissions.

Chemical boundary conditions were provided by the Com-
position – Integrated Forecast System (C-IFS) model (Flem-
ming et al., 2015), including ozone, NOx , CO, CH4, SO2,
NMVOCs, dust, organic matter, black carbon, and sulfate.
Sea salt at the boundaries, although provided, was not used
due to unrealistically high values.

2.3.1 Model features

This section presents the main features of the modeling sys-
tems participating in AQMEII3. Complementary information
is provided in Table 1.

Three models (CHIMERE, SILAM, LOTOS-EUROS)
used the meteorological inputs extracted by the ECMWF
(European Centre for Medium-Range Weather Forecasts)
operational archive, the Cosmo-CLM (CCLM from now
on) model drove the Community Multi-scale Air Quality
(CMAQ) simulations provided by the HZG (Helmholtz-
Zentrum Geesthacht) institute, and all remaining models
were driven by the meteorological fields generated by the
WRF (Weather Research and Forecasting; Grell et al., 2005)
model.

Bearing in mind that small changes in model configura-
tion can produce significantly different outcomes (e.g., Her-
wehe et al., 2011), Table 2 summarizes the configuration
of the WRF runs, detailing difference and commonalities.
Without going into the detail on each parameterization, the
differences among the planetary boundary layer (PBL) for-
mulations (detailed review provided by Cohen et al., 2015)
have a profound impact on the discussion of the error, es-
pecially (but not exclusively) on the diurnal scale. One of
the main differences is the local vs. nonlocal closure of the
PBL equations, indicating the depth over which the PBL
variables influence the prediction at a given point. Nonlocal
schemes offer more advantages than local ones, as the latter
may not fully account for deeper vertical mixing associated
with larger eddies, while nonlocal schemes are overall more
accurate in simulating deeper vertical mixing in buoyancy-
driven PBLs (Cohen et al., 2015). With reference to Table 2,
the MYNN and MYJ (Janjic, 1994) are local schemes, the
YSU (Hong et al., 2006) is a nonlocal scheme, and the ACM2
(Pleim, 2007) can be regarded as a hybrid scheme in that it
incorporates local and nonlocal closures for potential temper-
ature and velocity, resulting in more accurate vertical mixing.

The land surface processes are used to calculate the surface
heat and moisture fluxes and strongly affect the prediction
of temperature and humidity. RUC and NOAH land surface
models have shown to behave similarly over the US (Jin at
al., 2010), while Mooney et al. (2013) found that the NOAH
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Table 2. Configuration of the WRF model by modeling group.

Operated by Input data Number of First layer PBL Surface Land surface Cloud Cumulus SW/LW Data assimilation
vertical levels height model layer microphysics convection radiation

University of L’Aquila ECMWF 33 10 m MYNN MM5 NOAH Morrison Grell-Freitas RRTMG Grid analysis
Similarity nudging above PBL

University of Murcia ECMWF 33 21 m YSU Eta NOAH Lin Kain-Fritsch 2 RRTMG Grid analysis nudging
Similarity above PBL

Ricerca Sistema ECMWF 33 25 m YSU Eta NOAH Morrison Grell-Freitas RRTMG Grid analysis
Energetico Similarity nudging also within the PBL
University of Aarhus ECMWF 29 20 m MYJ Eta NOAH WSM5 Kain-Fritsch2 CAM Grid analysis

Similarity nudging above PBL
Istanbul Technical NCEP FNL 30 10 m YSU Eta NOAH WSM3 Kain-Fritsch2 Dudhia/RRTM Grid analysis nudging
University Similarity also within the PBL
Kings College NCEP GFS 23 14 m ACM2 Pleim-Xiu RUC WSM6 Kain-Fritsch 2 Dudhia/RRTM Grid analysis nudging

also within the PBL
Ricardo E&E NCEP GFS 23 15 m ACM2 Pleim-Xiu RUC WSM6 Kain-Fritsch 2 Dudhia/RRTM Grid analysis

nudging above PBL
University of ECMWF 36 25 m ACM2 Pleim-Xiu five-layer thermal Morrison Kain-Fritsch2 RRTMG Grid analysis
Hertfordshire diffusion nudging above PBL
US Environmental NCEP NAM 35 20 m ACM2 Pleim-Xiu Pleim-Xiu Morrison Kain-Fritsch2 RRTMG Grid analysis nudging
Protection Agency analysis above PBL
RAMBOLL Environ NCEP NAM 35 20 m ACM2 Pleim-Xiu Pleim-Xiu Morrison Kain-Fritsch2 RRTMG Grid analysis

analysis nudging above PBL
RRTMG: rapid radiative transfer method for global for solar and infrared radiation (Iacono et al., 2008). RRTM: rapid radiative transfer method for infrared radiation (Mlawer et al., 1997). Dudhia shortwave radiation scheme (Dudhia, 1989).
YNN: Mellor–Yamada Nakanishi–Niino (PBL) scheme (Nakanishi-Niino, 2006). MYJ: Mellor–Yamada–Janjic (Janjic, 1994). YSU: Yonsei University PBL scheme (Hong and Lim, 2006). Grell–Freitas scheme for cumulus clouds (Grell and Freitas, 2014). Eta
similarity surface layer (Janjic, 2002). KF2: Kain–Fritsch (Kain, 2004) scheme for cumulus parameterization. CAM scheme for long and short radiation (Collins et al., 2004). Morrison microphysics from Morrison et al. (2009). WSM3 microphysics scheme
(Hong et al., 2004). WSM5: double moment 5–class scheme (Lim and Hong, 2010). WSM6: double moment 6–class scheme (Lim and Hong, 2010). MM5 similarity surface layer scheme (Zhang and Anthes, 1982). NCEP (National Centers for Environmental
Prediction) FNL Operational Model Global Tropospheric Analyses. GFS: Global Forecasting System. FNL: Final (same as GFS but FNLs are prepared about an hour or so after the GFS is initialized so that more observational data can be used). NAM: North
American Model. RUC Rapid Update Cycle (Smirnova et al., 2000). NOAH land-surface model (Tewari et al., 2004). ACM2: Asymmetric Convective Model with nonlocal upward mixing and local downward mixing (Pleim, 2007). Five-layer thermal diffusion
(Dudhia, 1996). Pleim-Xiu: Plein and Xiu (2003).

surface scheme yields more accurate surface temperature re-
sults compared to RUC.

Six groups have operated the CMAQ model. The main dif-
ferences among the CMAQ runs reside in the number of ver-
tical levels (minimum of 23 for CMAQ4 up to 35 for CMAQ3
and WRF-CMAQ in NA) and horizontal spacing (from
12 km by WRF-CMAQ in NA down to 30 km by CMAQ3
and CMAQ4) and in the estimation of biogenic emissions.
CMAQ4, CCLM-CMAQ, and WRF-CMAQ calculated bio-
genic emissions using the BEIS (Biogenic Emission Inven-
tory System version 3) either as implemented in SMOKE
v2.6 (https://www.cmascenter.org/smoke) or as implemented
directly into CMAQ, while CMAQ1, CMAQ2, and CMAQ3
calculated biogenic emissions through the MEGAN model
(Guenther et al., 2012). Moreover, the CCLM-CMAQ model
does not include the dust module, while the other CMAQ
instances use the inline calculation (Appel et al., 2013) and
CMAQ1 uses the dust calculation previously calculated for
AQMEII Phase 2. Finally, all runs were carried out using
CMAQ version 5.0.2 except for CMAQ1, which is based on
the 4.7.1 version. A series of known shortcomings of CMAQ
v.5.0.2 are discussed in Appel et al. (2016) (and partially ad-
dressed in the new version 5.1 of the model), among which
is the tendency to underestimate the vertical mixing during
transition periods, with the net result of increasing the con-
centration of primary pollutants and reducing that of ozone
as a consequence of more available NOx .

Hereafter, more detailed information is provided for each
modeling system.

The FMI (Finnish Meteorological Institute) has taken part
with the ECMWF-SILAM system (ECMWF-SILAM_M and
ECMWF-SILAM_H of Table 1, indicating the instances
of the SILAM model that use the MACC and the HTAP

emission inventory, respectively). SILAM v5.4 (Sofiev et
al., 2015) was used, with meteorological input extracted
from the ECMWF operational archives. The simulation in-
cluded sea salt emissions as in Sofiev et al. (2011) (but not
from the boundaries), biogenic VOCs (volatile organic com-
pounds) emissions as in Poupkou et al. (2010), and wild-
land fire emissions as in Soares et al. (2015). The windblown
dust is only included from the lateral boundary conditions.
The volatility distribution of anthropogenic organic carbon
(OC) was taken from Shrivastava et al. (2011). The gas-
phase chemistry was simulated with CBM-IV, with reaction
rates updated according to the recommendations of Interna-
tional Union of Pure and Applied Chemistry (IUPAC) (http:
//iupac.pole-ether.fr) and the NASA Jet Propulsion Labo-
ratory (JPL) (http://jpldataeval.jpl.nasa.gov). The secondary
inorganic aerosol formation was computed with the updated
DMAT scheme (Sofiev, 2000) and secondary organic aerosol
formation with the volatility basis set (VBS; Ahmadov et al.,
2012). Pressure- and latitude-dependent photolysis rates of
the FinROSE model (Damski et al., 2007) are used and re-
duced proportionally to cloud cover below the clouds down
to half the original value at full cloud cover. The SILAM
model does not account for extra plume rise in addition to
that prescribed by the emission profiles. A known deficiency
of the SILAM version used in this study is the overestimation
of ozone dry deposition.

The LOTOS-EUROS modeling system (Schaap et al.,
2008, Sauter et al., 2012) was applied by TNO (the Nether-
lands Organisation for Applied Scientific Research), using
version v1.10.1. The meteorological inputs were extracted
from the ECMWF operational archives. For biogenic emis-
sions the approach as described in Beltman et al. (2013) was
used. Gas-phase chemistry is based on CBM-IV (modified
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reaction rates; see Sauter et al., 2012), secondary inorganic
aerosol (SIA) formation on ISORROPIA II (Fountoukis and
Nenes, 2009), and for semivolatile species the VBS approach
was used (Donahue et al., 2006; Bergström et al., 2012), with
100 % of the emitted OC mass in the four lowest volatil-
ity classes that are predominantly solid and an additional
150 % in the five higher volatility bins. Modeled terpene
emissions were reduced by 50 % to limit their contribution
to SOA (secondary organic aerosol) formation, which was
found to be too high otherwise (Bergström et al., 2012). No
NOx emissions from soil were taken into account. The model
includes pH-dependent conversion rates for SO2 (Banzhaf et
al., 2012), while only below-cloud scavenging is used for wet
deposition. Mineral dust emissions were calculated online,
including emissions from road resuspension and agricultural
activities, according to Schaap et al. (2009). For sea spray
the parameterizations by Monahan et al. (1986) and Martens-
son et al. (2003) were used. Photolysis rates are based on
clear-sky photolysis rate by Roeth’s flux algorithm (function
of solar zenith angle; Poppe et al., 1996) and multiplied by
an attenuation factor in case of clouds. The LOTOS-EUROS
model does not account for extra plume rise in addition to
that prescribed by the emission profiles. A specific feature
of LOTOS-EUROS is that it only covers the lower 3.5 km of
the atmosphere, with a static 25 m surface layer, a dynamic
mixing layer and two dynamic reservoir layers. This makes
the model relatively fast in terms of computation time but has
implications for the vertical mixing of species for instances
where the mixing layer rapidly changes in height.

The INERIS and CIEMAT institutes jointly applied
the ECMWF-CHIMERE system. CHIMERE (version
CHIMERE 2013) was run with meteorology provided by
ECMWF IFS. Biogenic VOC emissions from vegetation
and soil NO emissions were calculated with the MEGAN
model (version 2.04; Guenther et al., 2006, 2012). Sea salt
emissions inside the domain were calculated according to
Monahan (1986). The windblown dust is only included
from the lateral boundary conditions. CHIMERE uses
the MELCHIOR2 chemical mechanism (Lattuati, 1997),
and ammonium nitrate equilibrium was calculated with
ISORROPIA (Nenes et al., 1999). Dry deposition is based
on the resistance approach (Emberson 2000a, b) and both
in-cloud and sub-cloud scavenging were considered for wet
deposition.

WRF–WRF-Chem1 was applied by the University of
L’Aquila (Italy). Version 3.6 of the Weather Research and
Forecasting model with Chemistry (WRF-Chem) has been
used, modified to include the new chemistry option imple-
mented by Tuccella et al. (2015) that includes a better repre-
sentation of the secondary organic aerosol mass in the sim-
ulation of direct and indirect aerosol effects, calculated as
in Ahmadov et al. (2012). Here only direct effects were in-
cluded in the simulation, for computational expediency. The
model uses the RACM-ESRL gas-phase chemical mecha-
nism (Kim et al., 2009), an updated version of the Regional

Atmospheric Chemistry Mechanism (RACM; Stockwell et
al., 1997). The inorganic aerosols are treated with the Modal
Aerosol Dynamics model for Europe (MADE; Ackermann et
al., 1998). The parameterization for SOA production is based
on the volatility basis set (VBS) approach. The aerosol di-
rect and semi-direct effects are taken into account following
Fast et al. (2006). Cloud chemistry in the convective updraft
is modeled using the scheme of Walcek and Taylor (1986),
while the aqueous-phase oxidation of SO2 by H2O2 in the
grid-resolved clouds is parameterized with the scheme used
in GOCART (Goddard Chemistry Aerosol Radiation and
Transport). Wet deposition from convective and resolved pre-
cipitation is included following Grell and Freitas (2014). The
photolysis frequencies are calculated with the Fast-J scheme
(Fast et al., 2006). Dry deposition and photolysis schemes
were modified to take into account the effects of the soil
snow coverage following Ahmadov et al. (2015). The anthro-
pogenic emissions were taken from the TNO-MACC inven-
tory for 2009 (Kuenen et al., 2014) and were adapted to the
chemical mechanism used following the method of Tuccella
et al. (2012).

WRF–WRF-Chem2 applied by the University of Mur-
cia (Spain) relies on the WRF-Chem model. The follow-
ing physics options were applied for the simulations: rapid
radiative transfer method for global (RRTMG) long-wave
and shortwave radiation scheme, Lin microphysics (Lin
et al., 1993), the Yonsei University (YSU) PBL scheme
(Hong et al., 2006), the NOAH land-surface model, and
the updated version of the Grell–Devenyi scheme (Grell
and Devenyi, 2002) with radiative feedback. Chemical op-
tions include RADM2 chemical mechanism (Stockwell et
al., 1990), MADE/SORGAM aerosol module (Schell et al.,
2001) including some aqueous reactions, and Fast-J photoly-
sis scheme. The modeling domain covers Europe and a por-
tion of North Africa.

Simulations of WRF-CAMx over EU were performed by
RSE (Italy) using CAMx version 6.10 (Environ, 2014) with
Carbon Bond 2005 (CB05) gas-phase chemistry (Yarwood
et al., 2005) and the coarse–fine (CF) aerosol module. In-
put meteorological data were generated by WRF model ver-
sion 3.4.1 (Skamarock and Klemp, 2008; Skamarock et al.,
2008), driven by ECMWF analysis fields. Grid nudging of
wind speed, temperature, and water vapor mixing ratio was
employed within the PBL, with a nudging coefficient of
0.0003 s−1. WRF-Chem was adopted to predict GOCART
dust emissions (Ginoux et al., 2001) along with the meteo-
rology. The WRF-CAMx preprocessor (version 4.2; Environ,
2014) was used to create CAMx ready input files, collapsing
the 33 vertical layers used by WRF into 14 layers in CAMx
but keeping the layers up to 230 m above ground level iden-
tical. Biogenic VOC emissions were computed by applying
the MEGAN emission model v2.04. Sea salt emissions were
computed using published algorithms (de Leeuw et al., 2000;
Gong, 2003).
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Aarhus University (Denmark) applied the WRF-DEHM
modeling system over EU and NA. The DEHM model used
anthropogenic emissions from the EDGAR-HTAP database
and biogenic emissions were calculated using the MEGAN
model. The gas-phase chemistry module includes 58 chemi-
cal species, 9 primary particles, and 122 chemical reactions
(Brandt et al., 2012). Secondary organic aerosols (SOA) were
calculated following the two-product approach assuming that
hydrocarbons undergo oxidation through O3, OH, and NO3
and for only two semi-volatile gas products (Zare et al.,
2014). However, the module is simple because it does not
include aging processes and further reactions in the gas and
particulate phases (Zare et al., 2014).

WRF-CMAQ1 was applied by ITU (Istanbul Technical
University) over EU. The Meteorology-Chemistry Interface
Processor (MCIP) version 3.6 (Otte and Pleim, 2010) was
used to process WRF output for CMAQ. The MEGAN v2.1
(Guenther et al., 2012) model was used to calculate the bio-
genic VOC emissions from vegetation, using surface temper-
ature and radiation from MCIP output. CMAQ v4.7.1 (Foley
et al., 2010) was configured with the CB05 chemical mech-
anism and the AERO5 module (Foley et al., 2010) for the
simulation of gas-phase chemistry and aerosol and aqueous
chemistry, respectively.

The WRF-CMAQ2 system was applied by Ricardo En-
ergy & Environment (Ricardo E&E) over EU. It was con-
figured using WRF v3.5.1 and CMAQ v5.0.2. The CMAQ
model adopted the CB05-TUCL chemical mechanism (Whit-
ten et al., 2010; Sarwar et al., 2011) and the AERO6 three-
mode aerosol module (Appel et al., 2013). MCIP version 4.2
was used to process WRF output for CMAQ. The MEGAN
v2.0.4 model was used to calculate the biogenic VOC emis-
sions from vegetation, using surface temperature and radia-
tion from MCIP output.

The WRF-CMAQ3 modeling system was applied by the
University of Hertfordshire and utilized the uncoupled ver-
sion of the WRF v3.4.1 model and CMAQ v5.0.2. The results
from WRF simulations were preprocessed for CMAQ using
MCIP version 3.6 (Otte et al., 2005). In the CMAQ model,
the gas-phase chemical mechanism was based on Carbon
Bond chemical mechanism version 5 (Foley et al., 2010) with
updated toluene and chlorine chemistry (CB05-TUCL), and
the aerosol chemical reaction was treated with AERO6 mod-
ule. The biogenic emissions were derived from MEGAN.

The WRF-CMAQ4 simulation was performed by Kings
College (UK) using CMAQ v5.0.2 (Byun and Schere, 2006),
with CB05 chemical mechanism that included aqueous and
aerosol chemistry. The CMAQ model is driven by meteo-
rological fields from WRF v3.4.1. The anthropogenic emis-
sions for most of the model domain are from MACC and the
missing information was filled with the emissions provided
by EDGAR/HTAP. The biogenic emissions were estimated
using the BEIS3 model. The dust and sea salt (Gantt et al.,
2015) emissions were generated using CMAQ inline mod-
ules.

HZG used the COSMO-CLM meteorological model to
drive the CMAQ model. For AQMEII3, CMAQ version 5.0.1
was used, with the CB05-TUCL scheme and the multi-
pollutant aerosol module AERO6. CMAQ was run using the
optional in-line calculation of dry deposition velocities. Wet
deposition processes include in-cloud and sub-cloud scav-
enging processes. All atmospheric parameters were taken
from regional atmospheric simulations with the COSMO-
CLM (CCLM) mesoscale meteorological model (version
4.8) for the year 2010 (Geyer, 2014) using National Centers
for Environmental Prediction (NCEP) forcing data employ-
ing a spectral nudging method for large-scale effects (Kalnay
et al., 1996). CCLM is the climate version of the regional-
scale meteorological community model COSMO (Rockel et
al., 2008; Steppeler et al., 2003; Schaettler et al., 2008).
CCLM uses the TERRA-ML land surface model (Schrodin
and Heise, 2001), a turbulent kinetic energy (TKE) clo-
sure scheme for the PBL (Doms et al., 2011), cloud micro-
physics after Seifert and Beheng (2001), the Tiedtke scheme
(Tiedtke, 1989) for cumulus clouds, and a long-wave ra-
diation scheme following Ritter and Geleyn (1992). The
meteorological fields were processed afterwards to match
the 24× 24 km2 CMAQ grid using the LM-MCIP prepro-
cessor. The emission input for CCLM-CMAQ is based on
the EDGAR HTAPv2 database, interpolated to the CMAQ
model grid and aggregated following the SNAP emission
sector nomenclature. Sector-specific hourly temporal profiles
and speciation factors of PM and VOC species were ap-
plied by the SMOKE for Europe emissions model (Bieser et
al., 2011a). The temporal profiles used were fixed monthly,
weekly, and diurnal profiles. Biogenic emissions and NO
emissions from soil were calculated using the BEIS3 model.
Sea salt emissions were calculated in-line by CMAQ, includ-
ing sulfate emissions based on an average sulfate content of
7.7 %. Finally, fixed vertical profiles were applied for each
source sector (Bieser et al., 2011b).

The WRF-CMAQ system applied over NA by the US EPA
was configured using WRF v3.4 and CMAQ v5.0.2 (Appel
et al., 2013; see also Foley et al., 2010 and Byun and Schere,
2006). The options used in these WRF and CMAQ simula-
tions are identical to those described in Hogrefe et al. (2015),
except that the current simulations were performed in of-
fline rather than two-way coupled mode. Temperature, wind
speed, and water vapor mixing ratio were nudged above
the PBL following the approach described in Gilliam et
al. (2012). Soil temperature and moisture were nudged fol-
lowing Pleim and Xiu (2003) and Pleim and Gilliam (2009).
The NO2 /NOx split applied during SMOKE emission pro-
cessing varies for different categories. For many categories
the assumed split is 90 % NO / 10 % NO2, but for mobile
sources the split varies for different types of vehicles and dif-
ferent emission processes.

Ramboll Environ used CAMx (version 6.2, Ramboll Env-
iron, 2015) for simulations over NA, with a CB05 chemical
mechanism for the gas phase. Biogenic emissions were ob-
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tained from the MEGAN model version 2.1 (Guenther et al.,
2006). Meteorological fields were produced by the US EPA
using the WRF model and they were reformatted using the
WRF-CAMx preprocessor to be readily used by the CAMx
model.

2.3.2 Observational data used

The observational data used in this study are the same as the
dataset used in second phase of AQMEII (Im et al., 2015a,
b) and was derived from the surface air quality monitoring
networks operating in EU and NA. In EU, surface data were
provided by the European Monitoring and Evaluation Pro-
gramme (EMEP, 2003; http://www.emep.int/) and the Eu-
ropean Air Quality Database (AirBase; http://acm.eionet.
europa.eu/databases/airbase/). In NA observational data were
obtained from the NAtChem (Canadian National Atmo-
spheric Chemistry) database and from the Analysis Facil-
ity operated by Environment Canada (http://www.ec.gc.ca/
natchem/). For the purposes of comparing the models against
observations, only stations with data completeness greater
than 75 % for the whole year and elevation above ground
below 1000 m were included in the analysis. Stations with
continuous missing records for periods longer than 15 days
were removed from the dataset. No imputation on missing
values was performed.

In addition, we also make use of vertical profiles of ozone,
temperature, and wind speed data measured by ozonesondes
and extracted from the World Meteorological Organization
(WMO) World Ozone, and Ultraviolet Radiation Data Cen-
tre (Toronto, Canada) and made available to the AQMEII
community. These measurements report vertical profiles of
ozone at several vertical levels. Further details on these data
are given in Solazzo et al. (2013).

Time-averaged statistics were calculated after the spatial
aggregation of the modeled and observed time series over
the subregions shown in Fig. 1 and prior to the spectral de-
composition (the original time series were spatially averaged
first and then this spatial average time series was spectrally
decomposed). As noted in the introduction, unsupervised hi-
erarchical clustering was used to determine subregions where
the LT and SY components showed similar characteristics –
spatial averaging within these subregions was carried out due
to the similarity of the observation data within these regions,
implying they will experience common physical and chem-
ical characteristics. Errors due to the heterogeneity induced
by country-specific emission profiles (in EU) are therefore
included in the DU component. As a consequence of the spa-
tial averaging, the relative importance of the ID component
is likely reduced, since the ID fluctuations are highly vari-
able in space (Hogrefe et al., 2014). Furthermore, no land-use
type filtering was applied to the stations used for evaluation.
While this choice limited impact on the SY and LT compo-
nents (Solazzo and Galmarini, 2015; Galmarini et al., 2013),
the DU components of some species (such as ozone, PM, and

NOx) might be strongly influenced by the vicinity of urban
stations to emission sources.

Details of the modeled regions and number of receptors
are reported in Table 3.

3 Results

The analyses presented in this section focus on evaluating
the performance of the models. The accuracy of the spectral
components is first analyzed in terms of the RMSE and quan-
tified on a seasonal basis. The season most affected by error
is then further investigated by applying error apportionment
(Eq. 6) to the spectral components. Results are presented for
one subregion only (results for the other subregions are in-
cluded in the Supplement).

The combination of the spectral decomposition and er-
ror apportionment has the effect of neglecting the error as-
sociated with the cross components (12 spectral interaction
terms; see Solazzo and Galmarini, 2016 for details) since the
apportionment only deals with the error of the “diagonal”
components LT, DU, SY, and ID. The reason is that while the
contribution of the cross components to the overall error can
be quantified, the associated time series needed to carry out
the apportionment analysis cannot. The neglected part of the
error is quantified in Table S1 in the Supplement. In some
instances, such a portion can be as high as 20 % of the total
error for ozone.

The tables summarizing the operational statistics (MB is
mean bias, r is Pearson’s correlation coefficient, and RMSE
is root mean square error) are reported in the Supplement
and were calculated using the openair package (Carslaw and
Ropkins, 2012).

3.1 Meteorological drivers: temperature, wind speed,
and wind direction

3.1.1 Wind speed and temperature

The RMSE for surface temperature and wind speed is re-
ported in Figs. 2 (EU) and 3 (NA). For EU (Fig. 2a), the
RMSE of the full (i.e., not spectrally decomposed and de-
noted as FT in the plots) time series of temperature for the
entire year is, on a seasonal average, on the order of ∼ 0.5–
2 K (but often exceeding 3 K in EU3), with higher values typ-
ically occurring in spring and winter. The CHIMERE and
SILAM models (both directly driven by the global meteoro-
logical fields provided by ECMWF) report the smallest er-
ror in EU1 and EU2, while the WRF-Chem2 model has the
largest error in all subregions (up to ∼ 5 K for EU3 in sum-
mer), which is largely caused by the unusually large error
in the SY component when compared to other models. The
RMSE of the LT component resembles the behavior of the
full time series, with the highest error in spring and win-
ter (on average). The RMSE of the SY component is be-
low ∼ 2 K (slightly higher in EU3) except for WRF-Chem2,
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Figure 2. RMSE for (a) temperature and (b) WS in Europe.
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Figure 3. RMSE for (a) temperature and (b) WS in North America.
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Table 3. Extension of the subregions and number of receptors used in the analysis.

EU1/NA1 EU2/NA2 EU3/NA3 EU/NA
42–57.2◦ N; −9–1.3◦W/ 47.5–56◦ N; 1.3–18◦W/ 43.5–46◦ N; 7–14◦W/ 30–65◦ N; −10–33W/

40–49.5; 30–38◦ N; 33.5–43; 26–51◦ N;
−83 to −66◦W −91 to −75◦W −124 to −118.5◦W −125 to −55◦W

Ozone 134/165 352/63 120/93 972/667
CO 32/29 91/8 70/12 418/103
NO (EU) 27 367 161 836
NO2 149/97 529/21 176/54 1390/340
SO2 96/69 296/3 55/3 865/141
PM10 (EU) 47 347 2 619
PM2.5 (NA) 89 9 22 226
WS 168/229 305/245 5/59 827/1721
Temp 168/232 305/243 5/46 830/1546

whereas the DU component shows a more marked regional
dependence, with the EU3 subregion reporting, on average,
approximately 50 % higher seasonal error than the other two
subregions; this is more pronounced in summer. The correla-
tion coefficient is higher than 0.90 for the majority of models
and spectral components (Table S2).

The bias for temperature is predominantly negative (model
underestimation) for all EU models and subregions, except
for WRF-CMAQ4 in EU3, where the model overestimates
the measured temperature in summer and winter. According
to Katragkou et al. (2015), cold bias during the summer by
WRF is typically related to the CAM radiation scheme, and
in general the land surface model is pivotal in determining
the sign and amount of bias (Mooney et al., 2013). In par-
ticular, the combination of NOAH surface scheme and CAM
radiation model seems more prone to cold bias.

For NA (Fig. 3a) the temperature RMSE of the WRF-
DEHM and CCLM-CMAQ models (peaking in winter and
autumn) is ∼ 1–1.5 K larger than the WRF-CMAQ model.
The error of the SY component is ∼ 0.5 K, while that of the
DU component is significantly higher (between 0.5 and 2 K).
The WRF-CMAQ model has a small bias (LT error small)
so that the overall error is dominated by the error in the DU
component. The bias is negative for the WRF-DEHM model
in all subregions and has the same sign for CCLM-CMAQ
and WRF-CMAQ, i.e., negative in spring and positive in the
other seasons (although for NA2 and NA3 WRF-CMAQ re-
ports a slightly negative bias in winter also, Table S2).

The RMSE of the surface WS for EU shows large model-
to-model variability, more markedly for the LT and SY com-
ponents (all subregions, Fig. 2b), whereas the error of the
DU component is more evenly distributed across models (and
significantly higher in EU3, where low wind speed condi-
tions are predominant). Although the meteorological fields
are assimilated within the models (either from NCEP or from
ECMWF, see Table 2), there are profound differences in the
way these fields are ingested and interpolated to the model
grid, as well as differences in the parameterization of the

boundary and surface layer, which impact the modeled wind
speed and temperature. For example, the two instances of
WRF-Chem applied the assimilation of the meteorological
fields (wind speed, temperature, and relative humidity) of
global meteorological fields only above the PBL, whereas
other models (e.g., WRF-CAMx) assimilated the global data
also within the PBL. For the models directly driven by the
global fields, (e.g., SILAM, CHIMERE) the seasonal error
for WS (∼ 0.5–1 m s−1) and temperature (0.4–1.2 K; Fig. 2a,
b) can be considered as the uppermost limit the accuracy of
the models can achieve. Thus, the assimilation and interpo-
lation method errors (which are specific to the configuration
of the meteorological model) can add more than 1.5 K and
2 m s−1 to the total error.

The full WS time series of the WRF-DEHM, WRF-Chem1
and WRF-Chem2 models report the largest error (in excess
of 1.5 m s−1), and the WRF-CAMx model even reports up to
2.4 m s−1 in winter (all subregions, Fig. 2b). On average, the
remaining models have an error of 0.5–0.7 m s−1. Most of the
error is apportioned to the LT component, with the SY and
DU below 0.3 m s−1 (except for WRF-CAMx and the other
models mentioned above).

The WS bias is positive for all models (model over-
prediction), for all seasons and subregions (only exception
is the CCLM-CMAQ model, biased low during spring and
summer in EU3 and WRF-CMAQ2 during the summer in
EU1). The correlation coefficient is above 0.9 for the major-
ity of models and components (except for the models affected
by large errors such as the WRF-CAMx model). In general,
r is slightly lower in EU3 and is at the maximum for the SY
component (Table S3).

For NA (Fig. 3b), the WRF-DEHM model reports an error
of ∼ 1–1.2 m s−1 during all seasons and in all subregions,
while the error of the WRF-CMAQ model ranges between
0.45 and 0.75 m s−1 for all seasons and subregions. The error
of the SY and DU components is small (below 0.3 m s−1 for
each season) for both models. Both models are biased high
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Figure 4. Mean bias (model–observations) for the vertical profiles of wind speed measured by ozonesondes launched from the European
locations indicated in the inset map of each panel. The number of hourly profiles available for each site is reported in parentheses at the top
of each panel.
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Figure 5. Mean bias (model–observations) for the vertical profiles of temperature measured by ozonesondes launched from the European
locations indicated in the inset map of each panel. The number of hourly profiles available for each site is reported in parentheses at the top
of each panel.
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Table 4. Summary of ozonesonde data for ozone.

EU

Station O3 records Period Local time

316 52 Year (4–5 launches per month) 11:00–12:00
308 52 Year (4–5 launches per month) 10:00–11:00
318 37 Year (3–4 launches per month, mostly winter and autumn) 11:00–12:00
242 46 January–April (10–12 launches per month) 11:00–12:00
156 144 Year (12 launches per month) 10:00–12:00
099 66 Year (5–6 launches per month) Mostly early

mornings 4:00–6:00
053 149 Year (11–13 launches per month) 11:00–12:00
043 51 Year (4–5 launches per month) 11:00–12:00

NA

021 44 Year (3–4 launches per month) 11:00–12:00
107 54 Year (4–5 launches per month) 16:00–20:00
338 50 Year (2–4 per month; 17 in July; none in September) 14–15 July–17–18 August

other months
456 57 2–5 per month; 25 in July 17:00–18:00
457 75 Year (2–5 per month; 18–20 in May–June) 23:00–00:00
458 71 Year (3–8 per month; 20 in July) 23:00–00:00

(all instances) and the correlation coefficient is on the order
of ∼ 0.9 or above (Table S3).

3.1.2 Vertical profiles of wind speed and temperature

Vertical profiles of mean bias for temperature and WS are
reported in Figs. 4 to 7. The modeled profiles were eval-
uated using ozonesonde measurements. The frequency and
local time of the launches are summarized in Table 4.
The launches in EU predominately occurred during daylight
hours, whereas for NA measurements are also available for
nighttime and late afternoon. The sign and magnitude of the
bias are informative about error in the PBL processes, which
will help discussion on the error of the modeled pollutants
(Sect. 3.3).

The bias for temperature in EU ranges between −3 K
(CCLM-CMAQ at station 308, Fig. 5) and +2 K (WRF-
CMAQ4 at station 308 and SILAM at station 156) at the
surface. In most cases the temperature bias profiles fluc-
tuate around zero (station 053, located between EU1 and
EU2; station 043; station 242 in EU2; and partially station
316 in EU2), whereas for some stations the bias keeps the
same sign throughout the troposphere, negative for station
156 (launches at 10:00–12:00 LT) and positive for station 099
(early morning launches). The difference in altitudes (491 the
former and 1000 m a.s.l. the latter) and the complex terrain
of the alpine region might also be responsible for the large
model differences at these two (relatively close) stations.

Vertical profiles of temperature in NA (Fig. 6) show strong
surface bias (negative) at station 021 and 457 (both close to
the western border of the domain) for both models. At sta-

tion 021 (data collected under daylight conditions) the bias
becomes positive and small in magnitude above the PBL,
whereas at station 457 (data collected under nighttime con-
ditions) the bias keeps the same sign throughout the tropo-
sphere. At the other stations, the bias within the PBL is over-
all small and either positive (107, 456) or slightly negative
(stations 458, 338).

Bias profiles for WS at eight ozonesonde stations in EU
(Fig. 4) show a tendency of overestimation in the PBL and
of underestimation above∼ 1000 m, although there are some
exceptions for different models and/or launching stations.
The WRF-Chem1 has the largest positive bias at all sites,
with the bias staying positive well above the PBL at all sta-
tions in contrast with all other models (WRF-Chem1 model
adopted the nudging of meteorological fields only above the
PBL and only during the first 12 h of meteorological spin-
up, while for the other WRF instances the nudging is active
during the entire run). WS overestimation by WRF-Chem is
a known concern (e.g., Tuccella et al., 2012; Jimenez and
Dudhia, 2012; Mass and Ovens, 2011) and it is likely to have
a major impact on the dispersion of pollutants. Similar to EU,
the WS bias profiles in NA are biased high near the surface
(except for the station 338 and partially station 021, Fig. 6).
Above the PBL the tendency is to underestimate the WS (up
to ∼ 1.5 m s−1), although less dramatically than in EU. Be-
cause both NA models are driven by WRF for meteorology,
the WS profiles are alike and the magnitude of bias is very
similar.
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Figure 6. Mean bias (model–observations) for the vertical profiles of wind speed measured by ozonesondes launched from the North Amer-
ican locations indicated in the inset map of each panel. The number of hourly profiles available for each site is reported in parentheses at the
top of each panel.

3.2 Wind direction

The spatial and temporal distributions of WD are reported in
Fig. 8. The boxes summarize the temporal and spatial vari-
ability of the WD values at the receptors of each subregion
(no averages were applied). For EU1 (Fig. 8a), the median

of all models but WRF-CAMx is within ±5◦ of the observa-
tion, similar to EU2. The modeled 22th and 75th percentiles
are also in line with the observations in these two subregions
(the CCLM model predicts slightly larger variability).

The EU3 subregion is topographically more complex, and
the analysis is based on four stations with only 55 % data va-
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Figure 7. Mean bias (model–observations) for the vertical profiles of temperature measured by ozonesondes launched from the North
American locations indicated in the inset map of each panel. The number of hourly profiles available for each site is reported in parentheses
at the top of each panel.

lidity over the entire period. Southern winds are predominant
(based on the observation), while the models show large vari-
ability and even several instances of WRF (but not all) and
ECMWF data tend to underpredict the median value. The
only two models that overpredict the median observed value
are WRF-CMAx and WRF-CMAQ1; both also apply grid

nudging within the PBL along with WRF-CAMQ4, which
shows a slight underestimation however.

Results for NA in Fig. 8b show that the modeled WD fol-
lows the same distribution as the observed WD, with some
excess (or deficiency) of variability by CCLM in NA1 (also
the median value is also slightly underestimated) and in NA3.
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Figure 8. Spatial and temporal variability of the wind direction for (a) EU and (b) NA for the full year 2010. The boxes extend between the
25th and 75th percentiles of the total distribution. The whiskers extend from the minimum to the maximum values.

In NA2, all models tend to underestimate the observed me-
dian value (CCLM by ∼ 20◦), indicating a modeled abun-
dance of southerly rotated winds. The WRF-CAMx model
for NA, although not reported, uses the same meteorology as
WRF-CMAQ and therefore the same WD distribution.

It is difficult to state which error component is more im-
pacted by WD error. The wrong directionality of polluted air
masses likely affects the mean value (bias) as well the shape
(variance) of the signal since it alters the source–receptor re-
lationship (Vautard et al., 2012; Gilliam et al., 2015). WD
error effects on the associativity structure of the modeled–
observed time series is less clear however.

3.3 Chemical species: mean square error and error
apportionment

3.3.1 CO

CO is a moderately long-lived primary pollutant principally
produced by incomplete combustion of fossil fuels, wildfires
and, on the global scale, by the oxidation of methane. CO
also acts as precursor to ozone. Results of the AQMEII3
models for CO are reported in Figs. 9 and 10 and in Table S5.

In general, there are profound differences between the CO
statistics for EU and NA, with the latter showing a more
marked temporal and spatial dependency as well as model-
to-model variability (the yearly mean observed values of CO
in EU and NA are of 336 and of 248 ppb, respectively). The
EU error (Fig. 9a) is, generally, uniform across models and
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Figure 9. RMSE (ppb) for CO by spectral component and season (panel a for Europe and b for North America). FT is the full (unfiltered)
time series, LT, SY, and DU are the long term, synoptic, and diurnal components, respectively.
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Figure 10. MSE (ppb2) breakdown into bias squared, variance, and mMSE for the spectral components of the spatial average time series of
CO during the months of December, January, and February (DJF) based on Eq. (6). The bias is entirely accounted for by the LT component.
The signs within the bias and variance portion of the bars indicate model overestimation (+) or underestimation (−) of the bias and variance.
The color of the mMSE share of the error is coded based on the values of r , the correlation coefficient, according to the color scale at the
bottom of each plot. Top panel is EU; lower panel is NA. Similar plots for the other two subregions are reported in the Supplement.

subregions; it is approximately 3 times higher in winter than
in summer. The magnitude of the SY and DU errors is com-
parable (∼ 15–25 ppb on average in EU1 and EU2, sensibly
higher in EU3). For NA (Fig. 9b) the DU and SY errors are
also similar, but they vary by model, subregion, and season.

The homogeneity of error in EU suggests that it originates
from a common source. Previous investigations (Innes et al.,
2013; Giordano et al., 2015) indicate that the boundary con-
ditions have a limited contribution to the bias of CO within
the interior of the domain where the emissions are far more
important. In particular, the MACC inventory used by the EU
regional models likely underestimates the CO emissions (es-
pecially in winter; Giordano et al., 2015). We conclude that

the cause of model bias for CO is most probably attributable
to the emissions and to a lesser extent the generally overes-
timated surface wind speed (Sect. 3.1.1). Sensitivity of the
model error to emission changes for CO is discussed in the
next section.

The correlation coefficient for EU generally peaks in
spring (LT component), while it is at a minimum for the LT
component in winter and is overall poor for the DU and SY
components. In contrast, for NA the minimum correlation co-
efficient is observed in spring and summer (LT component),
with the correlation for the DU component having a mixed
behavior depending on the subregion, but it is typically low
in summer (Table S5).
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The winter LT error for EU is of ∼ 140–220 ppb in EU1
and EU2 and up to 600 ppb in EU3, typically higher than in
NA (∼ 100 ppb, peaking in autumn and mostly due to model
underestimation), while the opposite holds for the DU and
ID error, which are significantly lower in EU (Fig. 10) than
in NA (except for EU3). Since CO is a primary pollutant, its
error is affected by the diurnal dynamics of the PBL height,
which is most problematic in winter when modeled PBL has
the tendency to become too stable too early, anticipating the
evening transition (Pleim et al., 2016). In fact, the biases of
CO and those of PM10 (another primary pollutant) in win-
ter are highly correlated for almost all models (not shown),
indicating a common cause of the error. The overestimation
of WS discussed in Sect. 3.1 also contributes to further di-
lute the concentration of primary species such as CO (for ex-
ample correlation (biasCO, biasWS)= 0.60 for the CMAQ4
model in EU2 during winter).

The error due to variance in EU (underestimated by the
models) and mMSE are significant in the DU and SY com-
ponents in winter (Fig. 10a). In particular, the variance er-
ror of winter DU is small compared to the mMSE, which
accounts for almost the entire DU error, up to over 30 ppb.
For SY, the model SILAM_H shows an mMSE error of over
75 ppb, the variance part being approximately null. On av-
erage, the DU and SY errors are approximately similar for
all EU models (∼ 45 for DU and ∼ 65 ppb for SY), indicat-
ing some common error leading to poor associativity, which
typically corresponds to lagged timing of the observed and
modeled signals. An example of this might be the poor rep-
resentation of the diurnal variation of the emissions (e.g.,
Makar et al., 2014). A further reason could stem from the
lack of temperature-dependent emissions (the current emis-
sion inventory processing approach employs constant tem-
poral emission profiles, and therefore cold–warm episodes
are not incorporated in the modeled emissions even though
these episodes do affect real-world emissions). The lack of
temperature-dependant emissions is likely to have a strong
effect for CO since about 50 % of CO emissions comes from
residential heating (at least in middle and northern European
countries). A test of this hypothesis is currently under inves-
tigation by running the CCLM-CMAQ model with a set of
emissions using temperature data for the temporal disaggre-
gation for residential heating emissions.

While the SY error is comparable for the two continents,
the DU and ID errors are remarkably higher in NA (all sub-
regions, also due to an excess of variance) and for several
instances they are comparable or even higher than the LT er-
ror. With the exception of the WRF-DEHM model (variance
error negligible), the DU and ID errors for the NA models
are due to both mMSE and variance.

3.3.2 Sensitivity simulations with reduced emissions
and boundary conditions

Additional sensitivity runs were carried out by the majority
of modeling groups, in which the amount of anthropogenic
emissions were reduced by 20 % in both the boundary con-
ditions and the modeling domain. It is instructive to assess
the error variation between the sensitivity runs (denoted as
“s20 %”) and the base case for primary species such as CO:

%RMSE= 100×
RMSEs20 %

CO −RMSEbase
CO

RMSEbase
CO

.

Figure 11 reports the error variation for central Europe (sub-
region EU2), where the effect of local CO outweighs the in-
fluence of the CO entering from the boundaries (similar plots
for the other two EU subregions are reported in the Supple-
ment). A decrease of 20 % CO produces a RMSE variation
of ∼ 10 % (averaged over models and components). A naïve
projection indicates that a reduction of 100 % (thus remov-
ing CO from emissions and boundary conditions altogether)
would produce a variation of the error of ∼ 50 %. The sign
of the error variation indicates that there are circumstances
where a reduction of the base case emissions is actually ben-
eficial since the error is reduced (even substantially in the in-
stances where the emissions were overestimated in the base
case).

The DU component for CO is the most sensitive to emis-
sion changes, with an average of ∼ 24 % error variation in
summer. The SILAM model is the most sensitive to changes
in the amount of pollutants entering the domain. Striking er-
ror differences with respect to the base case are detected for
summer CO (DU error improved by 50 %), possibly point-
ing to false peaks in the base case that contribute heavily to
the RMSE (as suggested by the low correlation coefficient,
Table S5). The reduction of the emission by 20 % lowers the
peaks and could be the explanation for the improvement ob-
served for the s20 % scenario for SILAM.

3.3.3 NO

NO is emitted by both natural and anthropogenic sources
and its chemistry patterns are closely connected to those of
NO2 and ozone. Due to the fast ozone–NO titration reaction,
the uncertainty in emissions, transport, and vertical mixing
dominates the uncertainty in chemistry. Since no observa-
tional data were available for NA, the discussion is limited
to EU. The European Environment Agency (EEA) reports
an estimated uncertainty for NOx emission of ∼ 20 % (EEA,
2011); Vestreng et al. (2009) found±8–25 % uncertainties in
EU NOx emissions, in line with other similar bottom-up un-
certainty studies (see Pouliot et al., 2015). A further source
of uncertainty and model-to-model difference is the vertical
emission profiles adopted and how these are interpolated to
the vertical grids used by the models. Within the SILAM
model, for example, the vehicular traffic emissions are re-
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Figure 11. RMSE variation between the s20 % scenario (anthropogenic emission and boundary condition reduced by 20 %) and the base
case for CO in EU2.

leased largely at the bottom of the first layer. This sub-grid
information about the vertical location of the plume used in
the vertical transport scheme further suppresses the mixing
to the upper layers, thus keeping the surface concentrations
higher.

The analysis of the RMSE for NO in Fig. 12a shows how
the largest modeling error for NO occurs in winter and au-
tumn, similar in magnitude for EU1 and EU2 (∼ 7 ppb),
while it is more than double in EU3 (up to 30 ppb). The DU
and SY errors are comparable in magnitude (although the
DU error is slightly higher) and are approximately evenly
distributed among the models. For NO the error of the SY
component is also model-independent, as noted for CO and
as will be discussed for ozone and PM10. Because it is mainly
composed of mMSE error (Fig. 12b), it can be hypothesized
that the unexplained meteorological variance is responsible
for the majority of the SY error.

The winter bias and variance errors are predominantly
negative, indicating model underestimation and reduced vari-
ability. The opposite holds for the two instances of SILAM,
for which the bias and variance are positive (all subregions).
This can be associated with the underestimated ozone con-
centrations in this model. The applied vertical emission pro-
files mentioned earlier for this model could also have an in-
fluence. The correlation coefficient varies greatly by model,
by components, and by season, and it typically degrades for
the summer seasons (LT component, most models). The SY
component also exhibits low values of r , especially in sum-
mer for EU1 and autumn (Table S6). The large variability of
the correlation coefficient indicates that the models are not

able to capture the fluctuations of this important precursor at
all scales.

From the error decomposition plots (Fig. 12b) it emerges
that

– the LT components show a mMSE error approximately
uniform for all modeling systems (between ∼ 3 and
4 ppb);

– in the majority of cases the mMSE error dominates the
ID, DU, and SY components; and

– the SY component has an error comparable to that of
DU for the mMSE part, but it is overall higher due to
a predominant lack of variance (as high as 50 % of the
total SY error for some models).

Due to its fast chemistry and short traveling distance, the
error of representativity for NO (mismatch of the area of rep-
resentativeness between models with grid spacing of∼ 15 up
to 50 km and point measurements) is likely more significant
than for other pollutants with a longer lifetime. NO is almost
a primary pollutant with negligible deposition (Wesely and
Hicks, 2000) and small influence of the boundary conditions
(Giordano et al., 2015); therefore, observational sites are af-
fected by local-scale effects in the range of a few kilometers,
below the grid spacing of the majority of the models. This
has the effect of higher observed mean values compared to
the models (enhancing the bias error) and stronger variabil-
ity in the observations than the models (variance error).

The correlation between the bias of NO and the bias of the
other species reveals strong links at several temporal scales
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Figure 12. Top panel is as in Fig. 9 but for NO (EU only). Lower panel is as in Fig. 10 but for NO (EU only).

(less for the DU timescale though) and also in terms of pro-
cesses, although it varies greatly by model. For instance, corr
(biasNO, biasO3) is overall strong (and negative) for the ma-
jority of the models but for different timescales, i.e., stronger
for the SY components for some models (e.g., LOTOS-

EUROS), or for LT (SILAM), or for DU (CHIMERE). Ad-
ditional analyses are envisioned to determine the causes of
such behavior.
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Figure 13. RMSE variation between the s20 % scenario (anthropogenic emission and boundary condition reduced by 20 %) and the base
case for anthropogenic NO (aNO) in EU2.

3.3.4 Sensitivity simulations with reduced emission and
boundary conditions

The analysis discussed in Sect. 3.3.2 is repeated here for NO
and results are presented in Fig. 13. A decrease by 20 % of
the amount of NO in the domain produces a variation of
RMSE of ∼ 8 % (averaged over models and spectral compo-
nents). A naïve projection indicates that a reduction of 100 %
(thus removing the production of NO from emissions and
boundary conditions) would produce a variation of the er-
ror of ∼ 35 %. Such an amount is less than that found for
CO (∼ 50 %, Sect. 3.3.2), which is consistent with the pho-
tochemical processes involving NO but not CO.

The LT component is the most sensitive to changes for NO,
with an average of ∼ 17 % error variation (and up to 20 %
in autumn, both positive and negative). Again, the SILAM
model is the most sensitive to changes in the amount of pol-
lutants entering the domain. Remarkable differences between
the s20 % scenario and the base case are detected for sum-
mer and autumn (LT error variation of 100 %; Fig. 13). The
improvement of the error of SILAM (and of the other mod-
els) for the s20 % scenario is due to the overestimation of NO
mean concentration in the base case (positive bias, Table S6).

3.3.5 NO2

Primary NO2 is emitted by a variety of combustion sources
and plays a major role in atmospheric reactions that pro-
duce ground-level ozone. NO2 is also a precursor to nitrates,
which contribute to PM formation. As for NO, only a small
portion of the total error is expected to stem from the bound-
ary conditions. The AQMEII3 modeling systems attribute a

fraction of NO2 emission ranging between 3 and 10 % of the
total NOx emissions (some models treat the NO2 emissions
from the transport sector differently; see Table 1). The results
of the error analysis discussed hereafter do not reveal group-
ing of model behavior consistent with the choice of the NO2-
to-NOx emission ratio though, considering the fast chemistry
between NO and NO2.

The RMSE distribution (Fig. 14a, b) shows a marked
model-to-model variability in the LT and DU components,
while it is more uniform for the SY component, also in
the seasonal stratification. Moreover, the error distribution
is shown to be weakly dependant on the specific subregion
(for both continents, especially for the DU component), sug-
gesting that regional features (e.g., differences in climate be-
tween the regions) have little impact on NO2 performance,
which is mostly affected by chemistry and error in the mete-
orology. Local-scale features (e.g., representation of urban–
rural emission differences) may still be important, but they
may have similar errors in all regions.

The largest error occurs in winter (both continents) and is
shared approximately equally between the SY and DU com-
ponents (for some models the SY and LT errors are compa-
rable due to the small bias).

The bias is the main contributor to the NO2 error and
stems from a model underprediction of the mean observed
concentration during the entire year (but, with the excep-
tion of the winter season, it is positive for WRF-CMAQ in
NA and WRF-CMAQ1 in EU; Table S7). The bias is prob-
ably caused by a combination of factors, including emission
estimates (e.g., underestimation of residential combustion),
PBL height and vertical mixing at night (when wood com-
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Figure 14. As in Fig. 9 but for NO2.
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bustion emissions tend to be maximum; e.g., Denier van der
Gon et al., 2015), and missing processes acting as system-
atic errors, such as shading effects of forested canopies (e.g.,
Makar et al., 2016). However, the tendency of NO2 mea-
surements to be overestimated by the majority of commer-
cially available instruments for detecting NOx (Steinbacher
et al., 2007) needs to be taken into account. The magnitude
of the bias is higher in EU (from∼ 1.3 pbb of WRF-CMAQ1
in EU1 to ∼−12.5 ppb of CCLM-CMAQ in EU3) than in
NA (the maximum being ∼ 5.5 ppb in NA3 by the WRF-
DEHM model), with the mean observed values being 11.5
and 10.5 ppb for EU and NA, respectively.

The correlation coefficient is typically higher in spring–
autumn and poorer in summer–winter (in summer there are
several instances of negative correlation; Table S7). The LT
component for EU and the LT and SY components for NA
are those with higher correlation coefficients, while SY and
DU are the poorest in EU and DU is the poorest in NA (but
still higher than ∼ 0.4).

The median value of the modeled accumulated deposition
per unit area (Fig. S11 in the Supplement) for NO2 ranges
from ∼ 0.4 to ∼ 1.9 kg km−2 for EU (nine models) and from
∼ 0.3 to 2.3 kg km−2 for NA (two models). With the excep-
tion of the WRF-DEHM model (similar values for EU and
NA of 0.3–0.4 kg km−2), the modeled values for NO2 de-
position are uniform across the EU models, while the de-
viation between the two NA models for deposition is not
negligible, also considering the different native grid sizes
of 50 and 12 km (WRF-DEHM and WRF-CMAQ, respec-
tively). Therefore, for the majority of the EU models, model-
to-model differences in the error are unlikely due to signifi-
cant difference in the deposition, while differences remain a
possibility for NA.

The magnitude of the error for NO2 resembles that of NO
and ozone, although the apportionment reveals significant
differences. In fact, while NO includes variance error and
a uniform share of mMSE, the LT error of NO2 for winter
is almost completely determined by the bias, for both conti-
nents (Figs. 15 and 16). The other NO2 spectral components
(ID, DU, SY) reveal more profound differences with respect
to NO, both in terms of bias and of error apportionment. The
ID error for NO2 is even smaller than that of NO (less than
1 ppb) and can be regarded as noise. The DU (∼ 1.5 ppb) and
SY (∼ 1 ppb) errors are also considerably smaller than for
NO (both continents), although the DU error presents some
excess of variance for WRF-CMAQ3 and the two instances
of the CHIMERE model (Fig. 15).

The model-to-model variability of RMSE for the LT com-
ponent Fig. 15) is very similar to that of NO (Fig. 12), while
the DU variability resembles that of ozone (Fig. 18), although
for NO2 the DU error is lower in magnitude and more uni-
form across seasons.

Moreover, NOx observations are strongly affected by local
emissions and thus the error may stem from the incommen-
surability of comparing grid-averaged values with point mea-

surements highly affected by local-scale emissions. How-
ever, the error apportionment analysis carried out separately
for rural and urban background stations (the area type classi-
fication is taken for the stations metadata) does not reveal any
relevant differences (Fig. 15 for EU2 and Fig. 16 for NA1),
if not a slight increase in the variance error over both conti-
nents, thus likely excluding chemistry-related model errors.

3.3.6 Ozone

Due to the adverse effects on human health and to the impact
on climate, tropospheric ozone is regulated in EU and NA
and substantial efforts are made to improve model predic-
tive skill for this pollutant. Tropospheric ozone can be either
transported from regions outside the modeled domain, be the
result of stratosphere–troposphere exchange, or be produced
locally by photochemistry through oxidation of VOCs and
CO in the presence of NOx and sunlight. Due to its photo-
chemical nature, ozone production is directly influenced by
temperature through speeding up the rates of the chemical re-
actions and increasing the emissions of VOCs (e.g., isoprene)
from vegetation (Jacob and Winner, 2009). Along with dry
deposition, chemistry can act as a local sink to ozone de-
pending on the photochemical regime.

Results of the AQMEII3 modes for ozone are reported in
Figs. 17 and 18 and in Table S4. Overall, the correlation
between modeled and observed ozone time series is higher
for winter and fall than spring and summer in EU, while
the opposite holds true in NA where the maximum corre-
lation is observed in summer (all subregions; Table S4). In
EU, the RMSE is generally lower in winter than in the warm
seasons (summer and spring; RMSE in summer ranges be-
tween 4.3 ppb of WRF-Chem1 in EU1 and 21 ppb of WRF-
CAMQ1 in EU3), with the exception of the CCLM-CMAQ
model for which the RMSE peaks in autumn (all subregions).

Due to the strong and well-defined diurnal cycle character-
ized by ozone formation and loss, the correlation coefficient
is generally higher for the DU component, while it tends to
be lowest for the SY component (Table S4 and Fig. 18). The
SY component often exhibits the lowest correlation among
all components, especially in summer (EU) and spring (NA),
possibly due to the combined effect of transport of pre-
cursors, deposition and chemistry (formation–depletion of
ozone from precursor emissions in the regions where the
ozone is transported; Bowdalo et al., 2016). However, the SY
error is generally small (∼ 2–3 ppb, although higher for EU3,
where the SY error is double that of the other subregions)
and is mostly due to mMSE. It is thus characterized by poor
coefficients of determination and underestimated variability
(Eq. 6). Therefore, the SY component suffers from low preci-
sion (for some models r < 0.3), meaning that the variability of
the synoptic mechanisms needs further attention, especially
in the meteorological conditions leading to high ozone level
episodes and in relation to temperature, cloudiness, and ra-
diation. The WRF-Chem2 model (with the highest error for
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Figure 15. As in Fig. 10 but for NO2 in EU2. Upper panel is urban sites only (223 stations); lower panel is rural sites only (159 stations).

temperature, Fig. 2b) reports the largest SY error for ozone
(especially the variance part). For this model, the correlation
between the ozone and the temperature error for the SY com-
ponent corr (errO3 , errTemp)SY is 0.44 for the summer months
in EU2 (not shown), which is among the highest; this helps
to explain part of the SY error for ozone. Further possible
causes could be associated with tropopause folding events,
especially downwind of mountain areas (e.g., Bonasoni et
al., 2000; Makar et al., 2010), which would also be in line
with the larger synoptic error of ozone in EU3 (Fig. S4b),
comparable for all models in the range of 3–4 ppb. In order
to better characterize the mMSE part of the error for the peri-
odic components, such as DU and SY, analyses of the phase
and amplitude are ongoing.

The error of the DU component is largely due to the
mMSE term (Fig. 18a), which is comparable for all mod-
els in the range of 2–5 ppb, with some significant excess

of variance for WRF-CMAQ2 and WRF-CMAQ3 in EU2
(∼ 5 ppb). Some possible reasons are the dynamics of the
nocturnal PBL and the timing of the ozone cycle, with an ei-
ther too-fast or too-slow modeled ozone peak (e.g., Pirovano
et al., 2012). Limitations of the models to reproduce the am-
plitude and phase of the daily ozone cycle were already high-
lighted in the first and second phase of AQMEII, mostly
related to the representation of nighttime and stable condi-
tions. Furthermore, the variance error for WRF-CMAQ2 and
WRF-CMAQ3 can be induced by the bias of temperature
and/or concentration of ozone precursors. For WRF-CMAQ2
(WRF-CMAQ3), corr (errO3 , errTemp)DU is 0.88 (0.94) and
corr (errO3 , errNO2)DU is 0.86 (0.83, summer months, EU2;
not shown), which indicates that the errors of the tempera-
ture and NO2 fields are strongly associated with the error of
ozone at the DU scale. PBL representation during transitions
is a long-standing issue of AQ models.
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Figure 16. As in Fig. 10 but for NO2 in NA1. Upper panel is urban sites only (39 stations); lower panel is rural sites only (10 stations).

The error in the LT component is dominated by the bias
error (almost completely for NA; Fig. 18), although with
significant exceptions in EU (for CCLM-CMAQ the mMSE
error of the LT component is larger than the bias portion).
The May–September ozone LT bias for EU2 peaks at 12–
13 ppb (WRF-CMAQ1), while it is ∼ 6 ppb in NA3 (but in
excess of 20 ppb in NA2 by the WRF-DEHM model; the
yearly average measured ozone mixing ratio is 26.5 and
29 ppb for EU and NA, respectively). The bias of the pre-
cursors and of the meteorological fields is typically highly
correlated with the bias of ozone. For instance, in EU2 for
the WRF-CMAQ1 model, corr (biasO3 , biasTemp) is 0.65 and
corr (biasO3 , biasWS) is 0.81 (summer months). The almost
null NO2 bias for CMAQ1 (among the lowest) combined
with the positive bias for NO suggests that chemistry also
affects the ozone bias of CMAQ1. Furthermore, the excess
of ozone intrusion for the troposphere (discussed next) may

also factor in determining the high positive bias at the surface
for this model.

According to Bowdalo et al. (2016), the bias of the ozone
amplitude cycle linearly evolves with NOx emissions, sug-
gesting that correction of the error for ozone needs to start
from NOx emissions. Otero et al. (2016) showed that meteo-
rological drivers account for most of the explained variance
in ozone, especially over central and northwestern Europe.
One of the main drivers of ozone is the daily maximum tem-
perature in relation to the effect of temperature on emissions
of VOCs. Therefore, while part of the bias error is possibly
due to NOx emissions, the mMSE and variance error are also
likely induced by error in meteorology. Other documented
biases are transcontinental transport in winter (Hogrefe et al.,
2011) and missing processes during spring and summer, such
as the large-scale effect of the absence of forest shading in the
models (Makar et al., 2016), a too-rapid production of ozone
from available precursors, and an underestimation of ozone
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Figure 17. As in Fig. 9 but for ozone.
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Figure 18. As in Fig. 10 but for ozone during the months from May to September.

deposition (Herwehe et al., 2011). Im et al. (2015b) also in-
dicated a range of factors determining the difference in per-
formance among models, such as the chemical mechanism,
biogenic module, and VOC preprocessing, and the difference
in microphysics affecting the photolysis, temperature, and ra-
diation that act on the production of ozone.

Although the concentration peaks are associated with the
ID and DU components, the contribution to the total error
of the ID component is small (< 2 ppb) due to flattening of
the spikes operated by the spatial averaging carried out prior
to spectral decomposition. The noise of the ID component is
reflected by the correlation coefficient being lower than the
correlation of the DU component.

3.3.7 Ozone vertical profiles

Several studies have demonstrated the importance of extend-
ing the evaluation of air quality models to the troposphere
(e.g., Solazzo et al., 2013; Makar et al., 2010; Herwehe et
al., 2011), not only because of the vertical turbulent trans-
port but also for the key role played by coupling of the PBL
and the free troposphere in determining the ozone intrusion
to the surface. In this section profiles of modeled ozone are
compared with ozonesonde measurements.

A summary of the records provided by the ozonesondes
for ozone are reported in Table 4. Plots of the simulated
and observed ozone levels at fixed heights (through the EN-
SEMBLE system, models and measurements are paired at
the heights of 0, 100, 250, 500, 750, 1000, 2000, 3000,
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Figure 19. Ozone mixing-ratio profiles measured by ozonesondes launched from the European location indicated in the inset map (lower-
right corner) of each panel. The profiles are time averaged over the number of hourly records reported in parentheses at the top of each panel.
Legend as in the first panel.
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Figure 20. As in Fig. 19 but for North America.

4000, 5000, and 6000 m) are reported in Figs. 19 and 20.
The ozonesonde data are mainly available during daylight,
although two stations with nighttime data are available for
NA (Table 4).

Overall, the general tendency of the models in both con-
tinents is to underestimate the ozone levels above the PBL,
suggesting that not enough ozone enters the continental do-

mains through the inflow boundaries. The most significant
underestimation (∼ 10 ppb) is observed at the two stations
closer to the western boundary for the EU (stations 318 and
043). The boundary layer deficit of ozone is a long-standing
issue, seeing as similar conclusions were derived for the first
(Solazzo et al., 2013) and second (Im et al., 2015b; Gior-
dano et al., 2015) phases of AQMEII, as well as for other
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studies (Katragkou et al., 2015), emphasizing the strong de-
pendence of regional models on the lateral boundary, whose
effects propagate far into the interior of the domain.

Towards the interior of the EU domain (stations 134, 157,
242) the profiles are in closer agreement with the obser-
vations, with the WRF-CMAQ1 model performing the best
throughout the troposphere, possibly due to the overestima-
tion of the entrainment of upper tropospheric ozone, as re-
vealed by the strong gradient of WRF-CMAQ1 at 6000 m
(Fig. 19). With respect to the other models (and SILAM in
particular), the CMAQ runs show larger ozone availability in
the residual layer above the PBL, which acts as a reservoir
of ozone that becomes depleted the next day, increasing the
concentration at the surface. It is possible that the PBL and
vertical mixing within these models is too weak (Appel et al.,
2016). Further analyses restricted to specific season and time
of the day are required to validate this hypothesis.

For NA (Fig. 20), the general tendency is of slight-to-
consistent (stations 71 and 75) overestimation within the
PBL, underestimation for the WRF-CMAQ model, over-
estimation (stations 107, 456, and 458 – afternoon–night
launches) at the surface, and mild underestimation above the
PBL for the WRF-DEHM model.

3.3.8 Relationship between the bias of ozone, NOx and
Temperature

The relationship between the bias of NO and the bias of
ozone is reported in Fig. 21 for the EU2 region (similar plots
including the bias of NO2 for EU and NA are provided in
the Supplement). A linear relationship between the biases of
the two species is detectable, which is more evident in winter.
Large positive ozone bias is driven by underestimation of NO
(a primary species), whereas the largest negative ozone bias
corresponds to the largest overestimation of NO. The role
of the temperature bias is less clear, but the NO2 and ozone
relationship (Fig. S7) suggests that large NO2 bias is associ-
ated with temperature underprediction. The partition of NOx
emission into primary NO and NO2 seems to suggest that the
models adopting a 95 / 5 % ratio suffer lower ozone bias (at
least in winter), although in general the clustering of mod-
els based on the NO /NO2 share of total NOx emission is far
from robust. A simple linear regression between NO bias and
ozone bias (based on the yearly time series) among the EU
models suggests that the NOx and temperature biases can ex-
plain, on average, ∼ 35 and ∼ 16 % of the variability of the
ozone bias, respectively.

3.3.9 SO2

SO2 is another primary regulated pollutant, which in EU and
NA, is mainly emitted from coal power plants and also from
the residential heating and waste disposal sector. SO2 acts
as a precursor to sulfates, which are one of the main com-
ponents of PM in the atmosphere. Any error in SO2 is

likely inherited by these secondary species. The majority
of models employed the prescribed vertical distribution by
EMEP (Vestreng and Støren, 2000), while CMAQ4 in EU
and WRF-CMAQ in NA adopted the Briggs plume rise algo-
rithm (Briggs, 1971, 1972) accounting for the effects of mod-
eled meteorology. SILAM, CHIMERE, and CCLM-CMAQ
adopted the sector-dependent vertical emission profiles as in
Bieser et al. (2011b). The EEA reports an estimated uncer-
tainty for SO2 emission of ∼ 10 % (EEA, 2011); therefore,
SO2 emissions are expected to be more accurate than NOx
emissions. This is reflected in the low bias in both continents
(∼ 1–2 ppb in winter, mostly due to model underestimation;
Figs. 22 and 23). The averaged observed concentration of
SO2 is 1.92 and 2.7 ppb in EU and NA, respectively.

The seasonal modeled error for SO2 ranges, on average,
between 0.65 and 1.3 ppb in EU and between in excess of
∼ 1 and 5 ppb in NA (the maximum error in NA2), peaking
in autumn.

In EU and NA1, the error of the ID, DU, and SY compo-
nents is comparable for all seasons and is, on average, be-
low 0.6 ppb. There are some exceptions, most notably the
WRF-CMAQ3 model, which is the only one biased signif-
icantly high (Fig. 23a) and it shows an excess of variance
significantly larger than the other models. By contrast, WRF-
Chem2, CHIMERE, and LOTOS-EUROS shows significant
low bias (the latter two models have the smallest number
of vertical layers). Overall, though, the bias error does not
group consistently by PBL scheme and/or vertical resolu-
tion. For example, CMAQ2, CMAQ3, and CMAQ4 employ
the same PBL scheme based on ACM2 and have a compara-
ble number of vertical levels (CMAQ3 has even more), but
the bias of CMAQ3 is much larger than that of CMAQ4 and
CMAQ2, which in turn have comparable bias but opposite
in sign. The two instances of WRF-Chem show significantly
different bias, which might be due to the different PBL and
cloud schemes, influencing the SO2 oxidation (Table 2).

The large variability of the model-to-model error (espe-
cially in EU) and correlation coefficient for both continents
is an indication that the mechanisms governing the initial
mixing and subsequent transport and chemical transforma-
tion suffer from different sources of error at all scales. In
no instance is the correlation coefficient consistently above
0.5 for all seasons and spectral components, while there are
several instances of negative correlation between the spec-
tral components of observed and modeled SO2 (e.g., CCLM-
CMAQ model in EU and several others). The poor correla-
tion coefficient of especially the ID and DU components for
both continents indicates that the peaks of the SO2 concentra-
tion are not caught by the models, leading to low precision.
Although the mean fluctuations are generally well repro-
duced (low variance error for both continents), there remains
a significant portion of unexplained variance (mMSE) error,
which can derive from meteorology and chemistry. Bieser et
al. (2011b) showed that the height of the release and vertical
distribution of the SO2 emissions influence the SO2 /SO4 ra-
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Figure 21. Ozone vs. NO modeled mean bias for the EU2 subregion, color-coded by temperature bias and symbols according to the NOx
emission fraction of NO and NO2. Each point represents a model. (a) Winter months and (b) summer months.

tio since the oxidation (aging) of SO2 is more effective if the
emissions are higher up. Since power plants are the major
source of SO2, further analysis should investigate the impact
of differences in the vertical emission distribution between
models.

3.3.10 Particulate matter

PM, in both the fine and coarse fraction, is directly emitted
by biomass and fossil fuel combustion in domestic and in-
dustrial activities, and it is also formed from precursors in
the atmosphere.

From the AQMEII3 suite of model runs, the error for PM
is evaluated for PM10 in EU and PM2.5 in NA. The choice
is dictated by the availability of hourly measurements in the
two continents. The RMSE distribution is reported in Fig. 24
(PM10 for EU) and Fig. 25 (PM2.5 for NA). The error distri-
bution for EU reveals that despite the large number of model-
ing options and parameters characterizing the chemistry and
physics of particles, the error distribution for DU and SY is
homogeneous among the EU models. For these components
the error is approximately uniform over seasons, although
with some exceptions (it is significantly higher in EU3, al-
though this is based on two receptors only). EU3 is a small
area compared to EU1 and EU2, but it is densely populated,
intensively farmed, and has a large amount of wood burning
in winter and agricultural area in summer. It is surrounded
by mountains and stagnant flow conditions are predominant.
Thus, it is a challenging area for current modeling systems,
especially for primary species such as PM.

The LT component shows some significant model-to-
model variations due to the WRF-CAMx and WRF-CMAQ1
models, which have a lower error in spring and summer com-

pared to the other models, while the CCLM-CMAQ model
has a higher LT error in EU1.

The magnitude of the SY error in EU is on average
∼ 6 µg m−3 during winter, with a peak of 10.5 µg m−3 in
EU2 (WRF-CAMx model). The magnitude of the DU error is
lower (∼ 2–2.5 µg m−3 in EU1 and EU2, and ∼ 5–6 µg m−3

in EU3), with the largest share in autumn, spring, and winter
and slightly lower in summer. The error of the LT component
ranges between ∼ 11 and 15 µg m−3 in EU1 and EU2 and up
to 25 µg m−3 during winter in EU3.

The analysis of the correlation coefficient reveals that
the model-to-model differences in the correlation coefficient
with the observed component time series tend to be most pro-
nounced for the DU and ID components, indicating that these
two components are pivotal in determining the overall model
skill in terms of capturing observed fluctuations in PM10 con-
centration. In more detail, the correlation is poor for the DU
component (especially in EU2 and EU3, Table S9), possi-
bly due to PBL dynamics and emission profiles (as discussed
above for the RMSE at the DU scale). The LT component has
correlation values varying highly among models and among
seasons for the same model (e.g., the LT correlation of the
WRF-CMAQ4 model in EU3 is ∼ 0.9 during spring but only
0.35 in summer).

In winter the LT and SY error is more severe, likely due
to the larger uncertainties in PM10 emissions of combustion
processes (wood burning, residential heating), as well as due
to the current limitations in modeling the vertical mixing dur-
ing stable conditions, as mentioned for the gaseous species
(especially CO, being another primary species). The major-
ity of the EU models show an LT error in winter between 12
and 16 µg m−3, eight models above 16 µg m−3, and only one
(WRF-CAMx) below 10 µg m−3. The absence of background
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Figure 22. As in Fig. 9 but for SO2.
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Figure 23. As in Fig. 10 but for SO2.

sea salt for all EU models (see end of Sect. 2.3) can also be
responsible for low bias of the LT component for PM10, es-
pecially in the vicinity of the coastline.

The SY winter error exceeds 5 µg m−3 for all models
(all subregions) and three instances (WRF-CAMx, WRF-
Chem1, and WRF-Chem2, the latter showing the highest ac-
cumulated deposition for PM2.5; Fig. S11) report an error
above 7.5 µg m−3, possibly due to the low nitrate concentra-
tion and high sulfate concentration during winter months, re-
sulting from the GOCART parameterization of the aqueous
cloud chemistry. All the remaining models have compara-
ble mMSE and variance errors (Fig. 26) and are biased low
(model underprediction), possibly due to missing PM source
and overestimated surface wind speed. As for the WRF-
CAMx model, the low bias on the LT component and the rel-
atively high mMSE error in the SY fraction suggest that the
model was able to capture the mean magnitude of PM con-

centration over the entire year, but it failed in reconstructing
the correct variability of the different episodes, whose timing
is generally driven by the synoptic timescale.

The analysis of corr (biasTemp, biasPM10)LT shows that the
error of these two variables is related, especially during the
spring months and more consistently in EU3 (up to 0.74 for
the WRF-Chem1 model) and during autumn in EU1 (the bias
of temperature and the bias of PM10 are anticorrelated up
to −0.67 for CMAQ1). Conversely, other models (e.g., the
CAMx model) do not show any significant correlation.

The PM2.5 evaluation for NA is restricted to two models,
WRF-DEHM and WRF-CMAQ, which show comparable er-
ror (Fig. 25). The WRF-CMAQ (WRF-DEHM) model has an
error ranging between ∼ 3.5 (∼ 2) and ∼ 6 (∼ 8.5) µg m−3.
The main contribution to the total error stems from the LT
component (predominantly negative bias) and from the SY
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Figure 24. As in Fig. 9 but for PM10 in Europe (error units in µg m−3).

component (2–3 µg m−3). The DU component contributes to
about 1.5 µg m−3 (comparable mMSE and variance error).

Both NA models are biased low in summer (all subre-
gions), which can be attributed to limitations in the SOA
mechanism (Zare et al., 2014). Because of the higher con-
tribution of primary PM2.5 to total PM2.5 during winter, dif-
ferences in horizontal and vertical resolution (Table 1) likely
contribute to the difference in winter LT bias. The correlation
coefficient for the two models is generally higher in winter
(full time series) and deteriorated for the DU component (all
seasons and subregions).

As inferred for the species discussed above, the unifor-
mity of model behavior is indicative of errors stemming
from external fields, likely emissions, where missing sources
of PM can affect the error within certain timescales for all
models. Further common causes of error are intrinsic to the
model–observation comparison because modeled PMs are
commonly dry, while this is not always the condition for
the measurements. For instance, the filter-based gravimet-

ric measurements as recommended by the European Com-
mittee for Standardization (CEN) are likely to retain part of
the particle-bound water after filter conditioning at a constant
temperature of 20 ◦C and relative humidity of 50 %. Recent
findings by Prank et al. (2016) report the aerosol water con-
tent from the gravimetric measurements to range between 5
and 20 % for PM2.5 and between 10 and 25 % for PM10. The
particle-bound water was found to be associated with hy-
groscopic particles such as sulfate, nitrate, and organic com-
pounds. This remaining water content can be up to approxi-
mately 10–35 % depending on the chemical composition of
aerosols being measured (Tsyro, 2005; Kajino et al., 2006;
Jones and Harrison, 2006). The water aerosols should there-
fore be accounted for when compared with these measure-
ments. Part of the problem lies in secondary organic aerosol.
In winter, in particular for the wood burning part of the emis-
sions, there are condensable gases that rapidly change to the
aerosol phase but are missed since they are not part of the
presently used PM emission inventory. In summer, biogenic
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Figure 25. As in Fig. 9 but for PM2.5 in North America (error units in µg m−3).

Figure 26. As in Fig. 10 but for PM10 in Europe (error units in µg m−3).
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Figure 27. As in Fig. 10 but for PM2.5 in North America (error units in µg m−3).

emissions that contribute to SOA formation and their yields
are quite uncertain. A good representation of SOA is still
a problem for all models. In spring, the application of ma-
nure and fertilizer leads to peaks of NH3 emissions and sub-
sequent NH4 aerosol formation, contributing to PM10 and
PM2.5. The timing of these emissions is parameterized based
on long-time averages, whereas in practice they are strongly
related to meteorology. This can explain part of the discrep-
ancy between the diurnal and synoptic timescales (Hendriks
et al., 2016).

4 Memory of the signal and removal processes: the
case of ozone

The evaluation of the removal processes (chemical transfor-
mation, transport, and deposition) is difficult to assess in
isolation with respect to other sources of error because of
the bias of the signal. In this section we propose a bias-
independent spatial analysis aimed at the quantification of
the memory of the signal. The analysis seeks the time inter-
val (or memory) after which the signal loses any memory of
its past. The memory of the modeled and observed signals is
then compared. The methodology consists of

1. calculating the autocorrelation function (acf) of the
modeled and observed LT components;

2. calculating the quantity acfmod=0 and acfobs=0, i.e., the
lag (time interval) where the acf of the modeled and ob-
served LT components falls to zero; and finally

3. determining the difference between the two, which
yields the difference between the modeled and observed
memory of the signal:

1memory = acfmod=0− acfobs=0. (9)

The acf is simply a measure of the degree of associativity
of a time series with its lagged version. The associativity is
typically measured through the correlation coefficient, and
the lag extends from one time step (1 h in the case of hourly
time series) to one-third of the length of the time series. Be-
cause the correlation is bias-independent, we conclude that
the acf is also bias-independent; therefore, information from
1memory is useful for the interpretation of the variance and
covariance errors discussed in Sect. 3.1. The memory of the
signal is different from the persistence indicator (previous
day concentration) as used by Otero et al. (2016), for ex-
ample, for accounting for pollutant episodes. As we deal
with the LT component of the signal, short-term and synoptic
episodes are in fact filtered out in this analysis.

In Figs. S9 and S10, the acf for the network-wide spatial
average and for the full year are reported. The acf is cal-
culated for the LT component of the observed (first panel)
and modeled ozone time series. The zero of the acf and the
slope of the decay of acf of the observations (approximately
a straight line from 1 to 0 in 2000 h) are replicated by the
models with various degree of success (Fig. S10). Our in-
tent is to apply this analysis to the seasonal ozone time se-
ries at each receptor and derive useful information about the
modeled removal–production processes. The spatial analysis
is proposed for ozone for the months of May to September
(Figs. 28 and 29) and for the full year (Figs. S9 and S10).

The average lifetime of ozone in the troposphere is of ap-
proximately 20–30 days (Solomon et al., 2007). By analyz-
ing the LT component (processes >∼ 21 days), we therefore
screen out the daily removal–transformation due to chemistry
and can focus on seasonal transport, deposition of the free
tropospheric ozone, long-term chemistry (seasonal changes
in vegetation that affect biogenic VOC emissions and ozone
deposition, and also the monthly variations applied to the
anthropogenic emission), and influence of boundary condi-
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Figure 28. Spatial map of the ozone monitoring stations colored based on the “delta hour” values, i.e., the difference in hours between the
zero of the autocorrelation function (acf) for the modeled ozone minus the zero of the acf of the observed one. The acf is calculated on the
long-term component for the months of May to September. Negative values indicate too-short memory and excess of removal (vice versa for
positive values). The box on the right summarizes the delta hour percentile distribution.
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tions. The structure of the acf also benefits from the removal
of short timescale processes because it is less affected by
noise and the results are easier to interpret.

The spatially distributed 1memory shows some clear
regional effects for the majority of the models. The
1memory> 0 along the Mediterranean coast of Spain and
France, with some severe excess of ozone production (or
underestimation of sinks) in southern-central France for
some models (SILAM, WRF-CAMx, WRF-CMAQ1, WRF-
CMAQ2, and especially the LOTOS-EUROS model, for
which the acf at the French receptors did not reach zero).

The region covering the Po Valley, Italy, and extending
into continental eastern EU is affected by negative 1memory
(sometimes a deficit of 1 month for some models). The neg-
ative memory indicates that the observed signal is more per-
sistent than the modeled one and that long-term weather tran-
sitions are smoother in gradient and longer in duration. Thus,
the seasonal modulation of the signal is overestimated by the
models, which produces variance error. Coupling the two be-
haviors (excess of ozone in southern France and southern
Spain with the short memory from the interior of eastern EU
extending to the Po Valley) might indicate an easterly synop-
tic transport of ozone (or of LT ozone precursor, such as the
impact of CH4 and CO on OH and photochemistry) masses
whose duration is underestimated by the models. The rela-
tionship between the sign of 1memory and the land use type
(vegetation vs. urban) is the subject of ongoing investigations
in the attempt to determine the role of VOC emissions and
deposition over different land types.

The central part of Germany is affected by positive (on av-
erage in the range of 7 to 10 days)1memory, mostly visible for
the HTAP-emission-based SILAM and CHIMERE results, in
contrast with the MACC-emission-based results of the same
models. When the HTAP inventory is used, the largest differ-
ences are observed in central EU regions, indicating that the
LT chemistry also plays a role.

The deposition aspect of removal can be as equally im-
portant as transport and chemistry. The memory of the sig-
nal directly depends on the amount of ozone available and a
large negative 1memory might indicate that the deposition is
too high.

For NA (Fig. 29), the feature common to all models is the
excess of removal on the southern Atlantic coast and across
the eastern Canadian border. In contrast, the central-eastern
part of the US shows large positive 1memory values (up to
∼ 1.3 month for the WRF-DEHM model), with the exception
of the WRF-CMAQ model, which is overall in line with the
observed memory of the signal in this part of the domain.
This result agrees with the seasonal phase analysis for ozone
in global models by Bowdalo et al. (2016), where a delay of
up to 4 months was detected for the eastern US.

The west coast has a mixed behavior, but1memory is preva-
lently negative. The hypothesis that too little ozone enters
the domain through the boundary conditions is contradicted
by the 1memory∼ 0 for a full year on the west coast (see

Fig. S10). A potential excess of transport in this region also
seems to be contradicted by the large number of stations for
which 1memory is positive. A possible conclusion is that lo-
calized biogenic emission sources, radiation budget, and de-
position are the main factors responsible for the negative sign
of 1memory in this region.

5 Conclusions

The work presented in this paper summarizes the results
of the third phase of the AQMEII activity focusing on AQ
model evaluation, applied to the continental-scale domains of
Europe and North America. The evaluation of the AQMEII3
suite of model runs is carried out for surface temperature,
wind speed, and direction and for the species CO, NO, NO2,
ozone, SO2, PM10 (EU), and PM2.5 (NA). Additional analy-
ses making use of emission reduction scenarios (CO and NO)
and vertical profiles were also performed.

This work is primarily meant to provide a wide overview
of the performance of current regional AQ modeling systems
and to set the basis for additional diagnostic analysis that is
currently in progress.

The model evaluation is carried out by quantifying the
components of the error (bias, variance, mMSE) at four
timescales (ID, DU, SY, LT), each describing physical pro-
cesses in a specific time range. The bias and variance mea-
sure the departure from the first and second moment of the
observed distribution (mean and standard deviation), while
the mMSE accounts for the unexplained observed variabil-
ity. The apportionment of the error to the relevant timescales
and the analysis of the quality of the error revealed that the
LT bias is by far the biggest cause of error, followed by the
variance error (fluctuations about the mean value) of the DU
component and the unexplained variance of the DU and SY
components, depending on the species and season. In more
detail:

– The mean concentration of the primary species (NO,
CO, PM10, SO2) is underestimated by the vast majority
of the models on both continents, more markedly dur-
ing the winter and autumn seasons. The largest share of
error for these species is the bias of the LT components,
most probably due to error of the fluxes at the bound-
aries (emission, deposition, and boundary conditions)
and to the effects of comparing point measurements to
volume-averaged concentrations.

– The bias is by far the primary source of error and the
most important from a model evaluation–development
point of view. Because it is essentially a shift of the
mean concentration, the causes of it need to be sought
in processes and conditions at the boundaries that have a
systematic effect of displacing the concentration values
while approximately preserving the shape of the distri-
bution. Thus, processes like emission timing, chemistry
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Figure 29. As in Fig. 28 but for North America.

transformation, autocorrelation structures, stratospheric
intrusion, and atmospheric stability are not likely re-
sponsible for systematic bias-type error (though they
can be a source of casual inaccuracy for limited peri-
ods). Conversely, deposition fluxes, magnitude of emis-
sion, and input from the lateral boundaries are more
probable sources of bias error. The effect of meteorol-
ogy is more complex because errors in synoptic circu-
lation can cause surface wind velocity and direction to
be inaccurate, and thus negatively impact the long-term
modeled concentrations, causing bias error.

– The meteorological fields of temperature and wind
speed are consistently biased low and high, respec-
tively. Based on the results of the European models
directly driven by the global fields for meteorology
(e.g., SILAM, CHIMERE), the error for wind speed is
of ∼ 0.5–1 m s−1 and of ∼ 0.4–1.2 K for temperature.
These errors can be considered as the uppermost limit
the accuracy of the models can currently achieve. The
use of nudging and interpolation methods (specific to
the configuration of the meteorological model) can add
more than 1.5 K and 2 m s−1 to the total error. The anal-
ysis of the available vertical profiles suggests that the
models overestimate the wind speed within the PBL and

vice versa above the PBL, possibly inducing a net out-
ward flux of pollutants at the PBL interface.

– Modeled CO is affected by high errors, uniformly across
models and components and more pronounced in win-
ter. It is also predominantly driven by the negative bias
of the LT component, followed by variance error of
the SY component. Modeled NO and NO2 also report
negative bias but in contrast to CO, there is significant
model-to-model difference in error variability, possibly
due to the chemistry of NOx . The SY and DU errors of
NO are comparable in magnitude (3–5 ppb) and mostly
due to mMSE error. Preliminary sensitivity investiga-
tions for CO and NO seem to suggest that at most ∼ 50
and ∼ 35 % of the total error, respectively, could be due
to emissions.

– The error analysis for ozone shows large model-to-
model variability for all errors and spectral components,
with the exception of the SY component for which the
error is similar among models and possibly driven by
the error in temperature and in the boundary conditions.
This is because modeled vertical ozone profiles near
the domain’s boundaries are typically underestimated in
both continents by all models. The bias is prevalently
positive, while the variance error is generally small.
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While the bias error for ozone is likely driven by error
in NOx emissions, the error in meteorology may factor
in determining the mMSE and variance error. In fact,
there are several models for which the bias of tempera-
ture and the bias of NO2 are strongly associated with the
DU error of ozone. A simple linear regression between
NOx bias and ozone bias (based on the yearly time se-
ries) among the EU models suggests that the NOx and
temperature biases can explain, on average, ∼ 35 and
∼ 16 % of the variability of the ozone bias, respectively.
Ongoing analyses are focusing on explaining the ori-
gin of the mMSE error by investigating the phase shift
between the modeled and observed DU and SY compo-
nents as well as focusing on looking at maximum daily
values rather than at the full time series.

– PM analysis (PM10 for Europe and PM2.5 for North
America) reveals that for Europe the error distribution
for DU and SY is homogeneous and season independent
among the models, despite the large numbers of model-
ing options and parameters characterizing the chemistry
and physics of particles. A common source of model
bias (model underestimation, especially in winter) for
PM10 likely lies in the emissions (missing sources) and
in the overestimation of surface wind speed, whereas
variance error may stem from PBL dynamics under sta-
ble conditions and missing processes in the model (SOA
formation is a known issue for all models). The analysis
of PM2.5 (based on two models only) shows an excess
of variance and low correlation coefficient in the DU
component, possibly due to the timing of the PM cycle.
Further analyses dealing with the PM components are
needed.

– The analysis of the memory of the ozone signal has
revealed a strong model deficit in continental Europe,
where the seasonal modulation of ozone is overesti-
mated by the majority of the models. The opposite holds
true in the continental US.

Although remarkable progress has been made since the first
phase of AQMEII, both in terms of model performance and
in terms of developing a more versatile and robust evalu-
ation procedure, results of AQ model evaluation and inter-
comparison remain generic since they fail to associate errors
with processes, or at least to narrow down the list of pro-
cesses responsible for model error. AQ models are meant to
be applicable to a variety of geographic (and topographic)
scenarios under almost any type of weather, season, and
emission conditions. For such a wide range of conditions the
inherent nonlinearity among processes is difficult to disen-
tangle, and specifically designed sensitivity runs seems to
be the only viable alternative. A model evaluation strategy
relying solely on the comparison of modeled vs. observed
time series would never be able to quantify exactly the er-
ror induced by biogenic emissions, vertical emission profiles,

or their dependence on temperature, deposition, and vertical
mixing, for example, and the analyses presented in this work
are no exception. In fact, the methodology devised to carry
out the evaluation activity in this study has not succeeded in
determining the actual causes of model error, although it does
provide much clearer indications of the processes responsible
for the error with respect to conventional operational model
evaluation.

The highly nonlinear nature of current AQ models requires
the study of the relationships among error fields, meteorolog-
ical drivers, and precursors. When the seasonal and spectral
structures of these relationships are analyzed together with
the error of the input fields (emissions and boundary condi-
tions), then it would be possible to diagnose and accurately
explain the processes responsible for the error. Future AQ
model evaluation activities should envision sensitivity simu-
lations and process specific analyses. The “theory of evalua-
tion” based on information theory currently being developed
by the hydrology modeling community (Nearing et al., 2016,
and references therein) is a promising way forward and the
AQ community should be prepared for those developments.

Ongoing work (Solazzo et al., 2017) is being devoted to
deepening the investigation into causes of model errors by
focusing on two models (CMAQ for NA and CHIMERE for
EU), for which additional model runs were carried out to
frame the effect of fluxes (emissions, boundary conditions,
and deposition) on modeled ozone.

6 Data availability

The modeling and observational data generated for the
AQMEII exercise are accessible through the ENSEMBLE
data platform (http://ensemble3.jrc.it/) upon contact with
the managing organizations. References to the repositories
of the observational data used have been also provided in
Sect. 2.3.2.

www.atmos-chem-phys.net/17/3001/2017/ Atmos. Chem. Phys., 17, 3001–3054, 2017

http://ensemble3.jrc.it/


3046 E. Solazzo et al.: Multivariable temporal and spatial breakdown

Appendix A

Following Hogrefe et al. (2000) and Galmarini et al. (2013),
the time windows (m) and the smoothing parameter (k)were
selected as follow:

ID(t)= x(t)− kz3,3(x(t))

DU(t)= kz3,3(x(t))− kz13,5(x(t))

SY(t)= kz13,5(x(t))− kz103,5(x(t))

LT(t)= kz103,5(x(t))

x(t)= ID(t)+DU(t)+SY(t)+LT(t), (A1)

where x(t) is the time series vector. The additive property of
the components whose summation returns the original time
series might be questioned. In the original work by Rao et
al. (1997) the importance of log-transforming the compo-
nents to stabilize the variance is highlighted. In the case of
log-transformation, the original time series is obtained by
the product of exponential functions whose exponents are the
spectral components. For the purposes of the error apportion-
ment analysis presented here, the results of using the additive
time series component of log-transformation did not produce
substantial differences.

A clear-cut separation of the components of Eq. (A1) is
not achievable since the separation is a nonlinear function
of the parameters m and k (Rao et al., 1997). It follows that
the components of Eq. (A1) are not completely orthogonal
and that there is some level of overlapping energy (Kang et
al., 2013). Galmarini et al. (2013) found that the explained
variance by the spectral components accounts for 75 to 80 %
of the total variance, the remaining portion coming from the
interactions between the components.

Appendix B

Statistical indicators are as follows:
root mean square error as

RMSE=

(∑n
i=1(Mi −Oi)

2

n

)0.5

,

mean bias (MB) as

MB=
1
n

∑n

i=1
Mi −Oi,

and Pearson correlation coefficient (r) as

r =
1

n− 1

∑n

i=1

(
Mi −M

σM

)(
Oi −O

σO

)
,

where M and O are the n element-modeled and -observed
time series, respectively, σ is the standard deviation, and the
overbar indicates temporal averaging.
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