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SHORT ABSTRACT 

For the first time, a multi-band body-worn distributed exposimeter (BWDM) calibrated for 

simultaneous measurement of the incident power density (Sinc) in 11 frequency bands, is proposed. 

The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on five human 

subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence 

interval (CI68) of the on-body antenna aperture. The BWDM has a CI68 range of 2.7-8.8 dB for the 

five subjects participating in calibration measurements. The results show that using a combination 

of two antennas on the body leads to a maximum 0.1-3.2 dB difference in CI68 values for different 

body morphologies. 

 

INTRODUCTION 

Human exposure to radiofrequency (RF) electromagnetic fields is usually measured by Personal 

Exposimeters (PEMs) [1, 2]. These portable body-worn devices allow for continuous measurement 

of the electric fields strength in several frequency bands for which protocols have been developed 

[3]. The main disadvantage of these portable devices is that they are calibrated in free space while 

used on body. In other words, the measured values are compromised by the presence of the human 

body and thus have large measurement uncertainties [4]. Large variations in response of PEMs 

have been reported up to 35 dB [5]. A personal distributed exposimeter (PDE) with multiple 

antennas can be used to reduce this measurement uncertainty [6, 7]. In [6], a single band PDE was 

proposed using calibration measurements in an anechoic chamber but has not been used outside 

the lab. In [7, 8] a PDE was proposed for GSM 900 MHz downlink and WiFi 2 GHz bands. To the 

best of authors’ knowledge to date, a multiband PDE has not been proposed to measure personal 

exposure to the present telecommunication signals including long term evolution (LTE) band.  

 

In this study, for the first time, a multi-band body-worn distributed-exposimeter (BWDM) is 

proposed and the effect of human body morphology is investigated. The BWDM measures the 

incident power density (Sinc) using multiple antennas. Compared to PEMs used previously, the 

proposed BWDM has a lower measurement uncertainty. This device is useful for indoor and 



outdoor epidemiological studies - carried out mainly by volunteers - to relate health effects to 

incident field levels.  

 

MATERIALS AND METHODS 

 

The BWDM is designed and calibrated for measurements of actual Sinc for 11 frequency bands: 

LTE 800 and 2600 MHz, 900 MHz, 1800 MHs, 2100 MHz, DECT, Wi-Fi 2 GHz and 5 GHz 

including uplink (UL) and downlink (DL) bands. The BWDM consists of 22 nodes distributed in 

an optimal way on the front and back of the human torso as well as right and left hips. Selection 

of front and back and right/left is to avoid body shielding during the real measurements [7]. Each 

node consists of wearable elliptically polarized textile substrate-integrated-waveguide (SIW) 

antennas accompanied by a receiver circuit. The antennas are designed to have a power reflection 

coefficient of lower than -10 dB in the desired frequency bands. Each node has a sample interval 

of 1 Hz and a dynamic range of 80 dB. All the nodes are integrated into an outdoor garment and 

are synchronized with a master node via a custom bus protocol. Each node has an area of maximum 

11 × 11 cm2.   

 

The location of antennas on body are optimized by calibrating the BWDM on a 28-year old male 

subject with a body mass index of 23.6 kg/m2. A calibration procedure is proposed to concurrently 

determine an optimized location for each antenna per frequency band as well as an effective on-

body antenna aperture (AA) for that location. Two nodes (RX) of the same frequency band are 

placed on a grid of 2×2×5 (on torso) + 2 (on hips). For all frequency bands each pair of antenna is 

placed on diametrically opposite locations on body (considering right/left: 51 combinations) [9]. 

In order to examine all the locations for all bands 2244 measurements (11 bands × 4 polarizations 

× 51 combinations) would be needed. This was more feasible in a realistic time space. Therefore, 

a set of locations on body are selected randomly for each frequency band covering all the proposed 

locations on body and thus 120 measurements were performed.  

First, the subject rotated 360º around his axis perpendicular to the ground floor of the anechoic 

chamber in the far field of a transmitting horn antenna (TX) with an input power of 20-60 mW 

(fixed in each frequency band). The rotation is repeated for both polarizations (V and H) of the TX 

resulting in the received powers on body 𝑃𝑟
𝑉(𝜑) and 𝑃𝑟

𝐻(𝜑). Second, the free-space incident power 

densities (𝑆𝑖𝑛𝑐
𝑓𝑟𝑒𝑒,𝑉

, 𝑆𝑖𝑛𝑐
𝑓𝑟𝑒𝑒,𝐻

) are measured at the subject’s place for both polarizations of the TX. 

Third, the on-body received powers  𝑃𝑟
𝑉(𝜑) and 𝑃𝑟

𝐻(𝜑) are averaged geometrically over the two 

nodes for each band. Both orientations of the RX are examined. Fourth, using the received powers 

on body are used to determine the geometric averaged AA of the BWDM for any realistic 

polarization: 

 

𝐴𝐴(𝜑, 𝜓) =
𝑃𝑟

𝐻

𝑆𝑖𝑛𝑐
𝑓𝑟𝑒𝑒,𝐻

𝑐𝑜𝑠2(𝜓) +  
𝑃𝑟

𝑉

𝑆𝑖𝑛𝑐
𝑓𝑟𝑒𝑒,𝑉

𝑠𝑖𝑛2(𝜓)                                     (1) 

 

Where 𝜓 is the polarization of an incident electric field. 𝐴𝐴(𝜑, 𝜓) is determined for 1000 𝜓 

samples (drawn from a uniform distribution) in a loop with 100 repetitions to assess reproducibility 

of the distribution of 𝐴𝐴(𝜑, 𝜓). Finally, for each frequency band the combination (location and 

polarizations H/V for each node) with the minimal 68% confidence interval (CI68) is chosen as the 

optimized arrangement of nodes on body as shown in Figure 1. 



 
 

Figure 1.Optimized position and polarization of 22 nodes on body (28-year old male subject). The arrow indicates 

H/V polarization of each node. 

 

Using the optimized location and polarization of the nodes, the BWDM is worn by 4 more people 

and the same on-body calibration setup is used to determine the on-body antenna aperture as well 

as the effect of body morphology on the BWDM’s measurement uncertainty. Table 1 lists 

characteristics of the people participating in this study. It must be noticed that subject A is the male 

subject for whom the nodes are optimized. 

  
Table 1. Characteristics of the subjects participated in calibration measurements. 

 

Subject Gender Age Height (m) Weight (kg) BMI (kg/m2) 

A Male 28 1.83 79 23.6 

B Male 61 1.78 81 25.5 

C Male 39 1.69 95 33.2 

D Female 39 1.67 65 23.3 

E Male 43 1.78 76 23.9 

 

 

RESULTS 

 

Figure 2 shows the minimal 68% confidence interval (CI68) of the on-body antenna aperture for 5 

people per frequency band. Figures 2a and 2b show that the single exposimeter configuration on 

front and back have much larger uncertainties (up to 27 dB) than the uncertainty with 2 

exposimeters configuration in Figure 2c (2.7-8.8 dB). For the optimized BWDM this is an 

improvement of up to 22 dB (with respect to front/back) for all subjects in the 11 studied frequency 

bands. Moreover, the calibration measurements show that the measurement uncertainty in different 

frequency bands, in terms of CI68, can be reduced when 2 antennas are placed on body. These 

results are much lower than CI68 of a commercial exposimeter (ExpoM-RF 64), calibrated on the 

left hip of a male subject [10]. These results are consistent over all subjects. 

 



The difference in CI68 is in the range of 0.1 to 3.2 dB for 5 different morphologies in all frequency 

bands. For example, subjects D and E have almost similar CI68 values for 5/11 bands: GSM 900 

DL, GSM 1800 UL, DECT, WiFi 2 GHz and LTE 2600. This can be explained by their similar 

BMIs that can lead to a similar shielding effect. The different values for D and E in other frequency 

bands (3.2 dB at GSM 1800 DL) could be due to the different dielectric properties of body tissues 

for D (female) and E (male).  

 

 
     

Figure 2. Minimal 68% confidence interval of the median on-body antenna aperture for each person per frequency 

band. 

 

CONCLUSIONS 

We propose a multi-band body-worn distributed-exposimeter (BWDM) for simultaneous on-body 

measurements of the incident power density in 11 telecommunication bands. The BWDM is 

designed and calibrated on-body in an anechoic chamber. An optimal placement of 22 antennas 



on body in the 11 frequency bands is determined. Once the BWDM is optimized, the calibration 

procedure is repeated for 4 people to study the effect of body morphology on the measurement 

uncertainty of the BWDM in terms of 68% confidence interval of the on-body antenna aperture. It 

is shown using multiple antennas on body for each frequency band reduces the measurement 

variation for all subjects. A combination of 2 antennas on diametrically opposite locations on body 

leads to 0.1-3.2 dB difference in combined CI68 values for various subjects with different body 

morphologies. 
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