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Abstract 28 

Total individual concentrations (in both gaseous and particulate phases) of 80 polycyclic 29 

aromatic compounds (PACs) including 32 nitro-PAHs, 27 oxy-PAHs (polycyclic aromatic 30 

hydrocarbons) and 21 parent PAHs have been investigated over a year in the ambient air of 31 

Grenoble (France) together with an extended aerosol chemical characterization. The results 32 

indicated that their concentrations were strongly affected by primary emissions in cold period, 33 

especially from residential heating (i.e. biomass burning). Besides, secondary processes 34 

occurred in summer but also in cold period under specific conditions such as during long thermal 35 

inversion layer periods and severe PM pollution events. Different secondary processes were 36 

involved during both PM pollution events observed in March-April and in December 2013. During 37 

the first one, long range transport of air masses, nitrate chemistry and secondary nitro-PAH 38 

formation seemed linked. During the second one, the accumulation of primary pollutants over 39 

several consecutive days enhanced secondary chemical processes notably highlighted by the 40 

dramatic increase of oxy-PAH concentrations. The study of the time trends of ratios of individual 41 

nitro- or oxy-PAHs to parent PAHs, in combination with key primary or secondary aerosol species 42 

and literature data, allowed the identification of potential molecular markers of PAH oxidation. 43 

Finally, 6H-dibenzo[b,d]pyran-6-one, biphenyl-2,2’-dicarboxaldehyde and 3-nitrophenanthrene 44 

have been selected to be the best candidates as markers of PAH oxidation processes in ambient 45 

air. 46 

 47 

Keywords: PAH, OPAH, NPAH, Aerosol, SOA, reactivity 48 
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 57 

1. Introduction 58 

 59 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental substances, mainly 60 

emitted by anthropogenic incomplete combustion processes (Keyte et al., 2013; Ravindra et al., 61 

2008; Shen et al., 2013). PAHs are of major health concern, because of their carcinogenic, 62 

mutagenic and teratogenic properties (IARC et al., 2010; Kim et al., 2013).  63 

In the atmosphere, PAH oxidation through homogeneous and heterogeneous reactions lead 64 

to the formation of oxy- and nitro-PAHs (Atkinson and Arey, 2007; Keyte et al., 2013). These 65 

latter species are also emitted concomitantly with PAHs during incomplete combustion processes 66 

(Chen et al., 2015; Karavalakis et al., 2010; Nalin et al., 2016). Oxy- and nitro-PAHs are 67 

potentially more mutagenic than PAHs (Durant et al., 1996; Jariyasopit et al., 2014a, 2014b; 68 

Pedersen et al., 2005; Rosenkranz and Mermelstein, 1985) and some of these substances are 69 

also suspected to be carcinogenic (IARC 2012, 2013). The identification of the origins of oxy- and 70 

nitro-PAHs is challenging, due to the coexistence of their primary and/or secondary sources 71 

(Keyte et al., 2013). Several compounds have been identified as typical PAH oxidation by-72 

products and may be used as indicators of such chemical processes. For instance, (E)-2-73 

formylcinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one are typical by-products of naphthalene 74 

and phenanthrene oxidation processes, respectively (Lee et al., 2012; Sasaki et al., 1997). 75 

Usually, molecular ratios between PAH derivatives and parent PAHs, or between well-known 76 

secondary and primary compounds are calculated in order to highlight the influence of primary or 77 

secondary oxy- and nitro-PAHs sources or to study the potential origin of these compounds. For 78 

instance, the concentration ratio of 2-nitrofluoranthene (2-NFlt, a secondary compound, Arey et 79 

al., 1986; Atkinson et al., 1990) to 1-nitropyrene (1-NP, a primary compound from diesel exhaust, 80 

Keyte et al., 2016) has been extensively used to assess the primary vs secondary sources of 81 

nitro-PAHs in ambient air (e.g. Albinet et al., 2007, 2008a; Bamford and Baker, 2003; Bandowe et 82 

al., 2014; Ciccioli et al., 1996; Huang et al., 2014; Marino et al., 2000; Ringuet et al., 2012a, b; 83 

Wang et al., 2014). Considering the same degradation rates for both compounds (Fan et al., 84 

1996), a ratio of [2-NFlt]/[1-NP] higher than 5 indicates the predominance of secondary formation 85 
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of nitro-PAHs while, a ratio lower than 5 highlights the strong influence of primary nitro-PAH 86 

emission sources. Quinones-to-parent PAH concentration ratios have also been investigated in 87 

order to evaluate the photochemical formation of oxy-PAHs during long range transport of air 88 

masses (Alam et al., 2013, 2014; Harrison et al., 2016).  89 

The overall objective of this work was to identify specific oxy- and nitro-PAHs, based on 90 

ambient air field analysis combined with literature knowledge, that could further be used as 91 

molecular markers of PAH oxidation and of secondary organic aerosol (SOA) formation in typical 92 

urban environment. The individual annual concentration trends of these compounds, specifically 93 

for substances known to be primary emitted or, conversely, by-products of secondary processes, 94 

together with characteristic polycyclic aromatic compound (PAC: PAHs, nitro- and oxy-PAHs) 95 

diagnostic ratios has also been investigated to evaluate the primary vs secondary sources of oxy- 96 

and nitro-PAHs. This work is an additional analysis of the PAC data already reported in a 97 

previous paper (Tomaz et al., 2016). 98 

 99 

2. Experimental 100 

2.1 Sampling site  101 

The measurement site was located at the urban background sampling station of “Les 102 

Frênes”, (45° 09' 41" N, 5° 44' 07" E, 220 m above sea level) in Grenoble (France) (Fig. A1), 103 

considered as the most densely populated urban area of the French Alps. The city is surrounded 104 

by three mountainous areas. Earlier studies showed that residential heating, mainly biomass 105 

combustion, accounts for the main source of PM2.5 during winter (Favez et al., 2010, 2012). In 106 

addition to traffic and residential emissions, a cement and two power plants are also local PM 107 

emitters. The frequent formation of thermal inversion layers in the Grenoble valley may lead to 108 

the stagnation of pollutants enhancing the PM pollution events at ground level.  109 

2.2  Sample collection 110 

Samples have been collected every third day for one year from 01/02/2013 to 01/03/2014, 111 

using two high volume samplers implemented in parallel (DA-80, Digitel) (sampling duration 24 h, 112 

30 m3 h-1, PM10 sampling head). The first high volume sampler was used to collect both gaseous 113 

(polyurethane foams, PUF, Tisch Environmental, L = 75 mm) and particulate phases (PM10, 114 
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Tissuquartz, Pallflex, Ø = 150 mm) for the quantification of PAHs, oxy- and nitro-PAHs. The 115 

second sampler was only collecting particulate phase, in order to get a more comprehensive 116 

chemical characterization (e.g. elemental carbon/organic carbon (EC/OC), anions, cations, 117 

levoglucosan). Details on sample preparation and conservation have already been presented 118 

(Tomaz et al., 2016) and are reported in the Supplementary Information A. A total of 123 samples 119 

and 9 blanks were collected during this period and analyzed following the protocols described 120 

below.  121 

PM10 (TEOM-FDMS, TEOM 1405F, Thermo), NOx (TEI 42I, Thermo) and O3 (TEI 49I, 122 

Thermo) concentrations were also monitored. Meteorological parameters (temperature, wind 123 

direction, wind speed) were measured by the local air quality network in Grenoble (Air Rhône-124 

Alpes) and provided by ROMMA network (Meteorological network of the Alpine massif). 125 

Temperature and pressure data from several locations at different altitudes were used to evaluate 126 

the duration of thermal inversion layers in the Grenoble valley. Details are presented in the 127 

Supplementary Information A. 128 

 129 

2.3. Analytical procedures 130 

Anions (Cl-, NO3
-, SO4

2-), cations (NH4
+, Ca2+, Na+) and oxalate (C2O4

2-) were analyzed by 131 

ion chromatography according to Jaffrezo et al. (2005). Levoglucosan was quantified using 132 

HPLC-PAD (Waked et al., 2014) and EC /OC were measured using a Sunset lab analyzer using 133 

the EUSAAR-2 thermal protocol (Cavalli et al., 2010). 134 

PAHs, oxy-PAHs and nitro-PAHs were quantified using UPLC/UV-Fluorescence and 135 

GC/NICI-MS, respectively, after PLE or QuEChERS-like extractions. Details of the analytical 136 

procedures used have been previously reported (Albinet et al., 2006, 2014; Tomaz et al., 2016) 137 

and are available in the Supplementary Information A (Tables A1, A2, A3 and A4).  138 

 139 

2.4. Quality assurance and quality control 140 

Accuracy of the analytical methods used in this work have been validated by the 141 

participation to national and international inter-comparison exercises for the analysis of PAH, 142 
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EC/OC and levoglucosan. Results obtained were all in good agreement with reference values 143 

(Panteliadis et al., 2015; Verlhac et al., 2013; Verlhac and Albinet, 2015).  144 

PAH extraction efficiencies were evaluated following the EN 15549 and CEN/TS 16645 145 

standard methods (CEN, 2008, 2014). Oxy- and nitro-PAH extraction efficiencies were quantified 146 

using a certified solid material (urban dust, NIST SRM 1649b, Tables A5 to A7) and results were 147 

in good agreement with NIST values and with those previously reported in the literature (Albinet 148 

et al., 2014 and references therein). Additionally, an evaluation of the calibration drift and blank 149 

contaminations was performed for data validation purposes. All collected data was corrected 150 

using field blanks. Analytical method details are reported in the Supplementary Information A 151 

(Tomaz et al., 2016). 152 

Finally, the concentration values of OC, EC, anions, cations, oxalate, levoglucosan, 21 153 

PAHs, 27 oxy-PAHs and 32 nitro-PAHs were validated and discussed in this work. 154 

 155 

3. Results and discussion 156 

3.1. Overview of PM chemical composition and pollution events  157 

The year 2013 was affected by two severe national PM pollution events (PM10 concentrations 158 

> 50 µg m-3 for at least 3 consecutive days) occurring during the cold season (defined as the 159 

period from January 1st to April 10th and from the October 1st to December 31st 2013). They were 160 

observed on all the northern part of France from 02/25/2013 to 04/08/2013, and from 12/09/2013 161 

to 12/19/2013 (Figs. 1, A31 and A32).  162 

 163 

The first PM pollution event could be divided into two parts (Fig. 1):  164 

- February-March (02/25/2013-03/05/2013) with 63 µg m-3 of PM10 concentration levels on 165 

average and with a large contribution of OM to the total PM composition and the presence of a 166 

thermal inversion layer. 167 

- March-April (03/24/2013-04/08/2013) with PM10 concentration levels around 50 µg m-3 and 168 

with a large contribution of secondary inorganic species (ammonium nitrate and sulfate) to the 169 

total PM composition and the absence of thermal inversion layer. 170 
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Similarly to the first PM pollution event, a second event was observed in December, with 171 

PM10 concentrations about 56 µg m-3 on average and with a large contribution of organic matter 172 

(OM) to the total PM composition and the occurrence of thermal inversion layers over a long 173 

period (10 consecutive days).  174 

 175 

3.2. Annual trends of individual compounds 176 

The annual concentration trends of individual compounds were similar for all PAHs, oxy- and 177 

nitro-PAHs, with higher concentrations observed in winter and autumn than in spring and summer 178 

(Figs. 2, A6 to A26). Additional emission sources, namely residential heating, and the occurrence 179 

of thermal inversion layers in the Grenoble valley leading to the accumulation of pollutants (Fig. 1) 180 

explain the high concentrations observed in winter and autumn. Lower concentrations in summer 181 

and spring are due to lower PAC emissions and their degradation by photochemical processes, 182 

as already highlighted in a previous paper (Tomaz et al., 2016).  183 

Overall, significant correlations (Pearson coefficient R>0.6, n=123, p<0.05, Supplementary 184 

Information B, Table B1) between known primary compounds such as EC, NO, levoglucosan, 185 

PAHs and a large number of oxy- (18 compounds over 27 oxy-PAHs) and nitro-PAHs (12 186 

compounds over 32 nitro-PAHs) were observed (total concentrations for PACs: gaseous + 187 

particulate phases). However, these results should be discussed cautiously to avoid spurious 188 

deductions from the statistical analysis. As an example, the concentrations of levoglucosan, a 189 

specific marker of biomass burning (Simoneit et al., 1999), significantly correlated with those of 1-190 

nitropyrene (R=0.89, p<0.05, n=123, Table B1), which is a well-known marker of diesel emissions 191 

(Keyte et al., 2016). In addition, these correlations could also indicate that these compounds are 192 

sorbed together or have similar fates. The local atmospheric dynamic of the valley with the 193 

frequent formation of inversion layers is one of the key parameter leading to such correlations 194 

(Fig. 1). 195 

Only three substances, namely phthaldialdehyde, biphenyl-2,2’-dicarboxaldehyde, and 1,2-196 

naphthoquinone, showed a distinct annual pattern with higher concentrations during spring and 197 

summer than in winter and autumn (Figs. 2 and A12, A13, A14). These specific patterns seem to 198 

be related to their formation by secondary photochemical processes:  199 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

- Phthaldialdehyde is known as a second generation product of naphthalene 200 

photooxidation (i.e. from the oxidation of (E)-2-formylcinnamaldehyde) (Bunce et al., 201 

1997; Chan et al., 2009; Kautzman et al., 2010; Lee and Lane, 2009; Wang et al., 2007a). 202 

To the best of our knowledge, phthaldialdehyde has been observed in the emissions of 203 

primary combustion sources (wood burning) only at very low concentration levels (Nalin et 204 

al., 2016). The non- correlation, on yearly basis (R=0.2, n=123, p>0.05), between (E)-2-205 

formylcinnamaldehyde and phthaldialdehyde shows that the latter is also a secondary by-206 

product of other parent compounds and not only PAHs. For instance, phthaldialdehyde 207 

has been identified as an oxidation product from tolualdehyde photolysis (Clifford et al., 208 

2011).  209 

- 1,2-Naphthoquinone has been identified in diesel and gasoline exhausts (Cho et al., 210 

2004; Jakober et al., 2007; Oda et al., 2001) but has also been reported as an OH-211 

initiated oxidation product of naphthalene (Lee and Lane, 2009).  212 

- Biphenyl-2,2’-dicarboxaldehyde has been identified in primary emissions from biomass 213 

burning at very low concentration levels (Nalin et al., 2016). It has been reported as a 214 

secondary compound from the gas phase reaction of phenanthrene with OH radical (Lee 215 

and Lane, 2010), NO3 radical (Wang et al., 2007b), and O3 (Kwok et al., 1994; Wang et 216 

al., 2007b; Zhang et al., 2010). This compound has also been identified as a by-product 217 

of the heterogeneous reaction of phenanthrene with ozone (Perraudin et al., 2007; Zhang 218 

et al., 2010). 219 

 220 

3.3. Formation of nitro-PAHs: study of the [(2+3)-NFlt]/[1-NP] ratio 221 

 222 

 The primary emissions vs the gas-phase formation of nitro-PAHs in ambient air was 223 

assessed using the (2+3)-nitrofluoranthene-to-1-nitropyrene ([(2+3)-NFlt]/[1-NP]) concentration 224 

ratio (total concentrations) (Fig. 3).  225 

The annual mean value of the [(2+3)-NFlt]/[1-NP] concentration ratio of 6.3 ± 3.9 indicates a 226 

slight predominance of secondary formation of nitro-PAHs in the gas phase. The highest [(2+3)-227 

NFlt]/[1-NP] values (>10) were surprisingly observed during the winter period and in early spring 228 
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(from January to April 2013) while previous studies reported high ratio values in summer and low 229 

ones in winter (Albinet et al., 2007, 2008a, b; Bamford and Baker, 2003; Dimashki et al., 2000; 230 

Ringuet et al., 2012a, b). Only a few studies reported similar results with ratios larger than 5 in 231 

winter; that were explained by specific conditions such as pollutant accumulation over several 232 

days (Albinet et al. 2008a; Lin et al. 2015). 233 

Here, the two highest ratios were observed during the March-April period together with high 234 

PM10 concentration levels. During this period, the [(2+3)-NFlt]/[1-NP] ratio was significantly 235 

correlated with NO3
- (Pearson coefficient: R=0.75, p<0.05, n=6), suggesting a link between the 236 

secondary formation of nitro-PAHs and the nitrate chemistry. Conversely, at the end of the 237 

February-March PM pollution event, a large NO3
- contribution was observed but no significant 238 

correlation between nitrate and the [(2+3)-NFlt]/[1-NP] ratio was noticed (R=-0.3, p>0.05, n=4) 239 

(Fig. 3). The organic matter (OM) formed the main fraction of PM10 mass in this last period and 240 

originated mainly from biomass burning (residential combustion), as indicated by the high 241 

concentrations of levoglucosan. Under these conditions, nitrate was probably emitted by biomass 242 

burning as supported by its correlation with levoglucosan (R=0.85, p>0.05, n=4). This result 243 

shows the existence of a link between the secondary origin of nitrate and the sources of nitro-244 

PAHs in relation with photochemical conditions. High NO3
- concentrations could be explained by 245 

the oxidation of NO2, that may be also able to react with PAHs to form nitro-PAHs after initiation 246 

by OH and/or NO3 radicals. 247 

In summer, several [(2+3)-NFlt]/[1-NP] ratios were higher than 5 for periods characterized by 248 

high SO4
2-contributions to PM10, indicating the impact of atmospheric secondary processes with 249 

an enhancement of the photochemical activity, possibly leading to the secondary formation of 250 

nitro-PAHs. 251 

 252 

3.4. Cold season: influence of primary emissions and evidence of secondary formation processes 253 

under specific conditions 254 

As discussed in the paragraph 3.3., the February-March period of the first PM pollution event 255 

seemed mainly influenced by primary emissions. In fact, wind speeds were low during this period, 256 
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with an average value of 5 km h-1, inducing a low atmospheric dispersion. As shown by the 257 

results of the non-parametric wind regression analysis (NWR, Henry et al., 2009) performed using 258 

Zefir tool (Petit et al., 2016), sources of PM10 seemed mainly local (Fig. 5). The low dispersion 259 

together with the formation of thermal inversion layers (Fig. 1) enhanced the stagnation of the 260 

pollution in the valley and the increase of primary pollutant concentrations. High concentrations of 261 

many oxy- (14 oxy-PAHs) and nitro-PAHs (6 nitro-PAHs) were observed during this period. Some 262 

substances showed their highest concentrations of the year at that time, such as 1-263 

naphthaldehyde, 1,4-naphthoquinone, 9-nitroanthracene, 2-nitroanthracene, 5-264 

nitroacenaphthene, and 7-nitrobenz[a]anthracene (Figs. 4, A12, A21, A22, A23, A24). All of them 265 

may originate from both primary and secondary sources (Arey et al., 1989; Atkinson and Arey, 266 

1994; Chen and Zhu, 2014; Chen et al., 2015; Huang et al., 2013; Karavalakis et al., 2010; Liu et 267 

al., 2015; Sauret-Szczepanski and Lane, 2004).The potential occurrence of secondary formation 268 

of nitro-PAHs is indeed highlighted by the high [(2+3)-NFlt]/[1-NP] ratio observes, with a value of 269 

11, when PM10 concentrations were the highest (on February 28) (Fig. 3). It is therefore likely that 270 

both primary emissions and secondary processes were enhanced during this period. 271 

 272 

In comparison with the first part of the PM pollution event, during the March-April period, 273 

lower concentrations of primary compounds such as, NO, NO2, levoglucosan and 1-nitropyrene 274 

were observed, together with a lower contribution of OM to the PM concentrations. Conversely, 275 

concentrations of secondary species such as ammonium, nitrate and sulfate, (E)-2-276 

formylcinnamaldehyde (Aschmann et al., 2013; Kautzman et al., 2010) and, as shown before, 277 

[(2+3)-NFlt]/[1-NP] ratios (from 7 to 13), were significantly higher (Figs. 3 and 4). This period was 278 

thus characterized by the transport of aged air masses, coming from the N-NE, to the sampling 279 

site of Les-Frênes (Figs. A27 and A28) and the absence of thermal inversion layers in the 280 

sampling area (Fig. 1). The secondary formation of nitro-PAHs, together with the nitrate 281 

chemistry, and, to a lesser extent, of oxy-PAHs, may have occurred during the transport and 282 

aging of these air masses. 283 

 284 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

The December pollution event was characterized by a dramatic increase of the 285 

concentrations of all pollutants except ozone (Figs. 1, 2, 3, 4 and A4 to A19). Concentrations of 286 

primary species such as EC (7.80 µg m-3), some PAHs (11 PAHs, from 0.4 ng m-3 for 2-287 

methylfluoranthene to 48.6 ng m-3 for 2-methlynaphthalene), levoglucosan (2963 ng m-3), 1-288 

nitropyrene (46 pg m-3) and NO (about 110 µg m-3) showed their highest yearly concentrations, 289 

highlighting the impact of local combustion sources like residential heating (notably wood 290 

combustion) and traffic. Additionally, low wind speed (< 10 km h-1) and the occurrence of strong 291 

and durable thermal inversion layers (from 18 to 24 h per day during the overall PM event) 292 

promoted the accumulation of pollutants in the Grenoble valley (Figs. 1, 5 and A3).  293 

 294 

The highest concentrations of several individual nitro- and most of the oxy-PAHs were 295 

observed during this event (Figs. 4, A12 to A26). Total oxy-PAH concentrations (Σ27oxyPAHs) 296 

was even higher than total PAH concentrations (Σ21PAHs) i.e. about 183 and 136 ng m-3, 297 

respectively (Tomaz et al., 2016). Concentrations of many PAH derivatives were more than 10 298 

times higher (ranging from 11 to 43) than the annual mean concentration levels, including phthalic 299 

anhydride, (E)-2-formylcinnamaldehyde, 1-acenaphthenone, 1,2-naphthalic anhydride, xanthone, 300 

acenaphthenequinone, 6H-dibenzo|b,d]pyran-6-one, 9,10-anthraquinone, 1,8-naphthalic 301 

anhydride, 1,4-anthraquinone, 2-methylanthraquinone, 9-phenanthrenecarboxaldehyde, 2-nitro-9-302 

fluorenone, benzo[a]fluorenone, benzo[b]fluorenone, benzanthrone, 1-pyrenecarboxaldehyde, 303 

aceanthrenequinone, benz[a]anthracene-7,12-dione, and 9-methyl-10-nitroanthracene. Low wind 304 

speeds and any potential long range transport could not alone explain the dramatic increase of 305 

their concentrations (Fig. 5). Parent PAHs were accumulated for several consecutive days due to 306 

the low wind speeds and the long-time inversion layers formed (Figs. 1 and A3). In the presence 307 

of atmospheric oxidants – such as OH radical, for which concentration levels are usually high in 308 

urban environments even in winter (Heard et al., 2004) - the accumulation of PAHs allowed 309 

enough time for their oxidation, the formation of by-products such as oxy-PAHs through gaseous 310 

and/or heterogeneous processes and their accumulation. Interestingly, secondary processes 311 

involved during the December PM pollution event seemed different than those involved during the 312 
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first observed in February-March. Actually, only oxy-PAHs and no nitro-PAHs were effectively 313 

formed, as supported by the low [(2+3)-NFlt]/[1-NP] ratio value of 3.9. 314 

As an example of evidences of secondary oxy-PAH processes during this period, (E)-2-315 

formylcinnamaldehyde concentrations were the highest during this PM pollution event (Fig. 6). 316 

This compound originates from naphthalene oxidation (Nishino et al., 2012; Sasaki et al., 1997; 317 

Wang et al., 2007a). No significant correlation with any primary compound was observed on the 318 

annual scale (e.g. with levoglucosan and 1-nitropyrene; R < 0.4, excluding the December event, 319 

n=120, p < 0.05) confirming the secondary origin of this compound. Interestingly, concentrations 320 

of phthaldialdehyde increased when its precursor concentration decreased and, were maximum 321 

on the 12/16/2013. Here again, the secondary processing during the PM pollution event seemed 322 

obvious and preponderant. Besides, phthalic anhydride, an oxidation product of phthaldialdehyde 323 

(Wang et al., 2006), was measured in large concentration (42 ng m-3) with a maximum value 324 

reached at the same time as (E)-2-formylcinnamaldehyde. Discrepancy of temporal concentration 325 

trend was probably due to the dual origin of phthalic anhydride with also its direct emission by 326 

combustion processes and especially diesel exhaust (Fig. 6) (Bayona et al., 1988; Sidhu et al., 327 

2005).  328 

 329 

3.5. Warm season: Influence of photochemistry and identification of potential markers of PAH 330 

oxidation processes 331 

Using both gaseous and particulate phase concentrations, the ratios of oxy- or nitro-PAHs 332 

to their parent PAH have been considered in order to investigate the PAH relative reactivity and 333 

the sources of oxy- and nitro-PAHs. Note that acenaphthenequinone and acenaphthenone may 334 

arise from the oxidation of both, acenaphthene and acenaphthylene but the latter one was not 335 

quantified in our study so, the ratios were calculated using acenaphthene only (Zhou and 336 

Wenger, 2013).  337 

Overall, only concentration ratios to their parent PAHs of 6H-dibenzo[b,d]pyran-6-one, 3-338 

nitrophenanthrene, biphenyl-2,2’-dicarboxaldehyde, 9,10-anthraquinone, 2-methyl-4-339 

nitronaphthalene and 6-nitrobenzo[a]pyrene showed a trend with significant higher values 340 

exclusively in the warm season (defined as the period from the 04/11/2013 to the 09/30/2013) 341 
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(Figs. 7, A33, A34 and A35). This suggests the dominant secondary origin of these specific 342 

species. By comparison, known primary compounds such as 1-nitropyrene and 343 

benz[a]anthracene-7,12-dione did not exhibit the same trend. Note that, peak values of the 344 

concentration ratios in November were observed for all compounds and could be explained by 345 

the very low concentration levels of both parent PAHs and PAH derivatives (inducing larger 346 

uncertainties).  347 

 348 

The highest concentration ratios of the selected secondary candidate compounds were 349 

observed in July and August (Fig. 7, period framed). At the same time, [(2+3)-NFlt]/[1-NP] ratio 350 

was higher than 5 (with an average of 9) suggesting favorable photochemical conditions to induce 351 

a secondary formation of nitro-PAHs. Concentrations of oxalate, a marker of secondary 352 

processes for the organic matter (Carlton et al., 2007; Legrand et al., 2007; Warneck, 2003), were 353 

also high (and the highest of the year, from 350 to 401 ng m-3, Fig. 7) confirming the influence of 354 

the photochemical activity during this period. The whole period was characterized by long range 355 

transport, with air masses coming from the North or the South of the sampling location (e.g. Figs. 356 

A29 and A30). Significant correlations between total concentrations of 6H-dibenzo[b,d]pyran-6-357 

one with 9,10-anthraquinone (R=0.93), 3-nitrophenanthrene (R=0.96) were obtained (from July to 358 

August, n=21, p<0.05). Only biphenyl-2,2’-dicarboxaldehyde was not significantly correlated with 359 

any identified secondary candidate compounds. Different chemical processes, unknown at the 360 

moment, may be involved for this last compound. 361 

 362 

All of these compounds have been previously reported in the literature as by-products of 363 

gas phase and/or heterogeneous reactions of PAHs (Lee and Lane, 2009, 2010; Perraudin et al., 364 

2007; Reisen and Arey, 2002; Zhang et al., 2011; Zhang et al., 2013). However, except biphenyl-365 

2,2’-dicarboxaldehyde, they also have all been identified in primary emissions from biomass 366 

burning or vehicle exhaust (Alves et al., 2016; Bayona et al., 1988; Fine et al., 2001; Fine et al., 367 

2002; Fitzpatrick et al., 2007; Nalin et al., 2016; Zielinska et al., 2004).  368 

The question to be answered is to identify which compounds could be here considered as 369 

a marker of oxidative processes involving PAHs to better understand the sources of these toxic 370 
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compounds. Ideal marker compounds should mainly be specific of secondary processes, 371 

relatively stable in the atmosphere and easily quantified. 2-Methyl-4-nitronaphthalene and 6-372 

nitrobenzo[a]pyrene are rejected according to these criteria, as they are usually (like in this study) 373 

observed at very low concentration levels in the atmosphere and quite difficult to quantify. 9,10-374 

Anthraquinone does not seem to be a good marker candidate of PAH oxidation processes as it 375 

has been reported as largely emitted by vehicular emissions (Alves et al., 2016). Lee et al. (2012) 376 

suggested the use of 6H-dibenzo[b,d]pyran-6-one as a SOA marker for phenanthrene 377 

photooxidation. Here, in July-August 2013, low concentrations of this compound were observed 378 

during the days significantly impacted by primary emission sources (with high EC concentrations, 379 

Fig. 7). This indicates that it may mainly arise from secondary reactions and not from primary 380 

emission sources. 3-Nitrophenanthrene has also been reported as a by-product of SOA formation 381 

from phenanthrene oxidation (Di Filippo et al. 2010; Lin et al. 2015).  382 

 383 

Finally, only 6H-dibenzo[b,d]pyran-6-one, biphenyl-2,2’-dicarboxaldehyde and 3-384 

nitrophenanthrene remain interesting candidates as markers of secondary reactions. 6H-385 

Dibenzo[b,d]pyran-6-one has also the advantage to be present in large concentrations in the 386 

atmosphere by comparison to nitro-PAHs (about 2 orders of magnitude more abundant) allowing 387 

an easier quantification.  388 

 389 

4. Conclusion 390 

 Individual concentrations of about 60 oxy- and nitro-PAHs were measured over a year in 391 

Grenoble-Les Frênes, jointly with specific primary or secondary aerosol species. In cold period, 392 

oxy- and nitro-PAH concentrations were controlled by emissions from residential heating (e.g. 393 

biomass burning) together with secondary processes occurring under specific conditions such as 394 

pollutant accumulation or long range transport of air masses. The study of the time trends of the 395 

ratios of oxy- or nitro-PAHs on parent PAH concentrations highlighted higher ratios of a series of 396 

compounds in summer, concurrently with high oxalate concentrations. By combination with 397 

literature data, 6H-dibenzo[b,d]pyran-6-one, biphenyl-2,2’-dicarboxaldehyde and 3-398 

nitrophenanthrene have been identified as probably good marker candidates of PAH oxidation 399 
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processes in ambient air.  400 

The approach to identify specific PAH derivatives typical of PAH oxidation and SOA formation 401 

based on ambient air field analysis combined with literature knowledge proposed here is limited 402 

by the time resolution of the PAC measurements as well by the current knowledge available in 403 

the literature. Further work will be needed to document the behavior of these compounds in the 404 

atmosphere using both, laboratory experiments and field measurements with a higher time 405 

resolution to understand the physicochemical processes involved including gas to particle phase 406 

conversion. 407 

 408 
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Figure Captions 

 

Fig. 1. Annual trends (2013) of PM10 concentrations (chemical composition, OM: organic matter = 

1.8×OC) together with the duration of thermal inversion layer (h) at the urban background station 

of Grenoble-Les Frênes.  

 

Fig. 2. Annual trends (2013) of total concentrations (gaseous and particulate phases) of 

phthaldialdehyde, 1,2-naphthoquinone (only in gas phase), biphenyl-2,2’-dicarboxaldehyde (only 

in gas phase) and indeno[1,2,3-cd]pyrene at the urban background station of Grenoble-Les 

Frênes. 

 

Fig. 3. Annual trends (2013) of the ratio [(2+3)-NFlt]/[1NP] together with NO3
-, EC, levoglucosan 

and 1-nitropyrene (1-NP) in the particulate phase, at the urban background station of Grenoble-

Les Frênes. Yellow shaded areas show the periods of severe PM pollution events.  

 

Fig. 4. Annual trends (2013) of (E)-2-formylcinnamaldehyde (2-FCin), 6H-dibenzo[b,d]pyran-6-

one, 9-nitroanthracene, 1-naphthaldehyde and 1,8-naphthalic anhydride total concentrations 

together with NO at the urban background station of Grenoble-Les Frênes. Yellow tinted 

background areas show the periods of severe PM pollution events. 

 

Fig. 5. Wind rose (km h-1) (left) and NWR for PM10 (µg m-3) (right) from the 02/25/2013 to the 

03/06/2013 (A) and from the 12/09/2013 to the 12/19/2013 (B). 

 

Fig. 6. Temporal evolution of (E)-2-formylcinnamaldehyde, phthaldialdehyde and phthalic 

anhydride concentrations (in both gaseous and particulate phases) during the severe PM 
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pollution event of December (12/09/2013 to 12/19/2013) at the urban background station of 

Grenoble-Les Frênes. 

 

Fig. 7. Annual trends of the concentration ratios to their parent PAHs of 3-nitrophenanthrene ([3-

NPhe]/[Phe]), 6H-dibenzo[b,d]pyran-6-one ([6H-DPone]/[Phe]), biphenyl-2,2’-dicarboxaldehyde 

([Biph 2,2’]/[Phe]), 9,10-anthraquinone ([9,10-ANQ]/[Anth]), benz[a]anthracene-7,12-dione ([B-

7,12-D]/[B[a]A]), 1-nitropyrene ([1NP]/[Pyr]) together with (2+3)-nitrofluoranthene ([(2+3)-NFlt]/[1-

NP]), O3, EC and oxalate concentrations at the urban background site of Grenoble-Les Frênes. 

Gaseous and particulate phases are taken into account for all oxy- and nitro-PAHs except for 

biphenyl-2,2’-dicarboxaldehyde (only in gas phase).  
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PACs measured over a year together with an extended aerosol chemical characterization 

Cold period was affected by primary emissions especially from residential heating 

The highest (2+3)-NFlt/1-NP ratio was surprisingly observed during the winter period 

Different secondary processes involved during the severe PM pollution events observed 

Marker of PAH oxidation identified based on field observations and literature data 


