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Abstract 

Green Chemistry is an active field of chemical research in which ultimate targets are to promote high 

value, safe and clean products from renewable resources using inherently safer and clean processes. 

Until recently, main efforts focused on the production of chemicals based on renewable resources by 

cleaner processes notably by eliminating or substituting solvents. 

Quantitative Structure-Property Relationships (QSPR) offer the opportunity to also take into account 

safety issues (in particular fire and explosion risks) in the early steps of development of chemicals 

and processes in the context of Green Chemistry. Based on robust methods for their development 

and validation, these predictive approaches allow accessing the properties of substances based on 

the only knowledge of their molecular structures, even before their synthesis. QSPR models have 

been developed for various kinds of properties, including physico-chemical hazards, for diverse 

families of compounds. 

They can be used as virtual screening tools to identify the best candidate among a series of possible 

compounds (within databases of products) for a target application and even in computer aided 

molecular design to propose alternative molecular structures, for instance for substitution purposes. 

So they represent very relevant tools to take into account the physico-chemical hazards of 

substances together with targeted functional properties from the early stages of R&D projects 

towards safe-by-design “green” products and processes. 

 

Keywords: Quantitative Structure-Property Relationships, virtual screening, in silico design, Green 

Chemistry, safety-by-design. 
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Introduction 

If the concept of Green Chemistry is not new1, it represents currently an important source of 

motivation for research notably in terms of innovative substances and processes. The main idea that 

supports this multidisciplinary approach consists in “changing the intrinsic nature of a chemical 

product or process so that it is inherently of less risk to human health and the environment”1. Among 

the twelve principles of Green Chemistry, the resort to alternative raw materials, products, reagents, 

solvents and catalysts with satisfactory properties towards target applications and lower concern for 

environment and human health are promoted.  

Thus, the products issued from Green Chemistry researches target various purposes. First, they aim 

to fit with target functions in applications, like conductivity for electrolytes2 or critical micelle 

concentration for surfactants3. They must also fit with process specifications, e.g. with acceptable 

viscosity in the process conditions or with a desired boiling point to stay in liquid phase at a specific 

temperature. Green Chemistry also promote durability criteria including processes economics and 

environmental costs which may favor the use of renewable resources as raw materials, including 

biomass residues, etc. Another axis of progress addresses the use of more energetically efficient 

production routes4. Finally, all proposed solutions may stay economically viable to reach industrial 

applications5. Moreover, green chemistry may keep concerned on regulatory compliance and on 

hazards of substances produced or involved in the production processes. Up to now, many 

researches addressed the substitution or the elimination of toxic products and in particular solvents6, 

7. But, physico-chemical hazards (flammability, explosibility, oxidizing properties) and regulatory 

compliance are in general considered in the last steps of development, to qualify the final solutions 

that have been selected to fit with the functional and economic requirements.  

Such a strategy can reveal risky and can lead to important waste of R&D time and money ending to 

the development of a solution with remaining critical safety issues, that could have been identified 

and solved in the earliest steps of development with a better approach. In pharmaceutical industry 

for example, the introduction of computational screening approach allowed to take into account the 

maximum of decision making criteria at the earliest stage of drug design to reduce the proportion of 

drugs that failed in the (costly) clinical testing8, 9. Another example was exposed by Wolf et al.10 in the 

early 1990s for the substitution of chlorinated solvents, due to their contribution to the reduction of 

stratospheric ozone or their suspected carcinogenic potential. Different alternative solvents were 

proposed and adopted but revealed posing other health and environmental safety problems like 

flammability, chronic toxicity or polluting processes. Therefore, it is advisable that safety issues may 

be taken into account as early as possible in the R&D decision process to identify high potential 

candidates regarding desired functional properties while eliminating among them potentially 

hazardous molecules in a single stage.  

Examples of coupled experimental/theoretical approaches involved in the development of green 

solvents already exist. For instance, Aparicio et al.11 used different theoretical approaches to 

complement the experimental characterization of the thermo-physical properties (used in process 

engineering) of ethyl lactate, which has recently been proposed as a green solvent. The Density 

Functional Theory (DFT) was used to elucidate the 3D structures and organization of the ethyl lactate 

molecules (notably in the liquid phase), to compute infrared spectra and to investigate further intra- 

and inter-molecular hydrogen bonding based on Atoms in Molecules (AIM) and Natural Bond Orbitals 
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(NBO) studies. Equations of States, Molecular Dynamics and Monte Carlo simulations were also used 

to calculate thermophysical properties and phase equilibria behaviors. More details on these 

methods are available in dedicated references12,13,14. If they provide reliable predictions for some 

properties, they are not applicable for the whole range of properties like hazardous properties14. 

Among existing computational approaches to estimate the properties of chemical products, 

Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) represent a very active and 

productive field of research nowadays. Indeed, the number of research articles in this field increased 

from 164 to 914 per years between 1993 and 201215 and extended in application fields from the drug 

design16 and toxicology17 to environmental sciences18, physico-chemical properties19 and safety14, 20, 

21. In drug design16, QSAR/QSPR models are considered as low-cost tools to estimate physico-

chemical properties and biological activities for the selection and for the optimization of promising 

chemical structures. 

In that context, this contribution highlights how the use of QSPR models can help to take into 

account the physico-chemical hazardous properties (e.g. flammability, explosibility) or process safety 

important parameters (like thermal stability) of chemicals at early steps of development of “green” 

chemicals or processes. At first, the principles of QSPR models are presented with some guidelines 

towards a relevant use of QSPR models for the prediction of properties. An overview of existing 

models to predict physico-chemical hazardous properties is then proposed. Finally, different 

strategies are described to use QSPR models for the development of “green” chemicals and 

processes. 

The Quantitative Structure-Property Relationships Approach 

QSPR models are predictive molecular based methods that allow the prediction of measurable 

macroscopic properties P of chemicals from the only knowledge of their molecular structure. So they 

can be used even before synthesis of chemicals. Such models are developed according to a similarity 

principle, by considering that compounds with similar molecular structures will have similar 

properties. It consists in looking for correlation between the target property and a series of 

descriptors di of the molecular structures of a dataset of compounds similar to those targeted by the 

final model (as illustrated in Figure 1Figure 1). QSPR models can be summarized by the general form 

in Eq. 1. 

P = f(di)           (1) 

Molecular descriptors characterize the molecular structure of the chemical compounds and their 

molecular scale properties. Among years, thousands of descriptors have been developed to encode 

the whole diversity of chemicals and their molecular properties22, 23. They can be of different types 

either obtained from simple elemental formula, from the 2-dimension structure or from 3-dimension 

structure, requiring preliminary structure determination, in general by quantum chemical 

calculations. These molecular descriptors can be classified into four classes.  

 Constitutional descriptors identify and count particular features in the molecule (atoms, 

bonds, fragments, functional groups). 
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 Topological descriptors encode the molecular structure of compounds from molecular 

graphs that characterize the connection of atoms in the molecule. They relate to the size, 

shape and ramification rate of molecular structures. 

 Geometric descriptors characterize the 3D structure of molecules. They consist in 

interatomic distances, angles, dihedral angles, molecular volume and surface areas. 

 Quantum chemical descriptors gather the information obtained from Quantum chemical 

calculations about electrostatic properties (e.g. atomic charges), reactivity (e.g. bond 

dissociation energies) or molecular orbitals (e.g. molecular orbital energies). 

The final QSPR model is established using various data mining tools to fit the model, select the best 

set of descriptors, estimate its performances and define its applicability domain. Models can be 

issued from simple multi linear regression (MLR), as in Eq. 2, or from more complex methods like 

artificial neural networks24 or support vector machine25 that sometimes improve the performances of 

the models but, in general, with a loss of chemical interpretation. 

P = a0 +  ai di           (2) 

where ai are the regression constants. 

Qualitative predictive approaches can also be derived through decision trees or based on principal 

component analyses that are useful in different situations. At first, they are used in case of 

intrinsically qualitative properties like the determination of the order of elution (first or second) of 

chiral compounds26. They can also be used for quantitative properties notably when large 

uncertainties are expected and for applications for which a first “High/low” or “Yes/No” estimation 

could be sufficient. 

The selection of the descriptors included in the model is an important task to avoid a risk of any over-

parameterization of the model that would lead to lower its predictive power. Several data mining 

strategies can be used27. For instance, MLR models are often derived based on stepwise methods, by 

gradually adding or cancelling descriptors; genetic algorithm, that mimics the natural evolutional 

phenomena on applying randomized modifications of the set of descriptors (additions, cancelations, 

substitutions), is also currently used to evidence the best set of descriptors28. The final model is 

chosen to represent the best compromise between the quality of fit of the model and the chemical 

meaning of the including descriptors. 

At last, one critical parameter to access an accurate QSPR model is the experimental data set used 

for its development and validation29. At first, the database must be as large as possible to allow a 

robust fitting of the model and to keep aside an external validation set to evaluate the predictive 

power of the final model. Moreover, these data must be as reliable and homogeneous as possible. 

Indeed, uncertainties and errors in the experimental training data propagate in the model and affect 

its accuracy. Furthermore, experimental protocol must be at best clarified to avoid contradictory 

data that can be due to the use of data issued from different protocols.  

To evaluate the performances of models, several internal and external validation methods are used30, 

31. The cross validation techniques are internal validation methods that consist in excluding part of 

the training set, refitting the model and check that the refitted model keeps reliable for the excluded 

compound(s). They characterize the robustness of the model, i.e. that the model is not too 
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dependent on particular molecules in the training set. Another internal validation is Y-

randomization32 that aims to ensure that the model was not issued from a chance correlation. It 

consists in randomizing the property data among molecules in the training set and to check that 

models refitted on these erroneous data give erroneous predictions regarding actual experimental 

property values. At last, the predictive capabilities of the model are checked on an external validation 

set of molecules not used to develop it, by comparing the predicted data to the experimental ones33-

35. 

At last, the applicability domain (AD) of the model has to be defined, i.e. the domain in which 

predictions can be expected to be accurate. As QSPR is an interpolation approach, this AD is limited 

by the training set with which the model has been developed, in terms of property domain and 

chemical space. The definition of AD can be done using different kinds of tools as reviewed by 

Jaworska et al.36 or Eriksson et al.37. One of the simplest ways to proceed is to define the ranges of 

values of property and descriptors (for those included into the model) in the training set.  

Once a model is validated, it can be used for prediction. But to ensure a correct and relevant 

application of the model, some precautions must be taken. As explained before, a model is only 

applicable in a define applicability domain in terms of chemical diversity (within identified families 

and within a defined domain in the chemical space described by the values of descriptors in the 

training set) and in terms of property domain (by the range of property values in the training set). To 

ensure it, the following questions may be answered:  

 Question 1: Is the endpoint of the model relevant for the use of the expected prediction (e.g. 

protocol in agreement with regulation, property predicted at the same temperature than the 

one expected in a process)? 

 Question 2: Is the model dedicated to the family of molecules to which the target compound 

belongs? 

 Question 3: Is the compound in the applicability domain of the model from the used 

molecular descriptors view point? 

 Question 4: Is the final calculated property in the applicability domain of the model? 

Moreover, the model must be applied following the exact procedure defined by the developers of 

the model. In particular, in the case of quantum chemical descriptors, computational details, like the 

basis set and the method (e.g. functional), must be strictly followed.  

Existing Models for Hazardous Physico-chemical Properties 

QSPR models have been developed and reviewed among years for very diverse properties of 

chemicals19 (notably related to the REACH regulation14, 20), of materials38 and also for hazardous 

substances14, 20, 21. Table 1 summarizes the capabilities of QSPR models available to predict physico-

chemical properties used to classify substances according to the European regulation related to the 

Classification, Labelling and Packaging of substances and mixtures39. This table indicates that QSPR 

models nowadays concern only one part of the properties required to classify chemicals according to 

physical hazards. So, new models would deserve to be developed. In particular, no QSPR model exists 

for oxidizing properties, probably due to the lack of available experimental data to develop models.  
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As a matter of fact, a number of different models dedicated to physico-chemical hazards have indeed 

been proposed in the last decades, for different properties and different families of compounds. For 

example, extended works were devoted to nitro compounds. Concerning their heat of 

decomposition (ΔH), an accurate model40 has been obtained for nitrobenzene derivatives presenting 

no substituent in ortho position to the nitro group (as illustrated in Figure 2), taking into account the 

fact that such last compounds could present specific decomposition mechanisms as demonstrated on 

ortho-nitrotoluenes by a Density Functional Theory study41.  

This model consists in a four-parameter equation (Eq. 3) with a correlation coefficient R² of 0.90 and 

an average deviation of 12% (for the 31 molecules of the training set).  

-ΔH (kcal/mol) = 0.8 G – 3.8 WPSA1 – 4255.1 Qmax + 26.8 RPCS – 251.2   (3) 

with G the gravitational index, WPSA1 the weighted positive surface area, Qmax the maximal partial 

charge and RPCS the relative positively charged surface area. 

The predictive power of the model was estimated on a validation set of 11 molecules not already 

used for the development of the model with a R² of 0.84 and an average error of 18%. No such 

performance was reached by including ortho substituted nitro derivatives, demonstrating the 

importance of understanding the molecular mechanisms involved into the target properties.  

If the model presented in Eq. 3 requires quantum chemical calculations, other models were 

developed with simpler descriptors. For instance, QSPR models dedicated to the impact sensitivity of 

nitramines42 were developed using only constitutional descriptors that can be calculated from 2D 

molecular structures (Eq. 4). 

log h50% = 0.94 + 86.3 nC=O/Mw – 0.017 OB + 0.14 nC-O-C – 0.21 nC=O   (4) 

where nC=O/Mw is the ratio of the number of C=O fragments on the molecular weight, OB is the 

oxygen balance43, nC-O-C and nC=O are the numbers of C-O-C and C=O fragments, respectively. 

This model presented even similar results than a quantum chemical based model obtained in a 

previous work44 with a R²ext of 0.90 (vs. 0.88 for the quantum chemical model) and a RMSEext of 0.14 

(vs. 0.16) estimated on an external validation set (see Figure 3) in which only one molecule revealed 

out of the applicability domain. Such simple model can reveal less accurate and meaningful than a 

quantum chemical one in some cases but it presents the advantage to be faster and easier to 

implement and to apply for non-expert users. 

Regarding the hazards of nitro compounds, we also proposed a decision tree model to predict if the 

heat of decomposition of a nitroaromatic compound is higher or lower than 500 kJ/mol45. The final 

algorithm, presented in Figure 4 is very simple and presented good performances with 82 % of good 

classifications as evaluated on an external validation set. 

QSPR models for hazardous properties were also developed for other families of compounds like the 

heat and temperature of decomposition of organic peroxides46, as shown in Eqs. 5 and 6. 

 -ΔH/C (kJ/g) = 541K − 990 nOO + 12934 dOO + 2631 QOO – 19371   (5) 

 Tonset = 144 F−
OO + 29 nOO − 20 gap + 194      (6) 
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Where C is the concentration of organic peroxide, 1K is the order 1 Kier shape index, nOO is the 

number of peroxide bonds, dOO is the distance between the oxygen atoms of the peroxide bond, QOO 

and F-
OO are the average Mulliken charges and the average local Fukui function on these two O atoms 

and gap is the energy difference between the LUMO and HOMO orbitals. 

These models presented good predictive powers as estimated on external validation sets with R²in of 

0.81 and 0.83, respectively in their applicability domains. Moreover, they include descriptors directly 

related to the presence and strength of the peroxide bond which is recognized to be initiated by its 

homolytic cleavage47, 48. 

Recent models were also developed for safety related parameters like complete heats of combustion 

of ionic liquids (IL)49. Their gross heat of combustion (HHV) can be obtained from the knowledge of 

their stoichiometric composition in C, H, O, N and Cl atoms with an error of 3.9 % (R²ext=0.98). 

HHV = 34.95 C + 135.82 H - 3.37 O + 6.45 N + 2.79 Cl - 1.86   (7) 

Eventually, the most recent developments allow predictions for the properties of mixtures, in 

particular for the flash points of organic liquid mixtures. A first approach consisted in including QSPR 

models to provide predictions on pure compounds in existing mixing rules. Such approach was 

successfully proposed by Saldana50 and Gaudin51 with good predictive performances (with errors 

about 5 K on binary mixtures for both works). For instance, the full-predictive approach of Gaudin et 

al. predicts the profile of flash point of the octane/isopropanol mixture with a mean absolute error of 

only 2.5°C (Figure 5). It is interesting to note that this mixture is more hazardous than the pure 

compounds with lower value of flash points. In such a case, the predicted profiles allow overcoming 

the sometimes misleading practice consisting in taking into consideration the flash point of the most 

flammable constituent of a mixture in absence of data on the mixture. 

The full-predictive approach of Gaudin reveals also reliable when applied to ternary mixtures. For 

example, the predicted flash points for methanol/toluene/2,2,4-trimethylpentane mixtures (used to 

build the ternary diagram presented in Figure 6) are close to experimental ones obtained by Liaw et 

al.52, with a mean absolute error of only 0.5°C (on 63 data). Here again, a mixture of 50 % of 

methanol and 50 % of 2,2,4-trimethylpentane reveals having a lower flash point (calculated at -

12.5°C) than the pure compounds with experimental FP52 of 10.0°C, 7.2°C and -8.1°C for methanol, 

toluene and 2,2,4-trimethylpentane, respectively. So, these two examples encourage the use of such 

predictive approaches to anticipate the possible increase of hazards when mixing chemicals. 

Another strategy was also recently developed by Gaudin et al.53 consisting in defining mixture 

descriptors by applying mixing formula on molecular descriptors to achieve mixture QSPR models. 

Such approach can be particularly useful when no mixing rule is (easily) available. First promising 

results were obtained for 284 flash points of binary liquid mixtures with a model (Eq. 8) presenting a 

mean absolute error of 10.3°C (evaluated on an external validation set of 151 data).  

FP = 50.3 + 16.3 (x1 3χ1 + x2 3χ2)² + 5.5 x 10-3 (x1 HDCA1 + x2 HDCA2)²  

– 2.4 x 10-6 (x1 Δα1 + x2 Δα2)² – 88.0 (x1 Vmin,H,1 + x2 Vmin,H,2)²   (8) 
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where x is the molar fraction, 3χ is the Randic index (order 3), HDCA is the HDCA H‐donors charged 

surface area (order 2), Δα is the anisotropic polarizability and Vmin,H is the minimum valency of a H 

atom. 

To complement this overview of existing QSPR models for physico-chemical hazards, it is worth 

noting that QSAR models have been developed for other properties of high concern in Green 

Chemistry like biodegradability18, 54 and (eco)-toxicity17, 55, 56 that must also be considered in view of 

developing/selecting safer and cleaner products, for instance for substitution purpose. 

Proposed uses of QSPR models in the context of Green Chemistry 

QSPR models as screening tools  

QSPR models can be used early in the development of chemicals or processes as virtual screening 

tools to estimate the properties of substances when not already available, purchased or even before 

their synthesis. These predictions can help to select a series of candidates that can be in a following 

step further studied by performing synthesis and experimental characterizations. 

Using QSPR models in such a way is very useful to reduce the possible candidates among large sets of 

potential chemicals, as illustrated in Figure 7 and is a common computer aided molecular design 

procedure used in pharmaceutical research to discover new drugs57 according to desired activity, for 

instance for anti-cancer agents58. The dataset of possible chemical structures can be gathered from 

supplier’s chemicals portfolio datasheets or from internal databases of compounds. For instance, 

pharmaceutical companies developed their own compound libraries that, from years, compile the 

structures and/or data for millions of compounds59. Commercial and open-source databases have 

been also widely developed in this field60. Similar strategies of data collection could be considered for 

biobased compounds in the future.  

In the context of Green Chemistry, virtual screening can also be used to select safe candidates 

holding the target functionalities among databases of compounds and to select safer solvents, 

catalysts or reagents in processes. It can also assist the formulation of mixtures not only for the 

choice of constituents in mixtures but also by computing property profiles versus concentrations 

(even if only few examples of QSPR models for mixtures nowadays exist61) allowing to determine the 

concentrations that offer the best functional properties with the lowest hazards.  

The first step of such approach is to define the properties required to satisfy the expected 

specifications of the final product. These specifications can be related to: 

 application properties, like critical micelle concentration for surfactants or the ionic 

conductivity for electrolytes; 

 process properties, like boiling point, melting point or maximum critical temperature in 

agreement with specific conditions of process; 

 hazardous properties, like toxicity, flammability and explosivity; 

 economic and environmental costs; 

 regulatory compliance, based on properties required to classify and register substances 

according to regulations like the Transport of Dangerous Goods (TDG)43 or the Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH)62. 



9 
 

Of course, some specifications are not related to the chemical structures of products, in particular 

economic costs, and QSPR models cannot help to evaluate these criteria. For other specifications (in 

particular application, process and hazardous properties), existing QSPR models can be used to at 

least obtain an estimation of the properties to screen the chemical structures of the studied 

database and identify the best candidates for the target application.  

When used for screening purpose, QSPR models can have different levels of predictive powers 

depending on the property considered and the expected level of screening. Indeed, first screening 

can be done with models that are very quick and easy to use in order to eliminate the largest part of 

non relevant alternatives. Then, additional screening steps can be performed on the most promising 

candidates using more time-consuming and/or less automated models. Of course, other 

computational complementary approaches can also be introduced in such process, for instance by 

using UNIFAC or equations of states that are commonly used to predict the fluid properties14 needed 

for process engineering.  

Some examples of virtual screening for drug design are notably provided by Tropsha et al.63 for the 

discovery of anticonvulsant compounds and anticancer agents. For anticancer agents, Zhang et al.64 

started by developing QSAR models based on an experimental dataset of half maximal effective 

concentrations (EC50) for 52 phenanthrine-based tylophorine derivatives (PBT). Using topological 

descriptors and a k nearest neighbours (kNN) approach for the descriptor selection, 10 models were 

selected from multiple chemically different partitions of the dataset into training and validation sets. 

These models (constituted from 10 to 20 descriptors) presented performances from 0.71 to 0.81 in 

R². They were then applied on the molecular structures available in the ChemDiv Database65, a 

commercial database of about 500 000 compounds. 34 compounds were identified as relevant 

candidates from a consensus prediction of moderate or high biological activity based on the ten 

developed models. 10 out of those 34 compounds were experimentally investigated and eight of 

them confirmed their activity against the target cancer cell. The best activity was found for the 

structure presented in Figure 8, with an activity in line with the predicted one (with (–log EC50)exp = 

5.74 vs. (–log EC50)pred = 5.21). 

These examples demonstrate the potential of QSPR models to evidence the best candidates for a 

target application and could also be used to take into account physical hazards as relevant models 

already exist. By considering both hazardous and functional properties in early stages of selection of 

chemical candidates, both (toxic, physico-chemical) hazard and functional property unnecessary 

testings are avoided for compounds that are already identified as not relevant for the target 

application or exhibiting too important hazards for workers or end-users. 

QSPR models as in silico design tools 

Based on QSPR models, full in silico design of substances is possible (notably for substitution 

purposes) by not only selecting existing molecules but also proposing new ones with particular 

specifications. In such approaches, QSPR models can not only give predictions but much more they 

can also give structural trends towards (better) target properties and lower hazards.  

For such an inverse exercise, a current strategy (originated also from drug design16, 58) is to generate a 

virtual combinatorial library of structures in a defined chemical space and to screen it using 

computational methods to predict the target specifications. Then, the most relevant compounds are 
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further investigated for the final application, as shown in Figure 9. Such an approach is notably used 

in drug design to optimize the molecular structure of a compound that has been identified in the 

virtual screening of databases of existing chemical products. In such cases, analog structures are 

generated by applying structural modifications on the molecular scaffold of the selected structure16. 

As detailed in the previous section, the target specifications can be defined not only in terms of 

functional properties but also in terms of hazards. In the case of substitution studies, the properties 

of the compound to be substituted give in general the main expectations both for the required 

properties and the undesired hazards that represent the motivation for searching an alternative 

substance.   

Then, a virtual library of chemical structures is generated within a defined chemical space using 

different possible methods. A first one is based on the definition of a series of building blocks and 

structural constraints. Such approach is notably proposed by Gani et al.66 who considered as building 

blocks the contribution groups of the predictive methods used for the prediction of some functional 

properties (e.g. octanol/water partition coefficient, boiling point, surface tension). This approach has 

been used for various applications like solvents for crystallization67, polymers68 or surfactants69. 

Within the same type of approach, Weis and Visco70 used Signature molecular descriptors both as 

descriptors in the QSPR models and as building blocks in the structure generation in a solvent 

selection application. In the framework of Green Chemistry, the use of bio-based raw materials 

favors this approach by the definition of a series of bio-based building blocks for the generation of 

virtual combinatorial libraries. Moity et al.71 notably applied a similar approach in a tool called GRASS 

that associates bio-building blocks with co-reactant to generate new molecules with an application 

on itaconic acid based solvents. Similarly, Heintz et al.72 proposed computer aided tools (IBSS, for 

Integrated Bio Sourced Search) for the development of sustainable products, including mixtures, by 

the combination of groups (chemical functional groups or bio-sourced synthons) into molecules and, 

then, into mixtures, using a genetic algorithm.  

A second interesting way to build virtual libraries consists in generating chemical structures by virtual 

reactions from selected initial molecules of interest. Indeed, an important field of work in Green 

Chemistry relates to so-called platform molecules, e.g. succinic acid73 (Figure 10) or lactic acid74 

(Figure 11), which can be derived from renewable resources and from which a huge variety of 

chemicals can be produced. So, virtual chemical libraries can be defined from such particular 

platform molecules.  

Once the virtual library is generated, it is screened according to the target properties using 

theoretical approaches, like group contribution, as proposed by Gani et al.66, or COSMO-RS, used by 

Moity et al.71, to select best eligible candidates which can be then confirmed by experimental means. 

The same virtual screening can also be supported by QSPR models. For instance, Rücker et al.75 

proposed such inverse-QSPR study for the identification of C1-C4 acyclic haloalkanes containing C, H, 

F, Cl and Br presenting boiling points (Tb) between 130°C and 140°C. The boiling points of 507 C1-C4 

haloalkanes were gathered from literature and used to develop a 7-descriptor MLR model with high 

quality of fit (R²=0.99) and good robustness (R²cv=0.98) using the MOLGEN-QSPR program76. 

Tb = -153.251 nF,rel + 73.1663 nBr,rel + 53.3144 1χs + 100.227 SCA1 - 16.7507 slogP  

- 0.828538 2TCv + 1.12749 4TCc  - 223.678     (9) 
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where nF,rel and nBr,rel are the relative numbers of F and Br atoms, 1χs, SCA1, 2TCv and 4TCc are 

topological descriptors (Kier and Hall valence chi indices of first order, sum of coefficients of principal 

eigenvector of the adjacency matrix and two Bonchev’s overall topological indices) and slogP is a 

calculated partition coefficient. 

Then, 28 600 compounds were generated by exhaustive and redundance-free construction in the 

target chemical space using the MOLGEN software76. The model in Eq. 9 was applied on these 

compounds and 655 of them were found to fall between 130°C and 140°C in boiling point.  

Another interesting example concerns ionic liquids (IL) which are particularly relevant systems for 

such approaches since extended virtual combinatorial libraries can be built by combining diverse 

anions and cations. In their study, Matsuda et al.77 address the design of IL with target ionic 

conductivity. At first, a non-linear QSPR model was developed based on group contributions for the 

different cations, chain lengths (R1), other side chains (R2-4) and anions (as illustrated in Figure 12) in 

the training set. This model developed from 206 ionic conductivities presented a correlation 

coefficient R² of 0.91.  

Then, a reverse design of IL was performed to evidence IL presenting an ionic conductivity of 

15 ± 1 mS.cm-1 at 40°C. All structures that can be built by combining several cations, chain lengths, 

other side chains and anions were exhaustively generated. The ionic conductivities of the built 

structures were calculated using the developed QSPR model and the compounds highlighting values 

of properties falling into the target range of ionic conductivity (i.e. between 14 and 16 mS.cm-1) were 

identified. Finally, 13 generated IL were exhibited as possible relevant candidates.  

To go further in the inverse QSPR problem, one can take advantage of the trends involved into the 

QSPR models to evidence the best chemical candidates for target applications and then guide the 

generation of virtual chemical structures. Indeed, once a model has been developed, it is sometimes 

possible to identify how descriptor values influence the final properties. Then, one can change the 

molecular structure in a way that descriptors reach acceptable values to reach the expected 

property. To do that, some types of models are more relevant than others. Indeed, it is easier to 

investigate the influence of a descriptor in a multi linear model than in an artificial neural network.  

Such type of approach has been automated by Miyao et al.78 for the exhaustive generation of all 

chemical structures satisfying a target property. The efficiency of this approach was demonstrated on 

the search of chemicals with desired boiling points. At first, a QSPR model was developed on a 

dataset of 600 acyclic hydrocarbons (with R²=0.95) that was validated on an external set of 282 

compounds (with R²ext=0.95). 

Tb = -217.953 + 37.622 nSK – 0.943 nDB + 30.870 MWC02 + 249.128 MWC03 

- 185.337 MCW04 – 34.971 X1       (10) 

where nSK is the number of main atoms, nDB is the number of double bonds, MWC02, MWC03 and 

MWC04 are the molecular walk counts with order 2, 3 and 4 and X1 is the Randic connectivity index. 

Then, probability distributions of descriptors were defined as a function of the target property and 

mixed to define a chemical space in which all chemical structures presenting the target property will 

be found. Then, all chemical structures in this chemical space were systematically generated.   
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If this kind of strategies nowadays are used focusing on the identification of high performance 

compounds, the availability of reliable QSPR models for physico-chemical hazards open new 

perspectives towards the search for safer compounds. In particular, in the field of Green Chemistry, 

all requirements towards more “green” chemicals could be taken into account from the beginning of 

the development process, including solubility in water, biodegradability for instance. 

Conclusions and perspectives 

Computational approaches have increased their implications in R&D since now many decades in 

different fields. Nowadays, molecular scale computations have proven their relevance and 

performances to support innovation. Notably, computer aided molecular design has been already 

extendly used in drug design to reduce costs by using virtual screening to identify the products of 

greatest potential.  

Green Chemistry is an active field of chemical research in which these computational methods could 

allow reducing experimental times and costs by anticipating in the earliest steps of development not 

only the functional properties but also the hazards of final products, reactants or solvents used in 

processes. In particular, Green Chemistry can nowadays take advantage of the increasing 

developments of QSPR models to predict physico-chemical hazards of chemicals from the only 

knowledge of their molecular structures. In addition to the prediction of a single property value for 

instance for the classification of hazardous chemicals or in process safety analyzes, these predictive 

methods are powerful alternative approaches for virtual screening or even for the in silico design of 

new products. This could also be complemented with modeling tools like process engineering 

software to go further into an even more global in silico R&D strategy. 

To exploit the full potential of the QSPR approach in Green Chemistry, further research actions may 

still be encouraged:  

 The fields of applications of existing QSPR models can be enlarged to fulfill all specifications 

of chemicals in the context of Green Chemistry. Considering safety issues, QSPR models for 

all chemical hazards can be further developed and used, notably for properties for which no 

model already exists like oxidizing properties. 

 Further development and evaluation of models for specific compounds with promising 

applications in Green Chemistry like ionic liquids, electrolytes or surfactants should be 

encouraged. Indeed, some of these systems, like ionic liquids, are particularly relevant for 

computer aided molecular design by targeting the combination of anions and cations 

towards specific properties using QSPR models.  

 The prediction of mixture properties remains also a challenge of great importance when 

looking for bio-based products since their compositions can be complex and variable in time, 

dependent on bio-resources. Nevertheless, first models revealed already promising for the 

flash point of binary liquid mixtures and encourage further development to improve the 

performances of models and to use them for complex multi-component mixtures. 

 To support the development, evaluation and improvement of QSPR models, robust and large 

databases on bio-based compounds or class of compounds, e.g. solvents, surfactants or ionic 

liquids, could be collected and organized. Once consolidated, QSPR models can be used to 

screen these databases to identify high potential candidates for industrial applications. 
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Table 1 - QSPR models to classify substances according to the CLP regulation for physical hazards 

Explosive substances 

 

Temperature and heat of 
decomposition 

Recent validated models have been developed for 
nitro compounds with errors lower than 20% on 
heats of decomposition40. 

Impact sensitivity Few validated models exist for nitro compounds 
with errors about 0.2-0.25 (log)42, 44, 79-81. 

Flammable gases 

 

Lower and Upper 
Flammability Limits 
(LFL/UFL) 

Recent models exist with errors about 10% for 
UFL82 and 5% for LFL83. 
 

Flammable liquids 

 

Flash point Validated models applicable for organic 
compounds exist with errors lower than 5°C for the 
best ones84, 85. 
First predictive approaches have been recently 
proposed for mixtures with errors about 4°C50, 51, 53. 

Boiling point Numerous models have been developed among 
years for very diverse families of compounds. 
Validated models reach errors lower than 5°C for 
the most accurate ones86. 

Self ignition temperature Validated models exist with different performances 
upon the target compounds. Errors about 15°C are 
reached for models widely applicable to organic 
compounds87.  

Organic peroxides 

 

Temperature and heat of 
decomposition 

Validated models have been recently developed 
with R² of 0.82 and 0.90 (in external validation) for 
the heat and temperature of decomposition, 
respectively46.  

 

  



18 
 

Figure 1 - Principle of the QSPR method 
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Figure 2 – Nitrobenzene derivatives presenting no substituent in ortho position to the nitro group 
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Figure 3 - Experimental vs. predicted impact sensitivity of nitramines from Eq. 4 (adapted from Ref. 42) 
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Figure 4 – Decision tree model to predict the heat of decomposition of nitroaromatic compounds (adapted 

from Ref. 45). 
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Figure 5 - Flash point of n-octane/isopropanol mixtures from experiments88 and from the full predictive 
method of Gaudin et al.51 (adapted from Ref. 51). 
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Figure 6 - Ternary diagram of flash points of the methanol/toluene/2,2,4-trimethylpentane mixture 
calculated by the full-predictive method of Gaudin et al.51 
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Figure 7 - Screening databases of chemicals using QSPR models 
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Figure 8 – Structure of the best PBT derivative proposed by Zhang et al.64 
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Figure 9 - General structure of an in silico study based on the generation and screening of a virtual library 
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Figure 10 - Possible chemical conversions from succinic acid as platform molecule73  
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Figure 11 - Possible chemical conversions from lactic acid as platform molecule74  
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Figure 12 - Structural parameters for the generation of IL by Matsuda et al.77 

 
 
 
 
 
 


