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In order to be able to model correctly dust explosion propagation, data are needed to couple the 

flame velocity to the characteristics of the turbulence : intensity and scale. So far most of the 

available data were obtained with laboratory equipments. In this paper, large scale experiments 

(up to 100 m3) were performed during which both the flame velocity and turbulence 

characteristics were measured. Results are presented exhibiting a good correlation with the 

smaller scale data 
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1. Introduction

Since some decades, efforts have been made to develop numerical codes to try and help with 

the safe design of industrial facilities against explosions. A few are dedicated to dust explosions 

(Skjöld, 2007; Proust, 2005). One of the main challenges is to be able to correlate the local 

aerodynamics of the dust air mixture to the flame propagation. In particular, the incidence of 

the flow is targeted, since turbulence is always present in dust clouds. There is a need to find a 

correlation establishing the relationship between the combustion velocity (rate at which the 

mixture is burnt per unit flame area) and the characteristics of the turbulence.  

Today, data are still severely lacking. Experiments are very difficult to do especially the 

measurement of the turbulence parameters. One of the pioneering works was performed 30 

years ago, (Tezok et al., 1985). Experiments were done in a closed vessel and the turbulence 

intensity was measured during pretests without dusts with LDA or hot wire techniques, 

assuming it will be the same with the presence of dust particles and during flame propagation. 

Very often the flame speed is deduced and extrapolated from the pressure signals. Some 

progresses very made since that time and new data published (Krause and Kash, 2000; Sattar et 

al., 2014) but mostly at lab scale and with the same limitations. 

During the last years however, evolutions were presented both in the way the measure the 

turbulence in the dust cloud in test conditions and to estimate the turbulent burning velocities 

both in closed bombs (Snoeys et al., 2006) and in the tube method (Schneider and Proust, 2007, 

Hamberger et al., 2007). But this is still the laboratory scale. In this paper, some estimations of 

the turbulent burning velocities of dust-air mixtures at larger scales are presented and compared 

to the small scale results.  

Some basic turbulence and turbulent combustion are firstly recalled to point out the possible 

links between the main parameters. The experimental setups are presented and then the results 

and interpretation. 



2. Turbulence and turbulent combustion

It was shown some time ago (Proust, 2006 a & b, Gao and al., 2015, Eckhoff, 1993) that the 

main lines of the explosion process may be very similar in gas and dust atmospheres. This is 

especially true for carbonaceous dust like flour, starch,… may be not for metal dusts.  

In particular, for those dusts burning in air, laminar, cellular and turbulent flame regimes were 

identified. The laminar flame regime obeys the same mechanisms: the reactants ahead of the 

combustion zone are heated by conduction up to being pyrolysed so that the combustion occurs 

in gaseous phase. Not surprisingly, the relevant parameters of this basic combustion regime are 

the consumption rate of the flame front, the “laminar burning velocity” Sl, and the flame 

thickness, η0, deduced from Sl using the thermal diffusivity of the medium. 

A flow becomes turbulent as soon as, inside a boundary layer (velocity gradient), the low speed 

layers of the flow are rolling up with the higher speed layers to produce eddies which appear 

and dissipate rapidly. Such structures are “chaotic” and can be studied using statistics which has 

been done for nearly one century : these structures constitute the “turbulence” of the flow (Hinze, 

1975). The relevant theories introduce the notion of “turbulent cascade” according to which the 

initial eddies are destroyed in smaller and smaller structures until dissipation by molecular 

diffusion so that there is a mechanical link between all the structures of the turbulence. In 

practice, this “cascading” process is seen as an intrinsic process, independent from the mean 

flow. Because of this, it is then sufficient to know the characteristics of the largest eddies, those 

directly issued from the average flowfield, to fully characterize the turbulence. These 

characteristics are the scale of the largest eddies (L = “integral scale of turbulence”) and their 

peripheral velocity (u’= “rms of the velocity fluctuations”). The parameter u’ is in principle a 

space averaged variable and L is the area under the curve giving the evolution of the correlation 

coefficient of the velocity signals around a reference point.  

It is implicitly assumed that the situation may be comparable with dust clouds (Tezok et al., 

1985). This is not fully obvious however, since for instance, direct observation show that the 

particles are pushed around the turbulent eddies (Proust, 2006b, Bozier, 2004). The mixture 

does not remain locally homogeneous, and as a consequence, the burning may occur mostly at 

the periphery of the eddies and potentially in between (figure 1). This makes a difference with 

turbulent burning in homogeneous gaseous flames. To our knowledge, this issue has not been 

addressed yet. 

Turbulent cloud (laser tomo.) Turbulent flame  

Fig. 1. 



So the turbulent flame propagation is premixed gaseous mixtures remains the model to refer to. 

Unfortunately, the propagation mechanisms are still a matter of passionate debate and are the 

subject of active research. For the present purpose, it is sufficient to recall that the parameter of 

interest is the “turbulent burning velocity”, St, defined in a somewhat similar way as the laminar 

burning velocity. It can be viewed as the local flame consumption rate over the averaged flame 

front and should be represents of the speed at which the flame progresses against the mean flow. 

For those situations where the turbulent flame can be seen as a disturbed version of a laminar 

flame, which should be the case when L>> η0 (Borghi and Destriaux, 1998), the characteristics 

of the turbulence should be coupled to those of the laminar flame front in the propagation 

process. Following St should be a function of Sl, η0, u’ and L. A number of approaches, 

sometimes conceptually diverging, were used to derived such relationship over the time (Bray, 

1990; Gülder, 1990; Yakhot, Peters, 1986) but a simple engineering dimensional analysis says 

that the relationship should be : 
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Where K, α and β are constants. A tentative use of the Gülder model (K=0.6, α=0.75, β=0.25), 

resembling also that proposed by Peters, was proposed (Schneider and Proust, 2005, Hamberger 

and al., 2007) and seems to correlate well with lab scale experiments (Figure 2 : L=0.03 m). 

Noteworthy the characteristics of the turbulence were measured in the dust cloud using a 

technique very similar to that explained hereafter. 

Fig. 2. 

The agreement seems very reasonable but there is a need to verify it further especially in view 

of capturing the scale effect. To this purpose large scale experiments were performed. 

3. Setups and metrology

Experiments were done using a 1 m3 closed vessel, a 10 m3 vessel and a 100 m3 chamber (figure 

3).  



Table 1: 

Chamber (L/D) Ignition point Ignition source  Dust dispersion Vented 

1 m3 (1.7) 

10 m3 (3.7) 

100 m3 (3.3) 

Center 

Opposite to dispersion 

Closed end 

2 x5 kJ igniters 

50 kJ flash powder 

50 kJ flash powder 

5 l – 20 bar bottle and 

perforated ring  

Pressurised dust nozzle 

Pressurised dust nozzle 

closed 

0.5  m2 

3, 6, 8 m2



Fig. 3. 

In the 1 m3 vessel the dispersion system is that described in the international ISO 6184/1 

standard. The dust is contained in a 5 l reservoir pressurized up to 20 bar (air). An electrical of 

pyrotechnical valve releases the dust in the chamber via a perforated ring. The overall release 

area is about 300 mm2. The ignition source is normally activated about 600 ms after the start of 

the dust dispersion. But in the frame of the present testing a larger ignition delay was used (1500 

ms) in some instances to obtain a lower level of turbulence. Also, an additional bottle of 

pressurized air was added for some tests to increase the turbulence level (keeping the 600 ms 

ignition delay which is required to empty the dust reservoir : Snoeys et al., 2006). 

For the other chambers a powerful pneumatic dust disperser was systematically used. It is made 

of a circular 32 mm orifice (1200 mm2 release area) connected to a curved reservoir (150 mm 

internal diameter; 700 mm long). To trigger the dispersion, pressurized air is injected at the top 

of the reservoir so that the pressure jumps at about at about 7 bar (gauge) at the early beginning 

of the discharge process and drop to zero in about 2 seconds.  

Only one disperser was used in the 10 m3 vessel and was located on an end flange opposite to 

the ignition source (on the other end flange). The ignition source is located on the axis of the 

chamber at 0.8 m from the flange and the ignition delay (elapsed since the pressurization of the 

disperser) is about 800 ms. 

Up to 4 dust dispersers were installed in the 100 m3 vessels on the frame middle in the chamber 

(at 5 m from the blind end). The ignition source was located in the center of the rear wall, 

opposite to the vented section and the ignition delay (elapsed since the pressurization of the 

disperser) is about 1700 ms. 

 

 

The overpressure are measured classically Kistler Piezoresistive (0-10 bar) transducers. One is 

mounted flush on the outer wall of the chamber (in the middle between both extremities) and is



 thermally insulated. The second one is mounted on the dust reservoir to control the discharge. 

In some cases, K thermocouples (1 mm) were used (with the 1 m3 vessel exclusively). 

The detection of a propagating flame can be a challenge especially when short distances are 

concerned (Snoeys et al., 2006). Usually optical detectors can be employed when separations 

distances are a meter at least. Amplified photodiodes were used with the 100 m3 chamber. With 

shorter run up distances, ionization gages can be used. These were employed with the smallest 

devices. The electrodes (4 to 6) were aligned on a rod of 0.5 m long close to the ignition source, 

where the flame is expected to grow isotropically so that the flame velocity is the expansion 

velocity (expression (2)).  

 

One of the greatest difficulties is to be capable of measuring the turbulence in a dust air mixture. 

Standard laboratory equipments and especially LDA and hot wire anemometry are not 

applicable. INERIS has been working for years on the development of alternative techniques 

(Proust, 2004). A Pitot tube technique based on a very refined concept of Mc Caffrey gauges 

(Mc Caffrey, 1976) was implemented (Fig. 4). The device provides results fully in line with 

traditional techniques (in figure 4 the turbulence measured in the 1 m3 ISO vessel is shown and 

compared to LDA measurements : from Snoeys et al., 2006). It was used to do the measurement 

of figure 2. The sensor head is a short tube (length 2 cm , diameter 1 cm) with a solid wall in 

the middle and the differential pressure is measured on both sides with a precise and fast 

pressure transducer. The aeraulics of the system had to be refined to have sufficient dynamics. 

Extensive testing in a reference jet proved that such transducers are able to detect eddies as 

small as 2 cm with a peripheral velocity of 0.2 m/s. Note in particular that the devices can do 

measurements even in very dusty mixtures (up to 500 g/m3 at least). 

Fig. 3. 

Most turbulence measurements were obtained without dust being dispersed in the chambers but 

some were performed with dust and gave similar results (Snoeys et al., 2006). 

 

 

The results presented hereafter were obtained with starch based dusts because the laminar 

burning velocities and burnt products temperatures are known (Proust, 2006a; Schneider and 

Proust, 2007). Some published data are recalled below about the fundamental burning properties 

(measurements using the tube method – 10 cm diameter and 25 µm diameter K thermocouples 

for the temperature measurements). 



Table 2: 

Reference Sauter mean dia. 

(µm) 

Laminar burning velocity 

(m/s at 250 g/m3) 

Prolabo (Proust, 2006b) 34 0.20±0.05 

Microlys (Schneider and Proust, 2005) 14 0.16±0.02 

Vitango (Schneider and Proust, 2005) 25 0.20±0.03 

Swely gel (Schneider and Proust, 2005) 16 0.22±0.03 (150 g/m3) 

Mass concentration (g/m3) 0 50 100 150 200 250

Mass particle concentration (g/m3)

Fig. 4. 

There is no discernable influence of the nature of the starch and of the particle size. It may then 

be estimated that the above parameters are representative of the agricultural dusts used for the 

present testing (table 3). 

Table 3: 

Reference Sauter dia. (µm) Concentration (g/m3) Max. expl. Overp. (b) Kst (b.m/s) 

Wheat flour (bakery) 47 250 and 500 7.3 70 

Corn starch 13 250 and 500 7.3 100 

A limited number of comparative tests were done using stoichiometric methane-air mixtures (1 

m3 vessel). 

 

Several of the turbulence probes have to be used simultaneously to do a measurement because 

first the turbulence may not be homogeneous and second because the signals have to be cross 

correlated to derive the integral scale of the turbulence (see Schneider and Proust, 2007 for 

further details). A typical example of such a display is shown on figure 5 for the specific case 

of the 1 m3 vessel. Apart in the jet region, there is no average flow inside the vessel but mostly 

turbulence at least in the combustion time slot. In this particular case, the turbulence probes 

were too close not to disturb the largest structures of the turbulence and an alternative method 

was employed to estimate the integral scale of the turbulence. The probes were separated and 

their signal was correlated in time during the period were a measurable average velocity was 

detected. The autocorrelation time multiplied by this velocity gives an image of the space 

correlation (Taylor assumption). The results area presented in figure 4 showing the space 

correlation obtained this way and the cross correlation of the probes. Clearly, the probes tend to 

be strongly correlated suggesting there are in the same region of the flow but also that they 

interact and influence each of them. So the integral scale of the turbulence is about 3 to 4 cm 



whereas the intensities of the turbulence are respectively 1.7 m/s in the standard conditions, 0.7 

m/s when the ignition time is 1500 ms and 4 m/s in the reinforced turbulence configuration. 

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
-0,6

Time since the opening of the dispersion bottle (s) Distance (m)

Fig. 5. 

A set of vertically aligned turbulence probes was installed in the geometrical centre of the 10 

m3 chamber. The results are presented on figure 6. As for the “elongated” 1 m3 vessel, there is 

an average axial velocity of about 2 m/s but is much less. The turbulence intensity is about 3 

m/s and the integral scale of turbulence is about 5 to 10 cm with a reasonable agreement between 

the time and space correlations.  

Fig. 6. 

Similarly, a set of vertically aligned turbulence probes was installed on the axis of the 100 m3 

chamber and moved between the blind end towards the vented end. The results are presented 

on figure 7. The average flow velocity is about 0 m/s and the rms of the fluctuations (u’) is not 

far from 1 m/s at least in the ignition zone. From the area, under the curve of the spatial cross 

correlation coefficient the integral scale of the turbulence can be deduced and is about 20 cm. 
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Fig. 7. Turbulence results (100 m
3
 vessel) 

Table 4: turbulence characteristics of the various setups. 

Nature Turb. Intensity (m/s) Int. lengthscale (m) 

3.3.3 Explosion overpressures and burnt product temperatures 
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E would be close to Tpmax/Tinit only if Nproduct/Ninit. There is a possibility to derive Nproducts/Ninit 

from the measurement of Tvmax and Pmax using the perfect gas law to rewrite the right hand side 

of expression (1): 

                                                 (5)

The measurements of Tvmax and Pvmax were measured in the 1 m3 vessel (figure 8). 

concentration 

(g/m3)

Fig. 8. 

Knowing that Tvmax/Tinit is about 5.7 at maximum, it can easily be shown, using expression (3), 

that Tpmax/Tinit should be on the order of 4.7 so that Tpmax = 1100°C which is fully in line with 

the data from figure 4. 

The expansion ratio, deduced from equation (2) and the relationship (5) are represented on 

figure 9. 

Tvmax/Tinit

Fig. 9. 

The expansion ration is clearly greater that the ratio Tpmax/Tinit (maximum 5) so that expression 

[4] suggests Nproduct/Ninit should be significantly greater than 1. On average this ratio is about 

1.7. The reason for this could be that, in most experimental situations, the concentration of dust 

is well above the stiochiometric conditions (250 g/m3) so that the excess dust can be pyrolysed 

in the very hot burnt products (starch gasify at 400°C in flames : Proust 2006b) producing a 

significant amount of gases. This point was suggested earlier(Lemos, xxx).  
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3.3.4 Flame dynamics 

Experimental results Fitting the pressure trace and  

reconstruction of the trajectory 

Fig. 10. Flame trajectory and pressure trace in the “cubic” 1 m
3
 chamber (500 g/m

3

cornstarch, standard dust dispersion procedure). 
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Fig. 11. Flame trajectory and pressure trace in the 100 m
3
 chamber (250 g/m

3
 cornstarch, 

vent area 3 m
2
). 
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Fig. 12. Flame trajectory and pressure trace in the 10 m
3
 chamber (250 g/m

3
 cornstarch, vent 

area 0.5 m
2
).

3.3.5 Turbulent velocity data 

Table 5: turbulent burning velocities extracted from 1, 10 and 100 m
3
 experiments (accuracy 

±20%) 

Description u’ (m/s) Lt (m) St (m/s) 
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Fig. 13. Comparison of the St-u’ correlation between the laboratory scale results and the 1 m
3

experimental results 
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Fig. 14. St-u’ relationship as function of the scale of the experiments 

4. Conclusion and perspectives
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