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Abstract 

In this study, new molecular fragments associated with genotoxic and non-genotoxic carcinogens 

are introduced to estimate the carcinogenic potential of compounds. Two rule-based 

carcinogenesis models were developed with the aid of SARpy: model R (from rodents 

experimental data) and model E (from human carcinogenicity data). Structural alert extraction 

method of SARpy uses a completely automated and unbiased manner with statistical 

significance. The carcinogenicity models developed in this study are collections of carcinogenic 

potential fragments that were extracted from two carcinogenicity databases: the ANTARES 
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carcinogenicity dataset with information from bioassay on rats and the combination of ISSCAN 

and CGX datasets, which take into accounts human-based assessment. The performance of these 

two models was evaluated in terms of cross-validation and external validation using a 258 

compound case study dataset. Combining R and H predictions and scoring a positive or negative 

result when both models are concordant on a prediction, increased accuracy to 72% and 

specificity to 79% on the external test set. The carcinogenic fragments present in the two models 

were compared and analysed from the point of view of chemical class. The results of this study 

show that the developed rule sets will be a useful tool to identify some new structural alerts of 

carcinogenicity and provide effective information on the molecular structures of carcinogenic 

chemicals. 

  



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 3 

Introduction 

Identification, classification and risk assessment of carcinogenic chemicals by international 

organizations and national agencies of health and safety have made remarkable progress in 

recent years. The European Commission (EC) substantially modified and replaced the Directive 

67/548/EEC and 93/101/EEC with Regulation (EC) 1272/2008 on risks and hazards of 

carcinogens and mutagens(1). The new regulation introduced the globally harmonised system of 

classification and labelling of chemicals (GHS). Under these directives experimental data studies 

on chemical carcinogens have been digitally collected with the aim of harmonizing national 

measures on classification, packaging and labelling of dangerous substances, to facilitate the 

establishment of a single market and to provide protection for public health and the environment. 

The new regulation complements the REACH regulation on the registration, evaluation, 

authorisation and restriction of chemicals. 

Research has provided evidence that chemicals may cause cancer in animals and humans by one 

of several general mechanisms of action (MoA), generally classified into genotoxic and non-

genotoxic. Genotoxic carcinogens cause damage to DNA, thus, many known mutagens are in 

this category, and often mutation is one of the first steps in the development of cancer (2). 

Epigenetic or non-genotoxic carcinogens do not bind covalently to DNA, and are usually 

negative in the standard mutagenicity assays (3). The unifying feature of all genotoxic 

carcinogens is that they are either electrophiles or can be activated to electrophilic reactive 

intermediates. On the contrary, non-genotoxic carcinogens act through a large variety of different 

and specific mechanisms. 
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For over 35 years, many chemicals have been tested by government agencies, private companies 

and research institutes using the two-year rodent carcinogenesis bioassay. Most of the chemicals 

or processes that have been associated with human carcinogenicity, as studied by 

epidemiological investigations, are shown to cause tumours in rats and mice (4-6). However, all 

compounds shown to induce cancer in laboratory rats and mice are not necessarily human 

carcinogens (7). 

In the past ten years, research into the MoA and carcinogenesis has increased and the relevance 

of the carcinogenicity findings in rodents to human risk has been investigated in many 

publications (8-10). The results of research demonstrated that doses used in the bioassays may do 

not develop toxicity in humans exposed to same levels of these chemicals; in addition, rats and 

mice tumours occur in a sex, age and strain or stock dependent manner. In consequence of these 

points, the regulatory agencies consider that the high occurrence of tumours in the standard two-

year rodent carcinogenesis bioassay is often not relevant to risk evaluation of human 

carcinogenesis (11). Variability of the tumours in rodents is another problem of this assay. To 

deal with the problems of two-year rodent carcinogenesis bioassay alternative methods are 

suggested by scientists and regulatory agencies. These methods include use of the toxicity level 

(LD50) in rodents (12), in vitro cell transformation and other assays, in silico methods or 

computerized prediction of carcinogenicity based on structure and chemical class (13). Each 

method has its own strengths and weaknesses, and analysis of carcinogenicity of a specific 

chemical and its MoA in human is better to be assessed based on the weight of evidence. 

Among the in silico methods, the use of various computational techniques such as (quantitative) 

structure-activity relationship ((Q)SAR) modelling is supported by several legislative authorities 
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(14-16). (Q)SAR models consist of mathematical relationships between physicochemical 

properties of chemicals and their biological activity, thus being able to calculate a quantitative 

value (for the activity) given the structure of a chemical. These mathematical relationships can 

be simple linear regression equations, or more complex non-linear algorithms, and can be 

developed using several approaches such as neural networks, support vector machines, decision 

trees and many others. Conversely, SAR identifies the differences of compounds in two 

categories (e.g. active or inactive) and predicts an untested compound as ―toxic‖ in case it has a 

toxic potential or ―non-toxic‖ if not. Overall, (Q)SAR models are useful for the prediction of 

toxicity of untested chemicals saving costs and the need for testing on animals (17, 18). 

Following the theory of eletrophilic reactivity of (many) carcinogens of James and Elizabeth 

Millers (19, 20), the advancement of the knowledge of carcinogenic chemicals have received 

distinguished contributions from many scientists. The salmonella typhimurium mutagenicity 

assay by Bruce Ames (7) and the compilation of the lists of carcinogenic and mutagenic 

structural alerts (SA) by John Ashby (21) were two fundamental contributions to this field. SAs 

identified and collected by John Ashby‘s are indeed reactive functional groups responsible for 

the induction of mutation or cancer, and are so-called genotoxic carcinogens. On the other hand, 

the Salmonella assay is the most predictive assay for genotoxic carcinogens and no other non-

genotoxic mutagenicity test exists (22). Despite the extensive knowledge of genotoxic SAs, the 

use of SAs for identifying non-genotoxic carcinogens is restricted. Non-genotoxic carcinogens 

use many different MoA and they lack an apparent unifying mechanism. According to this 

diversity, different (Q)SAR models have been developed and made available for analysis and 
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identification of SAs. A number of non-genotoxic SAs and their characteristics have been 

published in (3). 

One of the most recent rule sets defined by human expert for mutagenic carcinogenicity has been 

developed by Benigni and Bossa (23, 24). The updated version of this rule set (24) is 

implemented in Toxtree version 2.6.13 (25), a software application that investigates the presence 

of the genotoxic and non-genotoxic SAs in the chemical structures of the compounds. Alongside 

the rule-based (Q)SAR software that check the presence of human expert SAs in the chemical 

structures, there are statistically-based (Q)SARs which create models by using categorized active 

and inactive chemicals in a learning set to identify SAs that are associated with a particular 

toxicological activity. The high accuracy of the predictions performed by data mining and 

artificial intelligence has made these methods important tools to be used for preliminary research 

and for discovery of the mechanism of action that are still unknown. These methods however, 

comparing to rule-based models are less transparent to the end user. Historically, the Computer 

Automated Structure Evaluation (CASE/MultiCASE) (26) program is a SAR expert system that 

identifies two-dimensional structural features or biophores which can be used for the prediction 

of unknown compounds as potential toxins. This statistically-based program does not use the 

knowledge on the mechanisms of action, but reanalyse the dataset of chemicals trying to link the 

structures of chemicals into their toxic activity. On the other hand, SAs developed by human 

experts were integrated in software such as OncoLogic (27) and DEREK (28). 

In this study we used SARpy (29), a commercially free statistically-based program, for the 

extraction of potential carcinogenic SAs from two different learning sets. The approach that we 

have taken in developing the two new carcinogenicity models is mainly based on statistical 
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evaluation of the chemicals in our learning sets categorized in two groups of carcinogens and 

non-carcinogens. The SARpy‘s method of identification of the SAs that are associated with a 

particular biological or toxicological activity does not demand a priori knowledge about MoA of 

the compounds and performs purely on a statistical basis. Two different carcinogenicity datasets 

have been prepared as learning sets and SARpy extracted two different models from these two 

datasets. The internal and external evaluation of the models have been assessed thoroughly. The 

choice of taking into consideration two substantially different learning sets and developing two 

models is due to different characterization of these data. The first dataset contains exclusively 

rodent carcinogenicity data based on presence of carcinogenic effects in male or female rats, 

while the second dataset takes into account human-based assessments and data retrieved from 

different assays. This suggests to obtain two different carcinogenicity models. 

Finally, the SAs in the two rule sets are analyzed from the point of view of chemical class and 

the same SAs present in both rule sets are revised. The two developed models have been made 

available inside VEGA (http://www.vega-qsar.eu/) (30), an open source platform that already 

offers several (Q)SAR models. 

Material and Methods 

Carcinogenesis data sources 

ANTARES carcinogenicity dataset: Rat carcinogenesis learning set 

Compounds for the first model‘s learning set were obtained from the carcinogenicity database of 

EU-funded project ANTARES (31). The ANTARES‘ carcinogenicity database is a collection of 

chemical rat carcinogenesis data (presence of carcinogenic effects in male or female rats) 
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obtained from the EU-funded project CAESAR (32) dataset and the ―FDA 2009 SAR 

Carcinogenicity - SAR Structures‖ database. The CAESAR toxicity values were originated from 

the Distributed Structure-Searchable Toxicity DSSTox database, which was built from the Lois 

Gold‘s Carcinogenic Potency Database (CPDB) (33). The compounds with a definite TD50 

(which is the dose that produces an increase of 50% of the tumours in animals) value for rat in 

this dataset were labeled as carcinogenic, while the remaining were labeled as non-carcinogenic. 

Additional 738 chemicals different from the 805 CAESAR compounds were added. The added 

chemicals are from the ―FDA 2009 SAR Carcinogenicity - SAR Structures‖ database using the 

Leadscope database (34). Here a categorical label for carcinogenicity was already contained in 

the original dataset and again the compound was labeled as carcinogenic if a positive outcome 

was detected in male or female rats. So a total number of 1543 compounds constituted the 

ANTARES dataset. 

ISS Carcinogenicity database and Carcinogenicity Genotoxicity eXperience dataset: Different 

species carcinogenesis learning set 

The ISS Carcinogenicity (ISSCAN) database (35) is provided by the Istituto Superiore di Sanità 

(ISS). It is originally aimed at developing predictive models for carcinogenicity of chemicals. 

The great part of the chemicals in this database are classified as carcinogens by various 

regulatory agencies and scientific bodies. The database has been specifically designed as an 

expert decision support tool and contains information on chemicals tested with the long-term 

carcinogenicity bioassay on rodents (presence of carcinogenic effects in male or female rats and 

mice). This carcinogenicity dataset contains 622 carcinogens, 210 non-carcinogens and 58 

equivocals. 
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Compounds for the second model‘s learning set were obtained by merging the ISSCAN database 

and the Carcinogenicity Genotoxicity eXperience (CGX) database. More information on the 

CGX database can be found in (36). In this study, compounds used for development of the new 

models had to be either positive or negative, thus, compounds with equivocal results in the 

databases have been removed. In particular, from the original ISSCAN dataset with 890 

compounds, we removed 58 compounds, while the CGX database did not contain any equivocal 

result. 

All compounds in the combined dataset have been checked for their consistency between the two 

sources. We found 651 compounds in common, 15 of them with inconsistent carcinogenicity 

values. These compounds have been removed from the combined dataset. 

Comparison with the ANTARES dataset 

We compared the final list of compounds with the ANTARES carcinogenicity dataset prepared 

for the development of the first model. We found 105 compounds with conflicting values when 

compared with the compounds in the ANTARES dataset. In order to develop a more 

conservative model, we opted to remove only 15 compounds which had positive result in the 

ANTARES dataset and negative results in the combined second dataset, and left as carcinogenic 

those that had carcinogenicity result the opposite way. Consequently, there are 90 positive 

compounds in the combined database which are negative in the ANTARES dataset. Afterwards, 

we checked and cleaned the structures manually, and by the help of the istMolBase (37) and 

InstantJChem (38) software formed the final dataset. 
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In addition, the compounds have been checked for their molecular structure. We adopted only 

the substances with connected molecular structure; those which had unconnected structures have 

been removed from the dataset. The overall dataset consisted of 986 compounds with 734 

carcinogens and 252 non-carcinogens. Each compound in the list had a chemical name, a CAS 

number, a Simplified Molecular Input Line Entry Specification (SMILES) (39), and its 

categorical designation (i.e. carcinogen or non-carcinogen). In the present study, this combined 

dataset is conventionally called ISSCAN-CGX. 

Data for model validation 

ECHA database 

We prepared an external test set for the validation of the developed models from carcinogenicity 

the eChemPortal inventory (40). For this purpose, we made two queries on this database. The 

first query contained the following restrictions: 

i) Study result type: experimental result 

ii) Reliability: 1 and 2 

iii) Species: mouse and rat 

iv) Maximum number of studies: 4 

The second query consisted of: 

i) Study result type: experimental result 

ii) Reliability: 1 and 2 
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iii) Species: mouse and rat 

iv) Sources: any guideline and exposure route 

The list resulted from the first query comprised 308 compounds, whereas, the second query 

returned a list of 166 compounds, which were mostly in common with the results of the first 

query. The studies conducted for the first list of compounds have been manually evaluated. 

Afterwards, we looked into the Classification Labelling and Packaging (CLP) inventory (41) for 

the positive (i.e. carcinogenic) chemicals collected by the above mentioned queries. Inside the 

CLP inventory we found 68 compounds, which were already present in our data collection. The 

latter search confirmed the carcinogenic property of these compounds. 

The dataset consisted of 64 positive compounds, 169 negative compounds, and 90 equivocal 

compounds. The equivocal results are due to the presence of conflicting information in different 

sources or different studies in the same source. 

It should be noticed that, for already classified compounds (no conflicting information), the level 

of uncertainty in the assignment is not homogeneous, because some of the compounds were 

classified on the basis of a single study (i.e. data present in one single source). 

From the reliability point of view, in the data collected in our dataset, 49 positive compounds 

have positive carcinogenic effect in at least two sources. 57 negative compounds are non-

carcinogenic in both lists, and they are not present in the list of compounds retrieved from the 

CLP inventory. 64 compounds are considered as non-carcinogens because of the presence of 

only one single study in the two lists. 

SARpy 
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The SARpy (SAR in Python) program is a Python script based on the OpenBabel chemical 

library. SARpy creates classification models by using categorized active and inactive chemicals 

in a learning set to identify molecular fragments that are associated with a particular biological, 

pharmaceutical or toxicological activity. The algorithm generates molecular substructures of 

arbitrary complexity, and the fragments candidates to become SAs are automatically selected on 

the basis of their prediction performance in a learning set. 

The output of SARpy consists in a set of rules in the form: 

‗IF contains <SA> THEN <apply label>‘, where the SA is expressed as a SMARTS string, for 

use by human experts or other chemical software. SMARTS notations are text representations of 

substructures (36) that allow specification of wildcard atoms and bonds, which can be used to 

formulate substructure queries for a chemical database. Those rules can be used as a predictive 

model simply by calling a SMARTS matching program. For the matching phase, SMILES and 

the SMARTS strings are translated into graphs and the two graphs are compared to each other 

(42). 

Extracting active fragments 

R (rat) model 

To obtain a more comprehensive collection of potential carcinogenic fragments, five learning 

sets were randomly created from the ANTARES carcinogenicity dataset with 1543 compounds, 

preserving 80% for the learning set and 20% for the evaluation set. In other words, for each 

model a random set of 20% of chemicals in the learning set was removed, with the remaining 

80% of the compounds a model was developed and the activity of the compounds left out was 
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predicted with the same model. We combined the five models and put together the lists of the 

potential active fragments, removed the duplicates and eliminated the SAs with likelihood ratio 

lower than 2. We opted for the likelihood ratio threshold of 2 in order to retain the SAs which are 

statistically more significant. A measure of each fragment‘s association with biological activity 

is determined by SARpy as ―training likelihood ratio‖ and it is given along with the list of the 

potential fragments or the rule set in the output. The likelihood ratio can be taken into account to 

determine the goodness of a SA identified by SARpy. Even if a SA that is associated with 

activity (e.i. carcinogenicity) is present in a molecular structure, the molecule may contain other 

fragments that make it inactive (e.i. non-carcinogen), thus the specific SA might not be expected 

to be found only in active compounds. This evidence is the basis of the determination of the 

likelihood ratio. 

Using the SARpy software, each chemical in the learning set was fragmented in silico into all 

possible fragments meeting user-specified criteria. For this study we extracted only the 

―ACTIVE‖ fragments (or SAs) and the default values for the minimum and maximum number of 

atoms in a fragment were set for the fragment extractions of each model (minimum=2; 

maximum=18). Another configuration to establish by the user is the minimum number of 

compounds in the learning set in which an active (or inactive) fragment is found. In our analysis, 

the minimum number of compounds that contain a potential active fragment was set to 3. 

Conventionally, in this study we call this model R. 

E (expert) model 

SARpy was used for model development and statistical analysis using the ISSCAN-CGX 

dataset. 
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The extraction settings are as follows: the minimum number of atoms in a fragment is equal to 4, 

whereas, the maximum number of atoms is equal to 10, and the minimum number of compounds 

containing the active fragment is 6. These configurations have been set in favour of a model with 

a more balanced sensitivity and specificity values. In order to assess the predicitivity of the 

model, statistical analysis have been conducted in terms of accuracy, sensitivity and specificity 

using cross-validation routine as an internal evaluation, in addition to an external evaluation 

using an external test set. In this paper, we name this model E. 

Internal evaluation of the models 

Accuracy, sensitivity and specificity have been determined for the internal evaluation of each 

model using the SARpy program. For the internal validation, 5-fold cross-validation routine was 

conducted for each model. In the 5-fold cross-validation the learning set is randomly partitioned 

into five equal sized subsets. For each iteration, a single subset of chemicals was retained as the 

validation data for testing the model, and the remaining subsets were used as training data. The 

cross-validation process was repeated five times (the folds). The evaluation results of five 

iterations were then averaged to produce a single estimation. Accuracy, sensitivity and 

specificity of the internal evaluation are assessed in addition to the Matthews correlation 

coefficient (MCC). 

External evaluation of the models 

The predictability of the models has been evaluated on two external test sets: the first external set 

is the dataset used as the learning set of the opposite model (e.g. for the R model we used 

ISSCAN-CGX dataset and vice versa), and the second dataset is a collection of 258 compounds 
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collected from the eChemPortal inventory. Accuracy, sensitivity, specificity and the MCC for the 

external evaluation are determined using SARpy. Although the external evaluation is considered 

the best mean for the assessment of the predictive ability of a (Q)SAR model (43, 44), the results 

of the external evaluation of any model are highly related to the relative similarity of the external 

evaluation set in relation to the learning set. 

Results and discussions 

R model 

Each learning set produced its own model, which is a collection of active SAs with their 

likelihood ratios. The final model merging all sets of SAs consisted of 127 active SAs. Table 1 

shows the predictive performance of five models developed based on five different splits of the 

ANTARES database. The performance of each model has been evaluated on its own learning set 

using cross-validation analysis. Further, an external evaluation using the corresponding test set is 

performed on each model. To have an overview of the statistical analysis of the performance of 

the models, we calculated the average of the predictive values of all the five models, and 

reported in Table 1 as well. The averages of accuracy, sensitivity and specificity for the 778 

compound internal cross-validation using five rule sets extracted from the ANTARES dataset 

were 71%, 73% and 69%, respectively. The average of accuracy, sensitivity and specificity for 

337 compounds in the test set as an external validation of these models, were 63%, 63% and 

62%, respectively. 

Using the R model, the results of cross-validation on the whole training set were 66% accuracy, 

83% sensitivity, 48% specificity and 0.34 the MCC (Table 2). Analysis of the external validation 
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for the R model demonstrated that the concordance between experimental and predicted value on 

the ECHA dataset is higher than using the ISSCAN-CGX dataset. The accuracy of the R model 

on the ECHA dataset was 67%, compared to 58% of accuracy for the ISSCAN-CGX dataset. 

The complete list of these alerts are presented in the VEGA platform. 

E model 

With the configuration set as mentioned above, SARpy extracted 43 active rules from the 

ISSCAN-CGX learning set. Analysis of the cross-validation for the E model demonstrated that 

the second model produced an accuracy of 73%, with a sensitivity of 77% and a specificity of 

62% (Table 2). The MCC value for this analysis is 0.36. The accuracy values for the external 

evaluation of the E model on the ANTARES dataset and the ECHA database were 59% and 

64%, respectively. Analysis of the external validations for the E model demonstrated that the 

model produced a higher sensitivity (77%) compared with the specificity (41%) of the R model. 

On the contrary, the specificity of the external evaluation on the chemicals from the ECHA 

database was higher (72%) compared to its sensitivity (48%) (Table 2). The complete list of the 

SAs present in this model is accessible through VEGA. 

Analysis of the combination of the prediction results of the R and the E models 

Another analyses has been done on the prediction results of the R model and the E model. In this 

new approach, we considered the final results as correctly predicted only in case both models 

have predicted them consistently. Table 3 summarizes the results of combining the R and E 

model external validation predictions on the chemicals from the ECHA database. 
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The results suggested that when both models are concordant on a negative prediction for a 

compound the reliability of the result is much higher than in case a positive prediction is done. 

We observe an improvement of the results compared to the use of the individual models, for 

accuracy (72%) and specificity (79%). In fact, combining the predictions of the two models the 

MCC is increased to 0.37, compared to 0.31 for the R model and 0.20 for the E model. Only 

sensitivity is higher using the R model (62%). Thus, users may choose a solution or another 

depending if they prefer a conservative or a realistic assessment. 

Fragments analysis 

Comparison of the SAs in the R and E models 

The SAs present in the R and E models have been compared and those that are in common 

between the two rule sets categorized into chemical classes and listed as follows. The SAs in the 

R model are presented with their ID number and written in order of their correspondence to the 

identical SAs in the E model. 

1) Aromatic amine (R model: 6, 41, 36, 22, 10 / E model: 27, 31, 33, 38, 104) 

2) Aromatic heterocyclic (R model: 12, 19, 2 / E model: 75, 108, 117) 

3) Hydrazide (R model: 28, 27 / E model: 2, 50) 

4) N-Nitroso (R model: 1 / E model: 8) 

5) Phenyl-Hydrazine (R model: 32 / E model: 48) 

6) α,β- Haloalkanes (R model: 25 / E model: 56) 

7) Sulfite (R model: 8 / E model: 68) 

8) Nitrogen Mustard like (R model: 11 / E model: 73) 
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9) Phosphonite ( R model: 15 / E model: 98) 

Categorization of the SAs in the R and E models 

The SAs present in the models R and E are categorized from a chemical class point of view. The 

substructures within each category are presented with their ID number in their original rule set 

and are as follows: 

Nitrogen containing substructures (Azo type): 

1) Aromatic amine (R model: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 

40, 42, 83, 104, 110, 113 / E model: 6, 10, 22, 31, 35, 36, 41, 42) 

2) Aromatic heterocycles containing Nitrogen (R model: 74, 75, 80, 81, 83, 95, 113, 122 / E 

model:12, 17, 43) 

3) Azine (Hydrazine) (R model:46, 47, 49, 50, 51, 53, 54, 55, 101 / E model: 27, 32) 

4) Azide (Hydrazide) (R model: 2, 3, 44, 45, 52 / E model: 3, 28) 

5) Nitrosamine (R model:4, 5, 7, 9, 10 / E model: not found (NF)) 

6) Nitrogen or sulfur mustard (R model: 72, 73, 115 / E model: 11, 34) 

7) Aromatic methylamine (R model: 30, 34, 36 / E model: NF) 

8) Aliphatic N-Nitroso (R model: 62, 63/ E model: NF) 

9) Aromatic Nitro (R model: 90, 123 / E model: NF) 

10) 1 aryl 2 monoalkyl hydrazine (R model: 48 / E model: NF) 

11) Aziridine (R model:120 / E model: NF) 

12) Aromatic hydroxylamine (R model: 32 / E model: NF) 

13) Diazo (R model:92 / E model: NF) 
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14) Aromatic Azo (R model: 71 / E model: NF) 

15) Aromatic Nitroso (R and E models: NF) 

Other substructures: 

1) (1,2, and 3 membered) Aromatic Heterocycles (R model: 74, 75, 80, 81, 83, 90, 95, 103, 

108, 113, 117, 121, 122, 123 / E model: 2, 12, 17, 19, 43) 

2) Aliphatic halide (R model: 57, 58, 59, 70, 125 / E model: 18, 25) 

3) Heterocyclic Alkane (R model: 84, 105, 109, 120 / E model: 23) 

4) Polycyclic aromatic systems (R model: 39, 43, 60, 61 / E model: 30) 

5) Sulfonate bonded carbon (R model: 67, 68 / E model: 8) 

6) Epoxide (R model: 105 / E model: 23) 

7) Β propiolactone (R model: 114 / E model: NF) 

Not only SARpy was able to find the already known carcinogen substructures that were 

represented by the SAs of Kazius et al. (45), but a number of SAs have been identified for the 

first time. Table 4 demonstrates the new identified SAs that have been classified into six 

chemical classes. The substructures within each category are listed with their ID number and are 

as follows: 

1) Nitrosurea (R model: 12, 13, 14, 19 / E model: NF) 

2) Nitrogen or sulfur mustard like (R model: 72, 115 / E model: 34) 

3) Benzodioxole and Benzendiol (R model: 17, 18 / E model: 9) 

4) Teritiary amine substituted by a Sulfur atom (E model: 24) 
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5) α,β-oxy and carboxy substitutions (R model: 20, 21, 76 / E model: NF) 

6) α,β-haloalkanes (R model: 56, 69 / E model: 25) 

7) Oximes (R model: 78 / E model: NF) 

For the sake of example, we illustrated the chemicals from which the SA 24 (form the chemical 

class teritiary amine substituted by a Sulfur atom) in the E model has been extracted (Table 5). 

All the chemicals that contain the above mentioned SA in the ISSCAN-CGX data set are 

carcinogenic. 

Discussion 

Automated extraction of SAs has been implemented by the statistically-based program SARpy 

on two learning sets. The ANTARES learning set collects rodent bioassay carcinogenicity data 

on 1543 chemicals, while ISSCAN-CGX database containing 986 chemicals takes into account 

human-based assessments and data retrieved from different assays. The predictive performance 

of the developed models were evaluated internally, as well as using a 258 compound external 

validation dataset collected from the ECHA inventory. The two developed models for 

carcinogenicity have been implemented in the VEGA platform and are indeed freely available 

for end users. 

Recent progresses in data mining provide effective competence in the automated discovery of 

SAs associated to toxicological endpoints. An important contribution of the statistically-based 

methods to the carcinogenicity field is identification of new SAs which help us in refining the 

existing rule sets. While the most known carcinogenicity rule sets (23) are composed on the basis 

of human expert judgement, the SAs identified in our study are extracted in an unbiased manner 
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by SARpy with no a priori knowledge about the MoA of the chemicals. This approach shed light 

to the new clues about genotoxic and non-genotoxic SAs. Some primary analyses have been 

provided on the SA lists; chemical classes of the identified SAs have been evaluated, however, 

further study for the new SAs should be performed considering other collections of alerts (45). 

SARpy SAs resulting from the current analysis on the ANTARES and ISSCAN-CGX data sets 

follow the SAs presented by Kazius et al. (46). 

Furthermore, the models are developed on the basis of two learning sets with different 

carcinogenicity data from the point of view of origin and provenance. Concerning the learning 

sets with substantially variant carcinogenicity data assessed within different properties, each set 

of the extracted SAs constituted a purpose oriented model. The user may consider the results of 

the model with more realistic predictions or the one with more conservative assessments. 

Generally, the best approach in making a conclusion to estimate the reliability of a prediction is 

combining evidence from different information sources such as (Q)SAR model predictions, in 

vitro and in vivo test results. This is reflected in the general trend of developing ensemble models 

and/or combining the output of different existing models. An example of the latter approach has 

been done on a similar endpoint, mutagenicity (Ames test), by the integration of the different 

models available on the VEGA platform (47). The advantage of having the two presented models 

available on the VEGA platform, where other models for the same endpoint are available, is also 

the possibility of performing a similar activity to make a conclusion. 

Finally, the results of the presented models will be exploited for the improvement of ToxRead 

(http://www.toxgate.eu), a recent platform that uses set of rules for different endpoints to filter 

and select similar compounds and assist the user in performing read-across studies (48, 49). 

http://www.toxgate.eu/
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Also, these rules can be compared and possibly explained considering reasoning about 

mechanisms, including adverse outcome pathways (50). 
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Table 1. R model internal and external validation for five different splits and the average of the 

model performance 

  1° split 

(59 active 

rules) 

2° split 

(65 active 

rules) 

3° split 

(61 active 

rules) 

4° split 

(58 active 

rules) 

5° split 

(57 active 

rules) 

Average 

Learning 

set (778 

compounds) 

Accuracy 71 % 72 % 71 % 70 % 71 % 71 % 

Sensitivity 75 % 75 % 71 % 73 % 70 % 73 % 

Specificity 65 % 69 % 71 % 66 % 72 % 69 % 

Test set 

(337 

compounds) 

Accuracy 63 % 60 % 64 % 65 % 62 % 63 % 

Sensitivity 68 % 58 % 62 % 67 % 61 % 63 % 

Specificity 56 % 63 % 66% 61 % 64 % 62 % 
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Table 2. R model and E model internal and external validation 

 R model (127 active rules) E model (43 active rules) 

 Cross-

validation 

external 

validation 

on ISSCAN 

and CGX 

data 

external 

validation 

on ECHA 

data 

Cross-

validation 

external 

validation 

on 

ANTARES 

data 

external 

validation 

on ECHA 

data 

Accuracy 66% 58% 67% 73% 59% 64% 

Sensitivity 83% 76% 62% 77% 77% 48% 

Specificity 48% 40% 70% 62% 41% 72% 

TP
a
 651/783 593/735 55/89 562/735 599/783 43/89 

TN
b
 367/760 142/254 119/169 157/254 315/760 121/169 

FP
c
 393/760 112/254 50/169 95/254 445/760 48/169 

FN
d
 132/783 142/735 34/89 172/735 184/738 46/89 

MCC
e
 0.34 0.35 0.31 0.36 0.19 0.20 

a
 True positive 

b
 True negative 

c
 False positive 

d
 False negative 

e
 Matthews Correlation Coefficient 
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Table 3. The combination of the predictions of the R and E models on the ECHA external 

validation set  

Combined model 

TP
a
 33/89 

TN
b
 96/169 

FP
c
 25/169 

FN
d
 24/89 

Accuracy 72% 

Sensitivity 58% 

Specificity 79% 

MCC
e
 0.37 

Coverage 178/258 
a
 True positive 

b
 True negative 

c
 False positive 

d
 False negative 

e
 Matthews correlation coefficient 
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Table 4. New carcinogenic structural alerts identified by SARpy in the R and E models 

Nitrosurea: 

 

Nitrogen or sulfur mustard like: 

 

Benzodioxole and Benzendiol: 

 

α,β-oxy and carboxy substitutions: 

 

Teritiary amine substituted by a Sulfur atom: 
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α,β-haloalkanes: 

 

Oximes: 
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Table 5. Chemicals structures in the ISSCAN-CGX data set from which structural alert 24 has 

been extracted 

 

  

O=C1c2ccccc2C(=O)N1SC(Cl)(Cl)C

l 

O=C1N(C(=O)C2CC=CCC12)SC(C(Cl)Cl)(Cl)C

l 

O=C1N(C(=O)C2CC=CCC12)SC(Cl)(Cl)Cl 

 

  

O1CCN(C(=S)SN2CCOCC2)CC1 O=C(O)c1ccc(cc1)S(=O)(=O)N(CCC)CCC O=C(O)c1cc(ccc1Cl)S(=O)(=O)N1CC(C)CC(C)C

1 

 

 

 




