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Abstract. This paper presents the first ensemble modelling

experiment in relation to birch pollen in Europe. The seven-

model European ensemble of MACC-ENS, tested in trial

simulations over the flowering season of 2010, was run

through the flowering season of 2013. The simulations have

been compared with observations in 11 countries, all mem-

bers of the European Aeroallergen Network, for both individ-

ual models and the ensemble mean and median. It is shown

that the models successfully reproduced the timing of the

very late season of 2013, generally within a couple of days

from the observed start of the season. The end of the sea-

son was generally predicted later than observed, by 5 days

or more, which is a known feature of the source term used

in the study. Absolute pollen concentrations during the sea-
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son were somewhat underestimated in the southern part of

the birch habitat. In the northern part of Europe, a record-

low pollen season was strongly overestimated by all mod-

els. The median of the multi-model ensemble demonstrated

robust performance, successfully eliminating the impact of

outliers, which was particularly useful since for most models

this was the first experience of pollen forecasting.

1 Introduction

During the last 30 years, the prevalence of airborne allergy

and asthma in Europe has increased 4-fold, reaching 15–

40 % of the population. According to the European Fed-

eration of Allergy and Airway Diseases Patients Associa-

tions, 80 million (24.4 %) adults living in Europe are allergic.

The allergy prevalence in children is 30–40 % and increasing

(Laatikainen et al., 2011; Rönmark et al., 2009). Allergy to

various types of pollen in the air, exacerbated by co-exposure

to chemical pollutants and fine aerosols, is the number one

chronic disease in Europe, overshadowing allergy to house

dust mite and affecting over 20 % of the population (Bous-

quet et al., 2007).

Among the allergenic plants, grass and birch pollen af-

fect about 40 and 25 % of all hay fever sufferers in Eu-

rope respectively (Heinzerling et al., 2009). Birch is a strong

allergy-provoking tree with a population-wide sensitisation

of approximately 15 % (WHO, 2003). The distribution of

silver birch (Betula pendula Roth.) and downy birch (B.

pubescens L.) extends from mountains in the temperate cli-

mate of southern Europe to Fennoscandia and Siberia (Atkin-

son, 1992; OECD, 2003).

It has long been known that the bulk of pollen is de-

posited near the source plant (Raynor et al., 1970; Tampieri

et al., 1977; Wright, 1953, 1952). However, birches, as well

as other species (Alnus, Carpinus, Corylus, Ostrya, Fagus,

Quercus, Castanea) belonging to the order Fagales, are wind-

pollinated trees generating vast amounts of pollen to en-

sure a sufficient level of fertilisation of female flowers over

receptor regions. Their pollen grains are sufficiently small

and light to facilitate the atmospheric transport of up to 1 %

of the released material over thousands of kilometres when

weather conditions are suitable (Sofiev et al., 2006a). This

phenomenon was noticed in the middle of the twentieth cen-

tury (Erdtman, 1937, 1935, 1931; Gregory, 1961). Later, it

was recognised that the long-range transported pollen can

have a substantial health impact (Viander and Koivikko,

1978) and facilitate a large-scale redistribution of genetic

material (Lindgren et al., 1995). Long-range transport of

pollen is practically unpredictable with local observations or

statistical models. However, up until the last 2 decades no

practical instruments had been developed for its quantitative

evaluation and forecasting.

Starting from the 1990s, episodes of pollen dispersion on

regional and continental scales have been addressed in nu-

merous studies (Belmonte et al., 2000; Corden et al., 2002;

Damialis and Gioulekas, 2005; Hjelmroos, 1992; Latalova

et al., 2002; Mahura et al., 2007; Ranta and Satri, 2007;

Ranta et al., 2011; Rantio-Lehtimaki, 1994; Siljamo et al.,

2008c; Skjøth et al., 2008; Sofiev et al., 2012b, 2006a; Yli-

Panula et al., 2009; see also reviews by Smith et al., 2014, and

Sofiev and Bergmann, 2013). It was shown that, although the

features of each specific long-range transport episode vary

widely, there may be a systematic pattern in the springtime

pollen redistribution in Europe with prevailing transport di-

rections, main source and receptor regions, etc. There have

been several attempts to reveal such a pattern via a multi-

annual analysis (Damialis and Gioulekas, 2005; Siljamo et

al., 2008a, c, 2006; Skjøth et al., 2009, 2007; Smith et al.,

2008; Sofiev et al., 2006a; Stach et al., 2007; Yli-Panula et

al., 2009) but the picture is still largely incomplete.

The main tool for analysing the pollen distribution on re-

gional and continental scales is numerical modelling that

combines phenological models covering pollen maturation

and presentation (the pollen source term) with the atmo-

spheric dispersion model. Currently, there exist four com-

paratively independent formulations of the source terms for

birch pollen. The European-scale source term used in the cur-

rent study was developed for the SILAM model (http://silam.

fmi.fi) by an international consortium within the scope of the

POLLEN project of the Academy of Finland (Siljamo et al.,

2012; Sofiev et al., 2012a). Various versions of the model

have been used for forecasts of pollen distribution in Europe

starting from 2005 (Sofiev et al., 2006a) and reanalysis of the

flowering seasons back to 1997 (Siljamo et al., 2008c; Veri-

ankaitė et al., 2010). The COSMO-ART birch module was

developed at the University of Karlsruhe (Helbig et al., 2004;

Vogel et al., 2008) and MeteoSwiss (Pauling et al., 2012;

Zink et al., 2013) and is currently used for pollen forecasting

for central and south-western Europe. Development is also

going on in Denmark with the regional ENVIRO-HIRLAM

system (Mahura et al., 2009) applied for forecasting over

northern Europe. Finally, combining the COSMO-ART and

SILAM source terms, Efstathiou et al. (2011) developed a

regional-scale model for the USA and applied it to birch and

ragweed.

MACC (Monitoring of Atmospheric Composition and Cli-

mate, http://www.gmes-atmosphere.eu) pollen simulations

are based on the SILAM source term. Its formulations and

input data have been shared among the seven regional mod-

elling teams of MACC and, in co-operation with the Eu-

ropean Aeroallergen Network (EAN), set into operational

multi-model ensemble forecasting of birch pollen in Europe.

The goal of the current paper is to present and evaluate

the results of the first ensemble modelling of birch pollen in

Europe during the season of 2013.

The next section will present the models and setup of the

simulations as well as the observation data used for evalua-

tion of the model predictions. The results section will present

the outcome of the simulations and the quality scores of the
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individual models and the ensemble. The discussion section

will be dedicated to analysis of the results, considerations of

the efficiency of the multi-model ensemble for pollen, and

identification of the most pressing development needs.

2 Materials and methods

This section presents the regional models used in the study,

outlines the birch pollen source term implemented in all of

them, and introduces the pollen observations used for evalu-

ation of the model predictions.

2.1 Dispersion models

The dispersion models used in the study comprise the

MACC-II European ensemble, which is described in detail

in Marécal et al. (2015). In the following, only the model

features relevant for the pollen atmospheric transport calcu-

lations are described.

The ensemble consisted of seven models.

– CHIMERE (http://www.lmd.polytechnique.fr/chimere/)

is an Eulerian regional-scale chemistry-transport model

for gaseous and aerosol species (Menut et al., 2013).

Pollen is implemented as a special aerosol with a pre-

scribed species-specific size (currently birch or rag-

weed) between 20 and 22 µm and density of 800 and

1050 kg m−3 respectively. The resulting gravitational

settling velocity is 1.2–1.3 cm s−1. The transport pro-

cesses affecting pollens, such as advection, turbulent

mixing, and wet deposition, are implemented in the

same way as for other aerosols. Dry deposition is de-

scribed via gravitational settling only, which dominates

for pollens (Sofiev et al., 2006a), whereas resuspension

is parameterized following Helbig et al. (2004).

– EMEP model of EMEP/MSC-W (European Monitor-

ing and Evaluation Programme/Meteorological Synthe-

sizing Centre – West) is a chemical transport model

developed at the Norwegian Meteorological Institute

and described in Simpson et al. (2012). It is flexible

with respect to the choice of projection and grid reso-

lution. Dry deposition is handled in the lowest model

layer. A resistance analogy formulation is used to de-

scribe dry deposition of gases, whereas for aerosols

the mass-conservation equation is adopted from Venka-

tram (1978) with the dry deposition velocities depen-

dent on the land use type. Wet scavenging is depen-

dent on precipitation intensity and is treated differently

within and below clouds. The below-cloud scavenging

rates for particles are calculated based on Scott (1979).

The rates are size dependent, growing for larger parti-

cles.

– EURAD-IM (http://www.eurad.uni-koeln.de) is an Eu-

lerian mesoscale chemistry transport model involving

advection, diffusion, chemical transformation, wet and

dry deposition, and sedimentation of tropospheric trace

gases and aerosols (Hass et al., 1995; Memmesheimer

et al., 2004). It includes 3D-VAR and 4D-VAR chem-

ical data assimilation (Elbern et al., 2007) and is able

to run in nesting mode. The positive definite advection

scheme of Bott (1989) is used to solve the advective

transport and the aerosol sedimentation. An eddy dif-

fusion approach is applied to parameterize the vertical

sub-grid-scale turbulent transport (Holtslag and Nieuw-

stadt, 1986). Dry deposition of aerosol species is treated

as size dependent using the resistance model of Petroff

and Zhang (2010). Wet deposition of pollen is parame-

terized according to Baklanov and Sorensen (2001).

– LOTOS-EUROS (http://www.lotos-euros.nl/) is an Eu-

lerian chemical transport model (Schaap et al., 2008).

The advection scheme follows Walcek and Alek-

sic (1998). The dry deposition scheme of Zhang et

al. (2001) is used to describe the surface uptake of

aerosols. Below-cloud scavenging is described using

simple scavenging coefficients for particles (Simpson et

al., 2003).

– MATCH (http://www.smhi.se/en/research/research-

departments/air-quality/match-transport-and-

chemistry-model-1.6831) is an Eulerian multi-scale

chemical transport model with mass-conservative

transport and diffusion based on a Bott-type advection

scheme (Langner et al., 1998; Robertson and Langner,

1999). For birch pollen, dry deposition is mainly

treated by sedimentation and a simplified wet scav-

enging scheme is applied. The temperature sum from

March onwards, driving the birch pollen emission, is

determined outside the model and fed into the emission

module.

– MOCAGE (http://www.cnrm.meteo.fr/gmgec-old/site_

engl/mocage/mocage_en.html) is a multi-scale disper-

sion model with grid-nesting capability (Josse et al.,

2004; Martet et al., 2009). The semi-Lagrangian advec-

tion scheme of Williamson and Rasch (1989) is used

for the grid-scale transport. The convective transport is

based on the parameterization proposed by Bechtold et

al. (2001) whereas the turbulent diffusion follows the

parameterization of Louis (1979). Dry deposition in-

cluding the sedimentation scheme follows Seinfeld and

Pandis (1998). The wet deposition by the convective and

stratiform precipitations is based on Giorgi and Chamei-

des (1986).

– SILAM (http://silam.fmi.fi) is a meso-to-global-scale

dispersion model (Sofiev et al., 2008; see also the

review by Kukkonen et al., 2012). The Eulerian

advection–diffusion core used in this study is based on

the algorithms of Galperin (2000) and Sofiev (2002).

www.atmos-chem-phys.net/15/8115/2015/ Atmos. Chem. Phys., 15, 8115–8130, 2015

http://www.lmd.polytechnique.fr/chimere/
http://www.eurad.uni-koeln.de
http://www.lotos-euros.nl/
http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-chemistry-model-1.6831
http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-chemistry-model-1.6831
http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-chemistry-model-1.6831
http://www.cnrm.meteo.fr/gmgec-old/site_engl/mocage/mocage_en.html
http://www.cnrm.meteo.fr/gmgec-old/site_engl/mocage/mocage_en.html
http://silam.fmi.fi


8118 M. Sofiev et al.: MACC regional multi-model ensemble simulations of birch pollen dispersion

The dry deposition scheme (Kouznetsov and Sofiev,

2012) is applicable for a wide range of particle sizes

including coarse aerosols, which are primarily removed

by sedimentation. The wet deposition parameterization

distinguishes between sub- and in-cloud scavenging by

both rain and snow (Sofiev et al., 2006b). For coarse

particles, impaction scavenging is dominant below the

cloud. The model is capable of 3D- and 4D-VAR data

assimilation (Vira and Sofiev, 2012), also applicable to

birch.

– ENSEMBLE models were generated by the arithmetic

average and median calculated from seven model fields

for each hour.

2.2 Birch pollen source term

All models of this study are equipped with the same birch

pollen source term (Sofiev et al., 2012) verified for the sea-

son of 2006 by Siljamo et al. (2012). The formulations and

input data are open at http://silam.fmi.fi/MACC. The main

input data set is the birch habitat map compiled by Sofiev et

al. (2006a) with a spatial resolution of 0.5◦
× 0.5◦ longitude–

latitude. The birch productivity is assumed to be the same in

all years and equal to 109 pollen m−2 season−1.

The flowering description follows the concept of ther-

mal time phenological models and, in particular, the double-

threshold air temperature sum approach of Linkosalo et

al. (2010) modified by Sofiev et al. (2012), which determines

the flowering propagation during the whole spring season.

Within that approach, the heat accumulation starts on a day in

spring (1 March in the current setup) and continues through-

out the season. Flowering starts when the accumulated heat

reaches the starting threshold and continues until the heat

reaches the ending threshold. The rate of heat accumulation

is the main controlling parameter for pollen emission: the

model establishes direct proportionality between the flower-

ing stage and fraction of the heat sum accumulated to-date.

Apart from temperature, the pollen release rate is mod-

ulated by ambient humidity, precipitation, and wind speed.

Following Sofiev et al. (2012), higher relative humidity

(RH) and rain reduce the release, completely stopping it for

RH > 80 % and/or rain > 0.1 mm h−1. Strong wind promotes

it by up to 50 %. Atmospheric turbulence is taken into ac-

count via the turbulent velocity scale and thus becomes im-

portant only in cases close to free convection. In stable or

neutral stratification and calm conditions the release is sup-

pressed by 50 %.

Local-scale variability of the flowering results in the need

to include probabilistic description of the flowering propaga-

tion (Siljamo et al., 2008b). In the simplest form, the proba-

bility of an individual tree entering the flowering stage can be

considered via the uncertainty of the temperature sum thresh-

old determining the start of flowering for the grid cell.

The end of the season is described via the open-pocket

principle: the flowering continues until the initially available

amount of pollen is completely released.

2.3 Pollen observations

The observations for the model evaluation in 2013 have been

provided by the following 11 members of the EAN: Aus-

tria, Estonia, Germany, Finland, France, Latvia, Lithuania,

Russia, Spain, Switzerland, and Ukraine. Additionally, the

data for the initial model testing for the season of 2010 were

provided by Austria, Finland, Germany, Latvia, Lithuania,

Russia, Spain, Switzerland, and Ukraine. In total, informa-

tion from 165 sites in 2010 and 186 sites in 2013 was made

available to the modelling teams. Among these, 21 stations

in mountain valleys of the Alps and Pyrenees were flagged

as not representative on the regional scale and excluded from

the analysis (see the Discussion section). The analysis below

concentrates on the season of 2013 as the data for 2010 were

mainly used for setting up and verifying the pollen source

term implementations. However, a comparison of these years

is used to illustrate the variability of pollen seasons and the

ability of the models to reproduce it.

Pollen monitoring was performed with Burkard 7-day and

Lanzoni 2000 pollen traps based on the Hirst design (Hirst,

1954). The pollen grains were collected at an airflow rate of

10 L min−1. The observations covered the period from March

until September, with some variations between the countries.

Daily observations were used. Following the EAN recom-

mendations (Galán et al., 2014; Jäger et al., 1995), most sam-

plers were located at heights of between 10 and 30 m on the

roofs of suitable buildings. The places were frequently in the

cities’ downtown areas; i.e. they largely represent the urban-

background conditions (although not always). With regard to

microscopic analysis, the EAN recommendation is to count

at least 10 % of the sample using horizontal or vertical strips

(Galán et al., 2014). The actual procedures vary between the

countries but generally comply. The counting in 2013 was

performed along 12 vertical strips (in most countries), or two

to four horizontal traverses (Switzerland, Spain), using a bi-

hourly stratified random sampling (Finland) (Mandrioli and

Comtois, 1998). In all cases, the data were expressed as mean

daily concentrations (pollen m−3).

2.4 Setup of the simulations

Simulations followed the standards of MACC regional en-

semble (Marécal et al., 2015). The domain spanned from

25◦ W to 45◦ E and from 30 to 70◦ N. Each of the seven mod-

els was run with its own horizontal and vertical resolutions,

which varied from 0.1 to 0.25◦ of the horizontal grid cell

size, and had from 3 up to 52 vertical layers within the tropo-

sphere (Table 1). This range of resolutions is not designed to

reproduce local aspects of pollen distribution, instead cover-

ing the whole continent and describing the large-scale trans-

Atmos. Chem. Phys., 15, 8115–8130, 2015 www.atmos-chem-phys.net/15/8115/2015/
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Figure 1. Seasonal pollen index (SPI, sum of daily concentrations) 2013 (pollen day m−3).

port events. The limited number of vertical dispersion lay-

ers is a compromise allowing for high horizontal resolution.

Thick layers are not a major limitation as long as the full ver-

tical resolution of the input meteorological data is used for

the evaluation of dispersion parameters (Sofiev, 2002).

In the forecasting regime during the spring of 2013, the

time range of the simulations was 96 h from 00:00 UTC on

day 0 (D0) with hourly output on eight vertical levels (sur-

face, 50, 250, 500, 1000, 2000, 3000, and 5000 m above the

surface). After the end of the season, it was reanalysed by

most of the models to correct technical problems experienced

in the forecasting regime. For the reanalysis simulations (dis-

cussed in this paper), the models were run through the whole

period without separation into individual forecast cycles. For

those models that were not rerun, the first 24 h of each fore-

cast were used. In all cases, only near-surface concentrations

were analysed.

All models considered pollen as an inert water-insoluble

particle 22 µm in diameter and with density of 800 kg m−3

(Bassett et al., 1978; Bucher and Kofler, 2015; Sofiev et al.,

2006a)

3 Results for the flowering season of 2013

3.1 Observed peculiarities of the season

The season of 2013 had three major specifics, which distin-

guished it from “typical” pollen seasons and, in particular,

from the training year of 2010:

– A cold spring resulted in late flowering. In central Eu-

rope, the flowering started up to 2–3 weeks later than

usual. For instance, 2013 in Switzerland was among

the latest years since 1993 (the latest at five stations):

9 days later than in 2010. In Moscow, the cold start

of the spring was compensated by its faster progres-

sion, so that the early-flowering alder was shifted by

about 2 weeks but the birch season was delayed by only

a few days. In Lithuania, however, the observed high-

concentration time period started 10 days earlier than

in 2010, almost simultaneously with France, which was

probably caused by early long-range transport events.

– The duration of the season was up to 1 week shorter

than usual. Thus, in Switzerland it lasted for ∼ 30 days

(22–35 for different stations) as compared the long-term

average of 37 days. In Finland, the difference between

the season length in 2010 and in 2013 reached a factor

of 2.4.

www.atmos-chem-phys.net/15/8115/2015/ Atmos. Chem. Phys., 15, 8115–8130, 2015
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Table 1. Setup of the simulations for the participating models.

Model Horizontal dispersion

grid

Vertical Dispersion Meteo input Meteo grid Meteo vertical

CHIMERE 0.15◦
× 0.15◦ 8 levels up to 500 hPa ECMWF IFS 00 operational

forecast, internal preprocessor

0.125◦
× 0.125◦ IFS vertical: 91 levels

EMEP 0.25◦
× 0.25◦ 20 levels up to 12 km ECMWF IFS 00 operational

forecast, internal preprocessor

0.25◦
× 0.125◦ IFS levels 39–91 up to 100 hPa

EURAD 15 km on Lambert con-

formal projection

23 layers up to 100 hPa WRF based on ECMWF IFS 15 km on Lambert

conformal projection

23 layers up to 100 hPa

LOTOS-EUROS 0.5◦
× 0.25◦ 3 dynamic layers up

to 3.5 km, surface layer

25m

ECMWF IFS 00 operational

forecast, internal preprocessor

0.5◦
× 0.25◦ IFS levels up to 3.5 km (approx.

levels 69–91)

MATCH 0.2◦
× 0.2◦ 52 layers up to 7 km ECMWF IFS 00 from MARS,

internal preprocessor

0.2◦
× 0.2◦ IFS vertical: 91 levels

MOCAGE 0.2◦
× 0.2◦ 47 layers up to 5 hPa (7

in ABL)

ECMWF IFS 00 operational

forecast, internal preprocessor

0.125◦
× 0.125◦ IFS vertical 91 levels

SILAM 0.15◦
× 0.15◦ 8 layers up to 6.7 km ECMWF IFS 00 operational

forecast, internal preprocessor

0.125◦
× 0.125◦ IFS levels 40–91 up to

∼ 110 hPa

– An anomalously low pollen season was recorded in

northern Europe and Russia. The seasonal pollen index

(SPI: the sum of daily pollen concentrations over the

whole season) was 10–1000 times lower than in 2012

and about 10 times weaker than in 2010 (that year was

comparatively usual). The SPI in central Europe was

moderate, which resulted in an inverse load pattern: the

SPI in the north was several tens of times lower than

that in the central regions.

These peculiarities presented substantial challenges to the

models. The phenological model of the source term has a

mechanism that accounts for the season shift, but it still went

beyond the verified range. The season strength, however, is

currently not a predicted quantity, which made it impossible

to capture the anomalously low season in the north.

3.2 Model results

All models predicted a quite standard load pattern for the

SPI (Fig. 1). Its maximum is located over central Russia and

Fennoscandia and the SPI gradually decreases towards the

south-west. In central Europe, there is a substantial inhomo-

geneity of the SPI, which reflects the patchy birch habitat in

the region.

Comparison with the observed SPI shows the challenge

mentioned above: the very low observed concentrations in

the north that were not reproduced by the models (Fig. 2,

model predictions are overlaid by the observations – circles

coloured following the same palette). This is in contrast with

the previous years, particularly 2010, when the observed and

modelled patterns were both typical and agreed very well

(see example for SILAM, Fig. 3).

An example of the hourly concentrations at noon on

20 April 2013 is shown in Fig. 4. It depicts the middle of

Figure 2. Comparison of SPI for the ensemble median with the ob-

served pollen load (pollen day m−3).

the season in central and eastern Europe. The models also

showed the long-range transport of pollen to the south that

reached Africa in most predictions.

The progress of the season is illustrated in Fig. 5, which

depicts 5-day mean concentrations predicted by the ensemble

median for four episodes: 1–6, 20–25 April, and 10–15 May

and 1–6 June. The season progress in 2013 was quite usual:

from the south-west to the north-east of the continent though

delayed by up to 2 weeks due to the cold slow spring. The

models successfully reproduced this development.

The primary parameters describing the season are its start

and end days, often defined as the dates when 5 and 95 %

of the cumulative seasonal pollen counts are reached respec-

tively (Fig. 6). Outside the main source areas, the timing of

the season is almost completely dictated by the episodes of

long-range pollen transport, similar to the southern transport
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a) 2010           b)  2013  

c) 2010-2013  

 

 

 

 

Figure 3. Seasonal pollen index in 2010 (a) and 2013 (b) and the difference, 2010–2013 (c); observed at the EAN stations (coloured dots)

available for the study and predicted by SILAM (fields).

Figure 4. Example of hourly birch pollen concentration maps: 12:00 UTC, 20 April 2013 (pollen m−3).
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Figure 5. Season progression, ensemble median, and observations: 5-day mean pollen concentrations (pollen m−3).

episode shown in Fig. 4. The “fingerprints” of the plumes

bringing the first pollen to the regions and those concluding

the season are clearly seen in southern Europe, where Span-

ish stations show a presence of pollen almost as long as in

Finland.

With regards to the model–measurement comparison

statistics, one has to bear in mind that the time series of

pollen concentration represents strongly non-stationary and

non-ergodic processes, i.e. the usual statistics (bias, RMSE,

correlation, etc.) that all rely on the process stationarity and

ergodicity can be computed only within the main season and

even then have to be taken with care. A series of such “stan-

dard” statistics was computed for the ensemble (Fig. 7), as

well as for all individual models (Fig. 8). For the ensemble

quality assessment, we used a discrete rank histogram, which

is a simple and efficient way to understand the basic proper-

ties of the obtained ensemble. The theoretical basis and ex-

amples of this histogram and more sophisticated approaches

can be found in Candille and Talagrand (2005) and Potemp-

ski and Galmarini (2009).

All statistics were calculated for the whole season:

15 March–24 April inclusive. Daily-mean values were used

for RMSE and correlation coefficient.

4 Discussion

Within this section, the following issues are considered:

(i) the ability of the model ensemble to predict the key fea-

tures of the 2013 birch pollen season, (ii) main uncertainties

of the current ensemble, (iii) specific features of the individ-

ual ensemble members, and (iv) parameters of the season, for

which the use of the ensemble predictions is more beneficial

than single-model simulations.

4.1 Model predictions for the key season parameters

The most important parameter for the users of pollen fore-

casts is the season start. Analysis shows (see Figs. 6 and 7)

that the ensemble captured the season onset over the majority

of central and western Europe with an error of just a couple

of days, which is very small. This is in agreement with the

source term evaluation by Siljamo et al. (2012).

Both in the north (Finland and Baltic states) and in Spain

the pattern is very irregular: the error of the season start (the

date when 5 % of the seasonal total is reached) at stations

located a couple hundred kilometres from each other can dif-

fer by more than a week (Fig. 6). The main reason for such

inhomogeneity is that the season start over these areas was

largely influenced by remote sources in central Europe and

long-range transport. A single episode affecting or pollen

cloud passing by the station can result in a few weeks of the

apparent-season shift.

The end of the season is more uncertain: the concentra-

tions usually fall more slowly at the season end than they

grow at its start, with substantial small-scale variability un-

resolved by the large-scale simulations. As seen from Fig. 6,

the error usually stays within some 5 days but can also reach

several weeks, especially in the mountainous regions (Pyre-

nees, Alps). Fortunately, this parameter is also less important

for practical applications.

Representation of the absolute concentrations strongly

varies over the European continent (Fig. 7). In its central part
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a) 5% obs ,  b) 95% obs  

c) 5%, mdl  d) 95%, mdl  

Figure 6. Start (a, c, date of 5 % of the cumulative seasonal total) and end (b, d, date of 95 % of the cumulative seasonal total) of the 2013

pollen season (Julian days), observed (a, b) and predicted by the ensemble median (c, d).

a) 5%, error  b) Mean bias  

c) RMSE     d) Corr.coef.   

Figure 7. Results of model–measurement comparison for the ensemble median: error in the season start (a, days), seasonal mean bias (b,

pollen m−3), RMSE (c, pollen m−3), correlation coefficient for daily time series (d).

(Germany, Austria, part of France), there is a slight under-

estimation. In southern France and Spain, it gradually turns

to a slight overprediction, suggesting a somewhat too long

transport distance in the majority of the models. Finally,

in the north all models strongly overpredict. These tenden-

cies are practically not dependent on the longitude: avail-

able observation points in the east follow the same pattern

of very slight overprediction in Ukraine and substantial over-

statement in central Russia. The RMSE largely follows the

bias field (Fig. 7).
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Figure 8. Scores of the individual models: mean over all stations. The parameters are the same as in Fig. 7.

Correlation coefficient (Fig. 7) should be taken with care

due to the evident non-stationarity of the process. However, it

also highlights central and western Europe (as well as part of

northern Europe) as the best-predicted areas. Mountains are

the most difficult regions, along with the areas with few birch

stands (southern Europe), where the habitat map is highly

uncertain. Northern Europe is usually a well-predicted area

but not in 2013: as seen from Fig. 7, correlation of time series

in the Baltic states and southern part of Finland is quite low.

It is high only in Moscow and northern Finland.

4.2 Main uncertainties of the ensemble

From the above analysis, one can deduce the main sources

of uncertainties of the presented multi-model ensemble:

(i) missing interannual variability of the birch productivity,

(ii) errors in the mountainous regions, and (iii) birch distri-

bution map.

Currently, there is no model for year-to-year variation of

the birch productivity. A few studies reported in literature

– e.g. Masaka (2001), Ranta et al. (2008, 2005) – concen-

trate on predicting the SPI, which is a different quantity sig-

nificantly affected by the current-year meteorological condi-

tions. The total amount of pollen stored in catkins, in con-

trast, is decided by the previous-year summer and, to some

extent, the following winter conditions. The second compli-

cation is that the existing studies are based on a limited num-

ber of observation points, which makes it difficult to general-

ize them to the continental scale. The work is ongoing, but so

far the only way to obtain a reliable absolute level of concen-

trations is via data assimilation performed retrospectively.

The large uncertainties in the mountains originate from the

insufficient resolution of both meteorological and dispersion

models. As an illustration, the time series for Zams station

in Austria (one of the 21 sites excluded from the compari-

son) shows that all models have shifted the season by several

weeks: mid-June instead of late April to early May (Fig. 9).

Some models also predicted peaks shortly before the season

but these were the pollen plumes from remote sources. This

error is exacerbated by a strong underestimation of the abso-

lute values. The reason for the poor performance of all mod-

els is the complex-terrain environment with a characteristic

width of the valley of barely 2 km. Continental-scale disper-

sion models, as well as the global meteorological model, all

have a resolution 10–20 times coarser than that (Table 1). As

a result, the grid-cell-scale temperature is not representative

of the valley bottom (it is biased low), which leads to a late

predicted start of the season. Moreover, pollen released at the

bottom of the narrow valley is usually trapped inside it – in

reality – whereas in the models it is mixed over the whole

grid cell, which leads to strong underestimation even though

the total released amount of pollen is reasonable.
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Figure 9. Daily time series for Zams station in Austrian Alps (a, pollen m−3) and location of the station (yellow pin) in the 2 km wide valley

(b). Due to the log-scale, zero observations are omitted.

4.3 Behaviour of individual models

Following the MACC standards, the setup of the ensemble

members was largely harmonised. The emission term was

implemented in all models with minimal differences from

the one described in Sofiev et al. (2012). The only known

deviation was made in SILAM, where the pollen maturation

and discharge were separated into two processes controlled

by different environmental parameters, similar to Prank et

al. (2013) and Zink et al. (2013). However, the impact of

this variation at daily averaging is bound to be small. The

other parameter that depended on the models was the thick-

ness of the emission injection layer. The recommended layer

was from the surface up to a height of 50 m but the model’s

geometry affected it.

Meteorological input data were the same – the IFS fore-

casts. Meteorological data pre-processing was based on com-

paratively simple diagnostic procedures embedded in all

models except for EURAD, which used the WRF model

nested into IFS. The tasks of the preprocessors were (i) to

derive the boundary layer characteristics missing from the

IFS and (ii) for some models to re-diagnose the vertical wind

component or refine the 3-D wind fields to ensure satisfaction

of the continuity equation.

In light of this, the differences between the model predic-

tions visible in Figs. 1, 4, and 8 should be mainly attributed

to (i) model treatment of the 3-D pollen transport, (ii) vertical

mixing, and (iii) removal mechanisms.

In general, the model results are quite similar and the

main features of the pollen distribution are clearly visible

in the individual-model patterns. On a closer look, one can

see a few tendencies, such as (i) higher-than-average con-

centrations predicted by EURAD, (ii) lower-than-average

values of MOCAGE, (iii) longer lifetime and farther atmo-

spheric transport of CHIMERE, (iv) the shortest transport

distance indicated by SILAM (Fig. 1), (v) about 10 % lower-

than-others correlation coefficient of EMEP, EURAD, and

LOTOS-EUROS (Fig. 8), and (vi) a general tendency of a

couple of days early start of the season for most models ex-

cept for CHIMERE (6 days too early) and for EMEP and

SILAM (1–2 days late season) (Fig. 8).

Interpretation of these tendencies is not unequivocal but

some of them are connected. For instance, the season start

is largely controlled by the possible long-range transport

episodes, so that the model reporting the longest pollen trans-

port (CHIMERE) predicts a too-early season start, especially

in remote regions. Conversely, SILAM, with its shortest trav-

elling distance, would report fewer such events, leading to

later season onset. The same is true for EMEP, which also re-

ported quite a short transport distance. The high predictions

of EURAD lead to somewhat higher RMSE and low predic-

tions of MOCAGE lead to lower RMSE, owing to the high

bias of all the models in the north.

In a few cases, available observational information enables

evaluation of these features. In particular, a quick north-to-

south reduction of the observed SPI in Spain (Fig. 2) sug-

gests that the transport distance of pollen is indeed short (see

also Fig. 3). This would also reduce the early bias of the

season start shown by most models. Secondly, the approxi-

mately 10 % higher correlation coefficient of SILAM might

possibly be attributed to the more articulated impact of local

birch since the long-range effects are of lower importance for
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Figure 10. Ensemble characteristics: (a) Talagrand diagram for the constructed ensemble (daily concentration statistics) and (b) histogram

of model predictions when observations were below the detection limit 0.5 pollen m−3.

that model, owing to its short transport distance. These obser-

vations might also be projected to the resuspension process

suggested by Helbig et al. (2004) but never explicitly verified

or confirmed, as pointed out by Sofiev et al. (2012). Among

the seven models, only CHIMERE included it, which may be

one of the reasons for its longer transport distance. The above

comparison raises further concerns regarding this process.

Evaluation of absolute concentrations is hardly conclusive

due to the very specific season and overall uncertainty of this

parameter.

4.4 Ensemble added value

Compilation of the multi-model ensemble out of individual

models has proven to be beneficial. As seen from Fig. 8,

the ensemble median, together with the ensemble mean and

SILAM, has the highest correlation coefficient. The ensem-

ble also showed among the shortest shifts of the season start

and among the smallest RMSEs. Its robustness to outliers

also turned out to be a very strong asset for pollen forecast-

ing, which is a comparatively new area of modelling and has

many unknowns in the governing processes.

However, the ensemble can only be as good as the majority

of the individual models. As follows from the rank histogram

(the Talagrand diagram, Fig. 10, left panel), the current en-

semble is not perfect. The diagram shows the generally un-

derestimating ensemble (tendency towards higher ranks of

the observations) simultaneously with a fraction of observa-

tions being substantially overestimated (zeroth rank is also

frequent). The latter feature is due not only to the northern

sites (albeit few) but also to southern Spanish stations, where

the overestimation is also systematic. Moderate underestima-

tion takes place mainly in central Europe (Fig. 2), where most

of the stations are located. However, even this imperfect en-

semble outperformed most of the individual models.

Construction of the rank histogram for pollen faced a

methodological problem: pollen concentrations long before

and long after the flowering season are 0. One should also

bear in mind the quite high detection limit for the micro-

scopic analysis (about 0.5 pollen m−3 for daily mean), which

increases the frequency of observed zero concentrations. In

2013, about 15 % of observations and 10–15 % of model pre-

dictions were below this limit. For the all-zero cases (zero

observations and below-detection-limit bulk/all of the mod-

els), determination of the observation rank is meaningless:

the ensemble variance collapses and its mean matches the

observations perfectly. Neither of these cases can be ignored:

they have clear physical meaning and manifest excellent en-

semble behaviour. Therefore, for such cases the observation

rank in Fig. 10 was picked as a random number from 0 to 7,

i.e. it corresponded to a “perfect” ensemble. To illustrate the

ensemble behaviour when the observations were below the

detection limit, the histogram of the corresponding model

values is shown in Fig. 10, right panel. As one can see, in

over 80 % of zero observations models also showed the con-

centrations below 0.5 pollen m−3. This peculiarity has to be

kept in mind for future pollen-related ensembles.

5 Summary

The first-ever multi-model ensemble was created for predict-

ing the concentrations of birch pollen in Europe. The ensem-

ble was constructed from seven European atmospheric chem-

istry transport models of MACC and follows the main rules

of the MACC regional ensemble: the models share the same

source term, use the same meteorological input, and cover

the MACC domain with similar resolution.

The ensemble was evaluated against the observational data

of European Aeroallergen Network for the year 2013 and the

basic statistical indicators were computed for each individ-

ual ensemble member, as well as for the ensemble mean and

median.
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The ensemble demonstrated good skills in predicting sev-

eral main characteristics of the pollen season of 2013: the

season start and propagation, the pollen distribution pattern

in central, eastern, and southern Europe, and characteristic

concentrations over these regions. The season timing was

captured despite the anomalously late flowering due to the

cold spring of 2013.

Representation of the pollen concentrations in northern

Europe, the Baltic states, and central Russia was affected by

the anomalously low flowering intensity in 2013. As a result,

all models had strongly overestimated pollen levels there.

This was in contrast to the usual pollen distribution pattern

in Europe, such as the one of the quite typical year of 2010,

which was reproduced much better.

The experiment showed the high added value of the en-

semble. For most of the participating models this was the first

experience of pollen simulations, which affected the reliabil-

ity of their results. The ensemble median proved to be robust

to the outliers, finally showing among the highest correlation

coefficients and one of the smallest errors in the season tim-

ing and RMSEs.

The main areas of improvement referred to the interannual

variation of the birch productivity as well as to the represen-

tation of the flowering timing in the complex-terrain condi-

tions.
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Gehrig, R., Bonini, M., Yankova, R., Damialis, A., Vokou, D.,

Gutiérrez Bustillo, A. M., Hoffmann-Sommergruber, K., and van

Ree, R.: Geographic and temporal variations in pollen expo-

sure across Europe, Allergy, 69, 913–923, doi:10.1111/all.12419,

2014.

Sofiev, M.: Extended resistance analogy for construction of the ver-

tical diffusion scheme for dispersion models, J. Geophys. Res.,

107, ACH 10–1–ACH 10–8, doi:10.1029/2001JD001233, 2002.

www.atmos-chem-phys.net/15/8115/2015/ Atmos. Chem. Phys., 15, 8115–8130, 2015

http://dx.doi.org/10.1016/j.agrformet.2013.08.003
http://dx.doi.org/10.1007/s00484-004-0228-0
http://dx.doi.org/10.1016/j.foreco.2007.09.040
http://dx.doi.org/10.1016/j.jaci.2009.05.011
http://dx.doi.org/10.1016/S1474-8177(70)06074-3
http://dx.doi.org/10.1016/S1474-8177(70)06074-3
http://dx.doi.org/10.1111/j.1466-8238.2008.00383.x
http://dx.doi.org/10.1111/j.1466-8238.2008.00383.x
http://dx.doi.org/10.1007/s10453-008-9100-8
http://dx.doi.org/10.1007/s00484-012-0539-5
http://dx.doi.org/10.5194/acp-12-7825-2012
http://dx.doi.org/10.5194/acp-12-7825-2012
http://dx.doi.org/10.1111/j.1365-2222.2007.02771.x
http://dx.doi.org/10.1111/j.1365-2222.2007.02771.x
http://dx.doi.org/10.1007/s00484-007-0139-y
http://dx.doi.org/10.1007/s00484-008-0192-1
http://dx.doi.org/10.1007/s00484-008-0192-1
http://dx.doi.org/10.1016/j.agrformet.2008.04.005
http://dx.doi.org/10.1111/all.12419
http://dx.doi.org/10.1029/2001JD001233


8130 M. Sofiev et al.: MACC regional multi-model ensemble simulations of birch pollen dispersion

Sofiev, M. and Bergmann, K.-C. (Eds.): Allergenic pollen. A review

of production, release, distribution and health impact, Springer-

Verlag Berlin, Heidelberg, 2013.

Sofiev, M., Siljamo, P., Ranta, H., and Rantio-Lehtimaki, A.: To-

wards numerical forecasting of long-range air transport of birch

pollen: theoretical considerations and a feasibility study, Int.

J. Biometeorol., 50, 392–402, doi:10.1007/s00484-006-0027-x,

2006a.

Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., and Kukko-

nen, J.: A dispersion modelling system SILAM and its eval-

uation against ETEX data, Atmos. Environ., 40, 674–685,

doi:10.1016/j.atmosenv.2005.09.069, 2006b.

Sofiev, M., Galperin, M. V., and Genikhovich, E.: Construction and

evaluation of Eulerian dynamic core for the air quality and emer-

gency modeling system SILAM, in: NATO Science for Piece and

Security Serties C: Environmental Security, edited by: Borrego,

C. and Miranda, A. I., Air Pollution Modelling and Its Applica-

tion, XIX, Springer-Verlag Berlin, 699–701, 2008.

Sofiev, M., Siljamo, P., Ranta, H., and Linkosalo, T.: A numerical

model of birch pollen emission and dispersion in the atmosphere,

Description of the emission module, Int. J. Biometeorol., 57, 45–

58, doi:10.1007/s00484-012-0532-z, 2012a.

Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Jaeger,

C., Rassmussen, A., Severova, E., Oksanen, A., Karppinen, A.,

and Kukkonen, J.: From Russia to Iceland: an evaluation of

a large-scale pollen and chemical air pollution episode during

April and May, 2006, in: Aerobiological Monographs, Towards

a Comprehensive Vision, edited by: Clot, B., Comtois, P., and

Escamilla-Garcia, B., 95–113, 2012b.

Stach, A., Smith, M., Skjøth, C. A., and Brandt, J.: Examining Am-

brosia pollen episodes at Poznań (Poland) using back-trajectory
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