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Abstract 

Quantitative structure property relationships (QSPR) are increasingly used for the prediction of 

physico-chemical properties of pure compounds but only few were developed to predict the 

properties of mixtures.  

In this work, a series of existing and new formula were proposed to derive mixture descriptors to 

develop QSPR models for mixtures. These mixture descriptors were used to model the flash point of 

a series of 435 organic mixture compositions. Multilinear models were obtained using twelve 

different mathematic formulas taking into account the linear or non-linear dependences of the flash 

point with the concentration of each compound.  

The best model, issued from the newly proposed (x1d1 + x2d2)
2 formula, was a four parameter model 

presenting good prediction capabilities (with a mean absolute error in prediction of 10.3°C) 

compared to existing predictive methods for both mixtures and pure compounds.  
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Introduction 

Quantitative Structure Property Relationships (QSPR) are predictive models allowing the prediction 

of macroscopic properties by correlation with descriptors of the molecular structure of chemicals1. 

These molecular descriptors are of various categories1, 2: constitutional, topological, geometric or 

quantum chemical. Such methods have been largely used for biological activities in the field of 

toxicology3, ecotoxicology4 or pharmaceutics5, 6 and are increasingly used for physico-chemical 

properties7-9.  

Various models have been developed for hazardous physico-chemical properties10-19 such as 

flammability10, 11, thermal stability12-14 and explosibility15-19. Up to now, the QSPR approach was 

mostly dedicated to pure compounds and only few recent works were dedicated to mixtures20. 

Ajmani et al. proposed various models to predict the density21, 22 and the infinite-dilution activity 

coefficient23 of binary mixtures. In these studies, the molecular descriptors for each pure compound 

were combined, e.g. by mole weighted averaging24, to derive mixture descriptors. These mixture 

descriptors were then correlated to the property of the studied mixtures. Several studies were also 

dedicated to azeotropic mixtures25-29. In particular, Oprisiu et al.29 developed several QSPR models to 

predict the boiling point25, 28 of azeotropic binary mixtures based on fragment descriptors.  

The flash point (FP) is the temperature at which the vapor above a flammable liquid ignites under the 

effect of a spark.30 This property characterizes flammability hazards of liquids and is a key safety issue 

in the risk assessment of industrial processes and in various regulatory frameworks dedicated to 

chemicals (for use, storage and transport)31, 32. Flash point of pure compounds was studied in several 

works in view of developing predictive methods taking advantage of the large availability of data33, 34. 

Among them, many were based on the knowledge of other properties like the boiling point24, 35, 36. 

The highest performances were obtained by Carroll et al. 37 with a model based on boiling points and 

functional group counts with a mean absolute error (MAE) of 2.5°C for a data set of 1000 pure 

compounds. Other QSPR models were developed without using any experimental parameters11, 38, 39. 

For instance, Katritzky11, Saldana38 and Rowley39 proposed QSPR models only based on theoretical 

descriptors with prediction errors estimated at 16.1°C, 10.3°C and 9.8°C, respectively, for organic 

compounds. If interesting performances were obtained with these global models (for large families 

of compounds), models focusing on particular families of compounds were also developed in recent 

works. For instance, an accurate model was obtained for the flash points of amines with a coefficient 

of determination R² of 0.91 in prediction that corresponds to a MAE of 14.9°C40. Moreover, Khajeh et 

al.41 developed a specific model for esters with an error in prediction of 15.1°C.  

Concerning the prediction of the flash point of mixtures, mixing rules are commonly used by 

estimating the flash point of the mixture from the ones of each constituent as function of their 

respective concentration in the mixture. Various mixing rules exist for the flash point. Wickey42 and 

Affens43 proposed methods more likely dedicated to ideal mixtures, i.e. presenting no important 

interactions between their components. Then, over decades, studies taking into account 

intermolecular interactions between constituents through the use of their activity coefficients44-47 

were conducted. Liaw developed a computational approach based on the mixing rule proposed by 

Wu47 and published several experimental studies48-50 to show that this approach could yield accurate 

predictions. This last approach succeeded to predict the behavior of particular mixture features like 

those presenting a flash point below the flash point of their components (e.g. octane/methanol48 or 
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octane/i-propanol49) or, on the contrary presenting maximum flash-point behavior (e.g. 

cyclohexanol/phenol50). 

In recent work, Saldana et al.51 proposed the first QSPR model for the prediction of flash point of 

organic liquid mixtures. In this final model, the mole weighted average values of the molecular 

descriptors of each pure compound of the mixture were used in a genetic algorithm to develop a 

multilinear regression model (GA-MLR) with four descriptors and an error in prediction of 10.1°C.  

In a previous work52, we also demonstrated the possibility to combine QSPR models with mixing rules 

notably by developing a full predictive method based on the mixing rule of Liaw combined with the 

model of Rowley (only based on group contributions) with an error in prediction of only 4.4°C. 

Saldana51 obtained same accuracy (MAE = 3.4°C) based on a similar approach using three SVM-based 

QSPR models for the predictions of the flash point, heat of vaporization and boiling point of pure 

compounds that were introduced in a modified Liaw mixing rule. 

The present study aimed to develop new QSPR models for the flash point of binary mixtures and to 

evaluate the potential of various mathematic formulas of mixture descriptors for the development of 

such models for the prediction of this property. Indeed, the definition of mixture descriptors was 

identified as a critical parameter in existing QSPR models for mixtures, in particular for such property 

that can follow a non linear trend with concentration of each component. Moreover, in this study, an 

extended database was used, by gathering additional data from literature to the ones already 

collected and used by Saldana et al.51 from 287 to 435 data, to extend the diversity of the compounds 

involved in the mixtures. 

Materials and methods 

Experimental data 

The flash point is the lowest temperature at which a liquid releases enough vapor to form a 

flammable mixture with air above the liquid surface. This property in notably used in the assessment 

risks associated to the storage and use of flammable liquids. In practice, this property is measured as 

the lower temperature at which a flash is obtained by application of a flame above the liquid surface. 

Various apparatus are used, according to standards (e.g. ISO 1516, DIN 51755-1, ASTM D56, etc.)32 

recommended in the European regulation related to the registration, evaluation, authorisation and 

restriction of chemical substances (REACH)53 and in the CLP regulation32. For instance, the ASTM D56 

standard54 (used for most of the experimental data) corresponds to flash points in a tag closed tester, 

for liquids presenting a viscosity lower to 5.5 mm²/s and for flash points lower than 93°C. The 

reliability of the measures within this standard is estimated to be 4.3°C below 60°C and reaches 5.8°C 

above 60°C.  

Concerning liquid mixtures, various phenomena affect the flash point thus involving that it does not 

follow a linear trend with the concentration of each component30. At first, the difference in volatility 

of each compound influences the concentration of vapors above the liquid surface, which therefore 

follows a non linear trend. Moreover, in non-ideal mixtures, intermolecular interactions favor or 

disfavor the transfer of molecules from the liquid to the vapor phase leading to positive or negative 

deviation of the profile of flash point with the concentration of each compound. 
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In this study, a large dataset of 435 experimental data on binary mixtures was gathered issued from 

13 references in literature47-50, 55-63. These data are available in Supporting Information (table S1). This 

dataset represents, to our knowledge, the largest collection of flash points of mixtures. It comprises 

43 different binary mixtures of 34 pure compounds in various concentrations. Different families of 

compounds are represented, like hydrocarbons, alcohols, ketones, esters or acids. Flash point values 

range from -27.5°C to 110.4°C and molar fractions from 0 to 1.  

All flash points were obtained according to standards recommended by the REACH regulation. 

Nevertheless, as explained before, each standard protocol presents its own limits and uncertainties. 

For this reason, it has been chosen in this work to develop models based on data obtained according 

to a single standard to ensure at best the homogeneity of protocols. The remaining data were used 

to build the validation set used to evaluate the predictive power of the developed models.  

So, the training set of the models was constituted by the 284 flash points obtained by Liaw et al.48-50, 

55, 56, using the ASTM D56 standard. As summarized in table 1, this training set contains 22 mixtures 

of 21 pure compounds. These data were, for the most of them, already used by Liaw et al. to assess 

the performances of the mixing rule of Wu47 and by Saldana et al.51. 

Then, to estimate the predictive power of the obtained models, the validation set of the 151 flash 

points obtained using other standards (recommended by REACH) were used. 8 out of the 21 pure 

compounds involved in these mixtures were already present in the training set and the 13 remaining 

ones are representatives of chemical families present in the training set. So, they can all be 

considered as being within the applicability domains of the developed models. It should be noted 

that all the mixtures involved in the validation set were constituted with at least one pure compound 

not represented into the training set. To the end, as presented in figure 1, the distribution of flash 

points is homogeneous in both sets compared to that of the entire dataset.  

Molecular descriptors 

The structures of the 34 pure compounds of the gathered dataset were calculated using the density 

functional theory (DFT) in Gaussian09 package64. Geometric structures were optimized using the 

B3LYP functional65 and 6-31+G(d,p) basis set, already commonly used for organic compounds66-68 . 

Vibrational frequencies were computed at same level of theory to ensure that all stable species 

presented no imaginary frequency. 

More than 300 molecular descriptors were computed to characterize these molecular structures. 

These descriptors can be considered into four classes. Constitutional descriptors are related to the 

identification and count of specific features of molecules, e.g. numbers of atoms, bonds or chemical 

groups. Topological descriptors arise from the two-dimension (2D) structure of molecules. Calculated 

from the connectivity table of molecules, they characterize their size and shape. Geometric 

descriptors stem for the three-dimension (3D) structure, like distances, angles in the molecules or 

molecular volumes. Finally, quantum chemical descriptors allow access to binding, energetic, 

electronic and thermodynamic information.  

Most of these descriptors were calculated using Codessa software69 from the previously DFT 

calculated structures. More details on the calculated descriptors are available in Ref. 70. Additional 

descriptors were also considered, such as the presence and counts of functional groups identified in 
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the dataset. This was also the case of quantum chemical descriptors such as conceptual DFT 

descriptors71, 72, as already done in previous works 73, 74. 

Mixture descriptors 

Upon the type of property and mixtures under study, different strategies can be used to access QSPR 

models applicable to mixtures20. In the present case, mixture descriptors D were developed by 

combining the molecular descriptors di of each component taking into account their respective molar 

fractions xi as shown in eq. 1.  

),( ii xdfD            (1) 

As already observed48, the flash point of mixtures does not follow simple dilution effect. Indeed, it is 

also affected by other effects like the affinity between compounds and by their respective vapor 

pressure33. So, not only linear but also non-linear formula could be of great interest. As a 

consequence, 12 mathematic formulas were tested in this study for the development of QSPR 

models to predict the flash point of binary mixtures: five were extracted from literature whereas the 

other seven ones were newly proposed.  

The 12 proposed formulas were divided into three classes. The six first ones were dedicated to the 

direct correlation with the property of the mixture (direct combinations) whereas the three ones of 

the second class aimed to describe the deviation of the property from the linear contribution of each 

component with their respective concentrations (deviation combinations). The last class gathered 

three other combinations that did not fit with the constraints of the first two classes (other 

combinations). 

Direct combinations 

At first, the proposed direct combinations must be not dependent on the order of the two 

components of the binary mixture. Indeed, the flash point of a mixture of 30 %mol ethanol in n-

octane (70%) is the same as the one of a mixture of 70 %mol n-octane in ethanol (30%). So, all 

proposed formulas were symmetric regarding molecular descriptors and molar fractions (see eq. 2). 

),,,(),,,( 11222211 xdxdfxdxdfD        (2) 

Moreover, to be applicable to pure compounds, these formulas may be dependent on the molecular 

descriptor d1 (or d2) of only one component when x1 (or x2) becomes equal to 1, i.e.: 

),(,0 221 xdfDxif          (3) 

The first proposed formula is the molar contribution (fmol_sum), corresponding to the linear 

combination of the molecular descriptors di of both compounds weighted by their respective molar 

fraction xi in the mixture. 

2211 dxdxD           (4) 

This formula has already been used in previous QSPR models for mixtures21, 26, 75 and in particular by 

Saldana et al.51 for the flash point of mixtures.  



 

6 
 

Four other formulas were designed in this study following these criteria. The weighted difference 

(fmol_diff) consisted in the absolute difference between the descriptors of each component 

weighted by their respective molar fraction in the mixture. 

2211 dxdxD           (5) 

The square molar fraction (sqr_fmol) and root square molar fraction (root_fmol) formulas 

correspond to a linear contribution of the descriptors of each component with respect to their 

square and root square molar fraction, respectively. 

2211 ²² dxdxD           (6) 

2211 dxdxD           (7) 

The square molar contribution (sqr_fmol_sum) is the square of the molar contribution. 

 22211 dxdxD           (8) 

At last, the norm of the molar contribution (norm_cont, in Eq. 9), already proposed by Saldana et al. 
51, was also tested, even if it was not selected for their final model. 

   222

2

11 dxdxD          (9) 

Deviation combinations 

As for direct combinations, all tested deviation combinations were symmetric regarding molecular 

descriptors and molar fractions (see eq. 2). However, to be applicable to pure compounds, these last 

formulas may not be dependent on any molecular descriptor, d1 or d2. Indeed, for pure component, 

the deviation to linearity becomes equal to 0, and formulas must follow eq. 10. 

0,00 21  DxorxIf         (10) 

Three combinations were proposed in this category, based on the difference between the molecular 

descriptors Δdi and a term depending on the absolute difference between the molar fractions of both 

components of the mixture Δxi. None of these formulas were already tested. 

The most simple, denoted mol_dev (in eq. 11), considered the fact that the deviation issued by the 

mixture of two compounds is related to the difference between the descriptor value for each pure 

compound and the difference in molar fraction. Moreover, the more the mixture is balanced 

between the two components, the more the property of the mixture deviates from a linear behavior.   

  dxD  1          (11) 

The two other formulas, denoted sqr_mol_dev and mol_dev_sqr, were obtained by squaring Δxi or 

the (1 - Δxi) term. 

  dxD  21          (12) 
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  dxD 
2

1          (13) 

Other combinations 

In addition, other combinations have been considered as they were already used for the 

development of previous QSPR models for mixtures22, 76. For instance, the centroid approach (cent) 

has notably been used by Jover et al.76 for the prediction of the dissociation constant (pKa) of 

phenols in various solvents. In this approach, the mixture descriptor is calculated as the average 

value of the molecular descriptor of the n constituents of the mixture. 

n

d
D

i
           (14) 

Ajmani22 proposed another formula to predict the density of liquids by using the square of the 

difference (sqr_diff) between the two constituents of the mixture.  

 221 ddD            (15) 

At last, it has been proposed to also consider the absolute difference (abs_diff) between the 

molecular descriptors of each constituent of the mixture. 

21 ddD            (16) 

It should be noted that these formula do not take into account the respective molar fraction of each 

constituent in the mixture. So, they are invariant within the whole range of molar fraction from 0 to 1 

and could be strictly not applicable for pure compounds since the molecular descriptor values for 

two compounds are needed.  

Development of models 

In this study, multilinear regression models have been developed following eq. 17. 

  0aDaY ii
         (17) 

where Y is the calculated property, Di are the mixture descriptors and ai the regression constants. 

In these equations, an excess of descriptors could lead to an over-parameterization of the final 

model. So, a selection of the descriptors included into the model has to be performed. In the present 

study, the heuristic method70, implemented in Codessa software69, was used due to its successful use 

in previous works for the development of QSPR models of pure compounds, and in particular for the 

flash point of organic compounds11. 

In a first step, descriptors presenting missing values or small magnitude of variation were eliminated. 

Then, one-parameter correlations were computed and descriptors presenting the lowest correlation 

with the property were canceled. Moreover, if two descriptors were highly inter-correlated, the one 

presenting the lowest correlation with the property was eliminated. Then, descriptors were listed by 

decreasing order of correlation with the property. The two-parameter equations were developed and 

the most correlated ones presenting no inter-correlation between the included descriptors were 
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selected. After that, additional descriptors were added for each selected pairs with the same 

procedure as long as the models increase in correlation. The output of the algorithm was a list of the 

best correlations obtained.  

To the end, the final models were selected among the list proposed by the heuristic algorithm, to 

represent the best compromise between the correlation of the models and the number of 

descriptors.  

The reliability of the model was evaluated by using internal and external validations77. The 

correlation of the final models was evaluated based on the correlation coefficient (R²) and the mean 

absolute error (MAE). The pertinence of each descriptor in the model was checked based on a 

Student’s t-test at a 95% level of confidence. Then, the robustness of models was estimated by leave-

one-out cross-validation (Q²). Finally, the predictive power of models was estimated by external 

validation based on the correlation (R2
EXT) and mean absolute error (MAEEXT) for the predictions on 

the validation set. Since all the mixtures involved in the validation set were constituted with at least 

one pure compound that was not represented into the training set, the performed external 

validation represented a “compounds-out” external validation as defined by Muratov78 and Oprisiu25. 

Results and discussions 

New QSPR models for the flash point of organic binary mixtures were developed to evaluate the 

potential of the twelve proposed formulas (among which seven were new) for the development of 

such models for the prediction of this property. Their details are available in Supporting Information 

(tables S2-S13) and their performances are gathered in table S14. 

At first, it should be noted that the deviation formulas aimed to describe the deviation of the 

property from the linear contribution of each component with their respective concentrations. So, 

the three corresponding formulas (mol_dev, sqr_mol_dev and mol_dev_sqr) were not tested 

directly on the flash point but on the difference between the actual experimental flash point and the 

linear contribution of the experimental flash points of the pure compounds weighted by their 

respective molar fraction in the mixture (deviation to linearity). But, all three deviation formulas 

(Tables S8-S10) failed in accessing reliable models with only 0.34 in R² for sqr_mol_dev and 0.32 in 

R²EXT for the mol_dev and the sqr_mol_dev formulas. Moreover, the mean absolute errors of these 

models were high, about 7°C, which is high regarding the values of the deviations to linearity of the 

tested mixtures, as shown in figure 2. Indeed, 222 out of the 435 data presented deviations to 

linearity lower than 5°C and 331 lower than 10°C.  

Concerning the nine others formulas, directly used to develop models for the prediction of FP, better 

results were obtained. In terms of goodness-of-fit, the mean absolute errors obtained for the training 

set were lower than 12.1°C. This value is in the range of values obtained for existing QSPR models to 

predict the flash points of pure compounds8 (exception given for those needing experimental data, 

e.g. boiling point). Nevertheless, some models demonstrated better predictive capabilities than 

other, as shown on figure 3 which represents their performances in terms of MAE and MAEEXT values. 

Indeed, even if they presented low MAE values, the formulas based on differences, fmol_diff, 

sqr_diff and abs_diff presented the highest errors in prediction with MAEEXT = 17.6°C, 26.2°C and 

28.1°c, respectively. The best results were obtained with the centroid approach (cent) with MAEEXT = 

9.7°C and with the square linear combination weighted by the molar fraction (sqr_fmol_sum) with 
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MAEEXT = 10.3°C. Two other formulas, based on weighted sums, were also interesting from a 

predictive point of view, the molar contribution fmol_sum and the root square weighted 

combination root_fmol, with models reaching MAEEXT=11.8°C and 11.9°C, respectively. In conclusion, 

four out of the twelve models were selected from a statistical point of view: cent, sqr_fmol_sum, 

fmol_sum and root_fmol. 

To select the best formula among these four combinations, the capacity of the models issued from 

each combination to reproduce qualitatively the shapes of the mixture profiles of the dataset was 

examined. From this point of view, the centroid approach may be less pertinent. Indeed, the flash 

point, as various properties79, 80, varies with the composition of the mixture whereas the centroid 

approach does not take in account molar fractions. For instance, the centroid formula gives the same 

value of FP for the whole range of concentration for the 4-methyl-2-pentanone/1-butanol mixture 

(as shown in figure 4), even if this profile is among the simplest one with an ideal profile. The 

sqr_fmol_sum, fmol_sum and root_fmol approaches more likely reproduced the dilution effect by 

taking into account the molar fraction of each component of the mixture. 

In the dataset, different families of compounds are represented and different types of mixtures can 

be identified. Table 2 summarized the formulas allowing access to the MAE lower than 10°C for 

different types of mixtures. The formulas revealed to be the most efficient were globally the same. In 

particular, the three selected combinations, i.e. the cent, sqr_fmol_sum, fmol_sum and root_fmol 

combinations, presented good capabilities for various types of mixtures.  

Nevertheless, among these three mathematic formulas, the molar contribution (fmol_sum) 

appeared to be the less adaptable to reproduce strongly non linear profiles for non-ideal mixtures 

like in the case of the 1-propanol/octane mixture (in figure 5). This type of mixture represents a 

critical safety issue since the mixture revealed more flammable than the pure compounds 

individually. So, it is very interesting for the predictive model to be able to identify and characterize 

such behaviors.  

In both figures 4 and 5, it should be noted that a large part of the deviations observed along the 

profile could be due to large errors for the prediction for pure compounds. In particular, none of the 

tested formula led to models lower than 10°C in MAE for hydrocarbon/hydrocabon mixtures due to 

this failure (see table 2). In these cases, as these mixtures present nearly ideal profiles, errors can be 

likely attributed to the ability to predict the flash point for the pure compounds, for instance of the 

predictions of pure n-decane and n-dodecane as shown in table 3. This was clearly illustrated in 

figure 6 for the n-octane/n-decane mixture for which the flash point of pure n-decane was predicted 

with more than 25°C in error leading to important errors for the largest concentrations in n-decane.  

Such failure was due to the small diversity of compounds in the training set. Indeed, if the overall 

number of data was important (284 data), the diversity in terms of chemical structures remained low 

with only 22 mixtures of 21 pure compounds. Figure 7 confirmed this statement since the errors 

calculated for the pure compounds (between 12.4°C to 22.1°C) were higher than for the mixtures (in 

figure 3). Nevertheless, these performances were close to the ones obtained for existing QSPR 

models for the flash point of pure compounds involving solely computed molecular descriptors. 

Higher accuracy was found for models using the boiling point8 like the models of Carroll37 and of 

Gharagheizi81, developed for highly larger diversity of compounds (1471 and 1000 pure compounds, 

respectively) that reached MAE of 2.8°C and 8.5°C, respectively.  
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The last point to discuss is the type of descriptors used in the developed models. In the 12 developed 

models, 23 molecular descriptors were used, as shown in Supporting Information (tables S2-S13). In 

particular, the Randic index (order 3) 3χ is used in 7 models. Moreover, it is included into the four 

models presenting the best predictive capabilities (cent, sqr_fmol_sum, fmol_sum and root_fmol). 

Randic indices nχ are topological indices that were introduced in 197582, to characterize molecular 

branching and that have been notably correlated to the boiling point of alcanes82. Since the 

evaporation of the liquid is a critical parameter within the flash point property, the introduction of a 

Randic index within the models is meaningful.  

Details of the best model 

Based on the previous analysis, the model issued from the square molar contribution formula 

(sqr_fmol_sum) was selected as the best model among the 12 calculated ones. Indeed, it not only 

presented reliable predictions on the validation set from a statistical point of view (MAEEXT=10.3°C), 

but it also appeared as applicable to pure compounds and for ideal and non-ideal mixtures as a 

function of molar fractions, as illustrated in figures 4 and 5. 

   

   22,min,21,min,1

2

2211

6

2

2211

32

2

3

21

3

1

0.88104.2

22105.53.163.50)(

HH VxVxxx

HDCAxHDCAxxxCFP












 (18) 

where x is the molar fraction, 3χ is the Randic index (order 3), HDCA2 is the HDCA H‐donors charged 

surface area, Δα is the anisotropic polarizability and Vmin,H is the minimum valency of a H atom. 

The pertinence of the Randic index has been already discussed in previous section. It also should be 

noted that the H-donor charged surface area (HDCA2) can be associated to the capacity of a 

molecule to interact with surrounding molecules through hydrogen bonds that influences relative 

liquid vapor equilibrium to each compound of the mixture. 

This model presented good reliability on both the training and validation sets with MAE=6.3°C and 

10.3°C, respectively and it was evidenced as robust by cross validation with Q²=0.79, i.e. close to 

R²=0.80. The predictions issued from model eq. 18 were already accurate compared with existing 

QSPR models for pure compounds that commonly present about 7-8°C in prediction error10, 

especially when only based on calculated parameters. If more diverse data were available, it could 

become even more accurate.  

As can be seen in figure 8, good correlations were obtained for most part of the dataset. 

Nevertheless, three specific mixtures (isoamylic alcohol/isoamylacetate, o-xylene/cyclohexanol and 

o-xylene/heptane), circled in figure 8 (one in the training set, two in the validation set), seemed to 

decrease the calculated performances of the model. This can be explained by considering the 

constitution of the data set. Indeed, the first one, the isoamylic alcohol/isoamylacetate mixture, is 

the only alcohol/ester mixture of the training set. Moreover, only two other esters were used in the 

training set with structures relatively different from the isoamylacetate. Indeed, methylacetate and 

methylacrylate did not present a carbon chain, as in isoamylacetate. So, this mixture could be 

considered in the limit of the applicability domain of the model. Considering the two other mixtures 

presenting large errors, they both include the o-xylene and it should be noted that only one aromatic 

compound (toluene) was represented within the whole training set used for the fitting of the model. 

So, this mixture could also be considered out of the applicability domain of the model. Finally, when 
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excluding the mixtures of the validation set with aromatic compounds, the predictive power of the 

model reached a MAEEXT of only 8.3°C (with respect to 10.3°C when considering these three 

mixtures). This demonstrated the importance of the constitution of the dataset for the development 

of reliable models not only in terms of quantity of data but also in terms of diversity of compounds 

and mixtures.  

Besides, this model presents similar predictive capabilities than the only existing QSPR model 

developed by Saldana et al.51 that presented an error in prediction MAEEXT of 10.1°C evaluated for a 

more reduced set of compounds. Indeed, the validation set was composed of 30% of the entire 

dataset that was almost identical to the training set of the present study. Moreover, the MAEEXT of 

the new model (Eq. 18) decreased to 8.3°C when excluding the mixtures with aromatic compounds 

that were not represented in the model of Saldana. 

Finally, this QSPR model for mixtures was compared to the full predictive combined approach 

proposed in our previous work52. This last approach lied on a combination of the Liaw mixing rule49 

with the QSPR model of Rowley39 for the calculation of the flash point of the pure compounds and 

fixed averaged values for their Antoine’s coefficients. Table 4 summarizes the performances of the 

two approaches for the 151 data of the validation set that were not already used in previous works. 

The performances of the QSPR model revealed lower than the combined approach (MAEEXT = 10.3°C 

vs. 4.7°C). The availability of a more diverse dataset in terms of chemical structures would help as the 

prediction of flash points on pure compounds revealed in this study of great importance on the 

performances of the various tested formula. Nevertheless, this limitation also highlights the need for 

further methodological developments in the field of mixture QSPR modeling, beyond mixture 

descriptors formulation, for instance by considering algorithms and strategies for the development of 

mixture QSPR models taking into account the specificities of mixtures.  

Conclusions 

In this study, a series of mixture descriptors have been tested with the aim to achieve reliable models 

to predict the flash point of mixtures. A data set of 435 experimental data points for 43 binary 

mixtures was gathered which represents, to the best of our knowledge, the largest exiting database 

of the flash points for mixtures.  

Considering that in the case of flash point, non linear effects are observed with concentration, new 

non-linear formulas were tested. In total, twelve combinations were proposed to calculate mixture 

descriptors for the molecular descriptors of pure compounds. For each of them, QSPR models were 

developed and validated on an external data set. In the case of the flash point, non linear effects are 

observed with concentration. So, the best results were obtained with a new non-linear formula, the 

square molar contribution (x1d1 + x2d2)
2, due to the fact that non linear effects were observed on the 

FP with concentration. Considering the limited chemical diversity of the available data (with only 34 

different pure compounds), the model developed with this formula reached yet promising  predictive 

capabilities, with only 10.3°C in MAE for the validation set, but it can also be fitted for either ideal 

and non-ideal mixtures. Moreover, excluding mixtures with aromatic compounds (that can be 

considered as outliers), this model reached a MAE of 8.3°C. 

These first results encourage further developments with larger and more diverse databases to access 

high predictive models by using such non-linear mixture descriptors. 
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Table 1 – Composition of the training and validation sets. 

Set Number of 
data 

Number of 
mixtures 

Number of 
pure 

compounds 

Entire dataset 435 43 34 
Training set 284 22 21 
Validation set 151 21 21 
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Table 2 – Models allowing reaching MAEEXT < 10°C for the prediction of FP for various types of 

mixtures. 

Type of mixtures MAEEXT < 10°C 

Alcohol / Alcohol sqr_fmol_sum, root_fmol, cent 

Alcohol / Carbonyl fmol_sum, root_fmol, sqr_fmol_sum, cent 

Alcohol / Ester root_fmol, sqr_fmol_sum, abs_diff 

Alcohol / Hydrocarbon fmol_sum, norm_cont, sqr_fmol 

Hydrocarbon / Ester fmol_sum, norm_cont, cent 

Hydrocarbon / Hydrocarbon - 
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Table 3 – Experimental vs. calculated FP (in °C) for pure n-decane and n-dodecane with the various 

formulas. 

 
exp fmol_sum fmol_diff sqr_fmol root_fmol sqr_fmol_sum norm_cont 

n-decane 51.8 16.3 16.0 18.3 24.2 35.1 17.4 

n-dodecane 84.0 42.2 27.7 33.2 18.6 52.8 25.1 
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Table 4 – Performances of the present QSPR model and the combined approach developed in 

previous work52 for the 151 data of the validation set. 

 

Mixture QSPR 
(Eq. 18) 

Combined approach 
[52] 

R²EXT 0.71 0.96 

MAEEXT (°C) 10.3 4.7 
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Figure 1 – Distributions of the datasets in flash point. 
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Figure 2 - Distribution of the deviations of experimental flash points of mixtures to linear behavior 

with respect to concentration.  
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Figure 3 – Performances of the QSPR models for the flash point of mixtures upon the type of mixture 

descriptors. 
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Figure 4 – Experimental57 and calculated flash point profiles of 4-methyl-2-pentanone/1-butanol 

mixtures.  
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Figure 5 – Experimental58 and calculated flash point profiles of 1-propanol/octane mixtures.  
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Figure 6 – Experimental58 and calculated flash point profiles of n-octane/n-decane mixtures 
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Figure 7 – Performances of the new QSPR models issued from the best three combinations for the 

flash point of pure compounds. 
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Figure 8 – Experimental vs. calculated flash points for 43 mixtures (435 data points) using the best 

model obtained with the sqr_fmol_sum formula (eq. 18) 

 

 


