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Abstract 

Organic peroxides are unstable chemicals which can easily decompose and may lead to 

explosion. Such a process can be characterized by physico-chemical parameters such as heat 

and temperature of decomposition, whose determination is crucial to manage related hazards. 

These thermal stability properties are also required within many regulatory frameworks 

related to chemicals in order to assess their hazardous properties. In this work, new 

quantitative structure-property relationships (QSPR) models were developed to predict 

accurately the thermal stability of organic peroxides from their molecular structure respecting 

the OECD guidelines for regulatory acceptability of QSPRs. Based on the acquisition of 38 

reference experimental data using DSC (differential scanning calorimetry) apparatus in 

homogenous experimental conditions, multi-linear models were derived for the prediction of 

the decomposition heat and the onset temperature using different types of molecular 

descriptors. Models were tested by internal and external validation tests and their applicability 

domains were defined and analyzed. Being rigorously validated, they presented the best 

performances in terms of fitting, robustness and predictive power and the descriptors used in 

these models were linked to the peroxide bond whose breaking represents the main 

decomposition mechanism of organic peroxides. 
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1. Introduction 

Organic peroxides are reactive compounds, containing the -O-O- bond [1-2], that can be 

formed naturally by auto-oxidation with oxygen in certain solvents, such as diethylether. They 

can lead to highly explosive peroxidic residues, requiring specific safety precautions, like 

addition of oxidation inhibitors to prevent the formation of undesirable organic peroxides  [3-

6]. Organic peroxides are more or less stable due to a relatively low -O-O- bond energy (20-

50 kcal/mol) [7]. Since they generate instable radicals during their decomposition, organic 

peroxides are commonly used as catalyst and as radical polymerization initiators. The 

decomposition of organic peroxides can nevertheless be dangerous and can lead to serious 

effects [8-10]. To reduce the risk of incidents and of accidents, their hazards are intensively 

studied. In order to avoid the accidents by the customers and users, the organic peroxide 

producers provide information concerning the properties of commercial organic peroxides and 

give recommendations for safe handling and use of organic peroxides [11-12]. General 

documents also describe the characteristics of organic peroxides and the safety rules to apply 

to safely handle them at laboratory scale [3]. 

Concerning the regulations, organic peroxides belong to a dedicated division (Division 5.2), 

as described in the UN Dangerous Goods Transportation Recommendations [13], or in GHS 

(Globally Harmonized System of classification and labelling of chemicals) [14] with 7 

different classes (types A to G) related to their hazardous potential and leading to different 

amounts authorized for transport. 

The decomposition of organic peroxides can be triggered and accelerated by heat, mechanical 

shock or friction and by various contaminants [15-16]. To produce, transport and provide 

safely the numerous organic peroxides, the industry generally commercializes them in low 

concentration diluted in variable solvents.  

In order to improve and homogenize the knowledge of the marketed chemicals, the European 

Union regulation REACH (Registration, Evaluation, Authorization and Restriction of 

Chemicals) [17-18] requires the evaluation of physico-chemical, toxicological and eco-

toxicological properties for all chemicals produced or imported by more than one ton by year 

in Europe. To help industry to meet the requirements of REACH regulation as far as the 

chemical safety assessment is concerned, ECHA technical guidances have been published 

[19-20] and a general testing strategy for physico-chemical properties was proposed to 

consider the order of testing.  

As far as organic peroxides are concerned, even if they belong to a dedicated regulated 

division or class, the knowledge of their explosive properties, as defined by the UN 
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recommended tests [21], is of great importance. As entry data, their thermal stability 

(represented by the energy and temperature of decomposition) is a key property that is 

considered as a pre-selection criterion to identify substances that could undergo explosive 

reactions. So, it is used in the complex procedure of classification of explosives and organic 

peroxides [21]. Indeed, the UN regulation indicates that there is no need to perform this 

complex procedure when the decomposition heat (corresponding to the amount of energy 

released during the decomposition) is lower than 500 J/g. Measured by calorimetric analyses, 

notably by differential scanning calorimetry (DSC), the decomposition heat is estimated with 

measurement uncertainties of about 5-10% [22,23] and less than 5°C for the onset 

temperature [23].  

For safety reasons but also for technical reasons, experimental tests can be difficult to 

implement for unstable substances like organic peroxides. As a consequence, the development 

of methods used for the prediction of data can be of great help at the research and 

development step and can help to accelerate and fulfil the next registration deadlines.  As a 

simple prediction tool of reactivity hazards, the CHETAH software based on Benson’s group 

contribution method was developed by ASTM [24]. Considering only six organic peroxides, 

Mohan et al. [25] demonstrated some correlations between CHETAH criteria (oxygen 

balance, the maximum decomposition heat, the difference between heat of combustion and 

decomposition heat) and explosive properties. In one recent study, Sato et al. [26] showed that 

there is a mutual correlation between CHETAH criteria and the explosibility of self-reactive 

substances except for organic peroxides and azo compounds. Nevertheless, it has to be 

noticed that the CHETAH software provides the maximum decomposition heat (considering 

that the available oxygen first oxidizes hydrogen to water and then carbon to carbon dioxide) 

and not the actual experimental decomposition heat.  

Considering the REACH regulatory framework, Lewis et al. [27] advocated the use of 

powerful computer-aided ab initio techniques to generate predictions of key properties of 

broad classes of chemicals, without resorting to costly experimentation and potentially 

hazardous testing. Among these alternative methods to experimental testing, Quantitative 

Structure-Activity/Property Relationships (QSAR/QSPR) were clearly recommended in 

REACH and in technical guidances [19,20] to obtain information data. Indeed, they represent 

powerful tools of prediction [28] used more and more for physico-chemical applications [29-

30]. Their applicability in an industrial context was also recently demonstrated by Patlewicz 

et al. [31]. To support the development and use of QSPRs, OECD drawn up 5 principles for 

the validation of QSAR/QSPR models for regulatory purpose [32].  
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Some recent reviews [33-34] list the existing predictive models developed for the relevant 

properties of chemicals in the context of REACH. In particular, Dearden et al. [34] focused on 

the validation of models dedicated to physico-chemical properties according to OECD 

principles to favor the use of predicted property values in submissions to the European 

Chemicals Agency (ECHA). 

Considering the prediction of thermal stability, some models exist for different families of 

compounds like nitroaromatic compounds [35-39], nitramines [40-42], ionic liquids [43] or 

polymers [44]. Nevertheless, to our knowledge, only one reference exists [45] to predict the 

reactivity hazards of organic peroxides using the QSPR approach. In this study, a limited 

database of 16 organic peroxides was used to derive models with no validation set, neither 

definition of applicability domain. Therefore, the robustness and the predictivity of these 

models must be at least validated and may be improved.   

Consequently, the aim of this paper was to develop new robust QSPR models respecting 

OECD principles dedicated to the prediction of the heat and temperature of decomposition. 

To achieve this goal and considering that no large database exists in literature for organic 

peroxides (only 16 and 9 DSC data from the works of Lu et al. [45] and Ando et al. [22] 

respectively), an experimental database of 38 organic peroxides was built for these properties 

obtained in homogenous experimental conditions using DSC. The amount and quality of 

experimental data allowed to performing both internal and external validation methods to 

ensure the good performances of the multi-linear regression (MLR) models developed and 

then reach more robust and accurate models than the ones proposed by Lu et al.. 

Besides, the approach combined QSPR methodology with quantum chemical descriptors 

obtained with density functional theory (DFT) calculations. Indeed, a better chemical 

interpretation of the developed models can be expected using this type of descriptors as 

already demonstrated in previous works for nitro compounds [46-48]. To our knowledge, this 

work leads to the first completely validated QSPR models (including the definition of 

applicability domains) dedicated to the prediction of the thermal stability of organic 

peroxides. 

 

2. Experimental details  

2.1. Construction of the database 

As mentioned above, the first work carried out on the prediction of thermal stability of 

organic peroxides [45] was based on only 16 samples. The concentration of the peroxides 
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used ranged between 34% and 98% wt [45], with no indication of the dilution solvent or of 

the possible contaminants or co-products present in the samples.  

In this study, to limit or even avoid any effect of the poor purity of organic peroxide samples, 

the origin of the organic peroxide samples was taken into account with great care. The 

following rules of organic peroxides selection were followed: 

- choice among the commercial organic peroxides, with a perfect knowledge of their 

composition;  

- choice of the highest purities and concentrations available for the organic peroxides; 

- elimination of organic peroxides available as mixtures. 

For example, the 2-butanone peroxide also known in industries as the methyl ethyl ketone 

peroxide (MEKPO) was discarded since several isomers exist [49]. 

Using these criteria, 38 organic peroxide samples were selected (see Table 1 for the different 

kind of organic peroxides families and Table 2 for the list and concentrations), 31 provided by 

Arkema and 7 by Akzo Nobel. The concentrations were close to 97-99% (weight of organic 

peroxide divided by weigh of samples) exception given for some of them whose containing 

inert solvents (water, organic solvent or an inert inorganic). The size of the dataset was 

notably limited to organic peroxides available with no transportation, handling and storage 

issues.  

 

2.2. Experimental dataset and methods 

The experimental data were collected from calorimetric tests completed on the 38 selected 

organic peroxides. These tests were carried out on two different calorimeters with cross-

checking, indicating that the results obtained were not equipment-dependent, and were within 

the precision limits of the DSC method recommended in ASTM E537-2 [23]. The 

calorimetric tests were performed using DSC131 from SETARAM and with DSC821e from 

Mettler-Toledo, with a scanning rate of 5 K/min from ambient temperature to 300°C. A few 

milligram sample was introduced, at ambient temperature, into a closed stainless steel 

crucible. The DSC vessels were previously washed, passivated, rinsed and dried. Each sample 

was tested three times to establish good reproducibility. The onset temperature was defined as 

the extrapolated onset temperature (see Figure 1) following ASTM E537-2 [23]. 

In order to consider concentration effects, three organic peroxide samples (one dialkyl 

peroxide and two peroxyesters) were diluted with an inert solvent (type A solvent according 
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to actual regulation with boiling point close to 175°C) to obtain different concentrations from 

7% up to 99% wt (see Figure 2). 

 

3. Computational details 

3.1. Partitioning of the dataset 

The considered dataset of 38 organic peroxides was divided into a training set, containing two 

thirds of the molecules of the dataset and a validation set constituted by the remaining 

molecules. This partition enabled both sets to be of sufficient size with similar distributions to 

allow a robust development and an external validation of models. The partitioning of the 

dataset was also visually inspected to ensure that the validation set covered at best the 

chemical diversity of the domain of applicability of the model, i.e. of the molecules in the 

training set. The range of the property values was also checked in order to prevent that no data 

was out of the general range of values in the dataset and could influence too much the 

correlation. For example, the decomposition heat of the 2,5-dimethyl-2,5-dihydroperoxy 

hexane was too high compared to the values of other peroxides. So, this compound was 

considered as outlier and removed for the prediction of this property (see Figure S1). For the 

onset temperature, the 3,3,5,7,7-pentamethyl-1,2,4-trioxepane was also considered as outlier 

and removed for the same reason (see Figure S2) coupled by the fact that such type of cyclic 

organic peroxide was not well represented in terms of chemical structures in the dataset. So, 

in both cases, a training set of 25 compounds was used for the development and the internal 

validation of models, while a validation set of 12 compounds was considered for external 

validation to evaluate their predictive power. 

 

3.2. Molecular structure calculation  

A preliminary conformation analysis was carried out with Scigress software [50] using the 

Conflex algorithm [51,52] and the MM3 force field [53]. The most stable conformer was 

optimized again with Gaussian09 software [54] using DFT calculations with the PBE0 [55] 

functional and the 6-31+G(d,p) basis set. This functional provides results close to those 

provided by the most-common B3LYP approach, but being parameter-free, is more physically 

sound [55]. Vibrational frequencies were then computed to ensure that all final stable 

conformations exhibited no imaginary frequency. 

 

3.3. Molecular descriptor calculation 
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Each molecular structure was then characterized by a series of descriptors (constitutional, 

topological, geometric and quantum chemical) [56, 57]. Most of them were calculated using 

the CodessaPro software [58] but additional descriptors were taken into account considering 

the specific case of organic peroxides and their reactivity. As proposed by Lu [45], the 

concentration of the organic peroxide was also chosen as a descriptor potentially influencing 

the temperature of decomposition of organic peroxides. Other descriptors were considered as 

explained in a previous work [35], notably the oxygen balance [21,59] which is an empirical 

descriptor well known to evaluate hazards related to energetic materials. Some more specific 

descriptors to the peroxide functional group were computed such as the number of peroxide 

bonds (nOO), the OOR angle, the charge on oxygen atoms (QOO) or the distance between these 

atoms (dOO) to better describe the decomposition process. As the cleavage of the -O-O- bond 

is considered as the first step in the decomposition process of organic peroxides [7,60], the 

dissociation energy (Edisso) of the peroxide bond was also calculated. When several peroxide 

functional groups were present in the molecule, the one presenting the lowest dissociation 

energy was considered for the calculation of all descriptors related to the -O-O- bond. 

Moreover, descriptors arising from conceptual DFT [61,62], already successfully used in 

QSPR models for the prediction of the decomposition heat of explosives [35,36,46] or organic 

peroxides [45], were considered. In particular, descriptors related to the peroxide bond 

properties were developed and used in this work such as the local Fukui function f [61-63]: 

)1()();()1( −−=−+= −+ NqNqfNqNqf AAAAAA  (1) 

 where +
Af  and −

Af  are positive and negative Fukui functions and Aq is the atomic charge of 

atom A in the molecule containing in the molecule (N electrons), its anion (N+1 electrons)  

and cation (N-1). 

Other descriptors include hardness: 

2
)( EAIP −

=η  (2) 

where IP and EA are the ionization potential and the electron affinity and local softness: 

2
)( EAIPffS AAx

A
−

==
η

 (3) 

where x can be + or -. Usually IP and EA are approximated by the energies of the Highest 

Occupied Molecular Orbital (HOMO) and by the Lowest Unoccupied Molecular Orbital 

(LUMO) (see references 61 and 62 for more details).  

 



8 

3.4. Model building and performances 

All models were developed on the training set based on multi-linear regressions (MLR) using 

the Best Multi Linear Regression (BMLR) [57] approach as implemented in CodessaPro 

program. The final model was chosen as the best compromise between correlation and 

number of descriptors as explained in previous works [35]. 

To evaluate the performances of models, a series of internal and external validations were 

computed. The goodness of fit was measured by the determination coefficient (R²), the mean 

absolute error (MAE) and the root mean square error (RMSE) between predicted and 

experimental values. The Q² coefficients issued from both leave-one-out (LOO) and leave-

many-out (LMO) cross validations measured the robustness of the model, i.e. the dependence 

of the fitting of the model to any molecule(s) of the training set via the Q2
LOO, Q2

5CV, Q2
10CV, 

Q2
7CV coefficients (for LOO, 5-fold, 10-fold and 7-fold cross validations, respectively). 

Robust models are expected to present a low difference between Q² and R² coefficients. It has 

to be noticed that cross validation does not measure the predictivity of models because the set 

of molecules excluded at each step of the cross validation procedure and then used to 

calculate Q2 has already been used for the building of the model [64,65]. Besides, to ensure 

that models did not correspond to chance correlations, a Y-scrambling test was realized on the 

training set. Random permutations of experimental property values were performed 

(1000 iterations) and new models were recalculated [66]. To evaluate the impact of 

randomization, average and standard deviation in R²random coefficients were calculated (R2
YS 

and SDYS). Low R2
YS values are expected to avoid chance correlation. To go further, Rücker 

proposed that the difference between R² of the original model and R2
YS should be roughly 

superior or equal to 2.3 SDYS to ensure a statistical significance at a 1% level and superior or 

equal to 3 SDYS at a 0.1% level [67]. 

The predictive power of models was measured on the validation set based on the same 

coefficients (R2
ext, RMSEext, MAEext) as those used for the fitting. Several additional external 

validation coefficients proposed in literature were calculated as: Q²F1 proposed by Tropsha 

[68] and the OECD guidance document [32], Q²F2 defined by Schuurman [69], Q²F3 by 

Consonni [70] and CCC by Lin [71,72]. 

Considering that a QSPR model only offers reliable predictions for compounds similar to 

those belonging to the training data set, the applicability domain [73,74] required by the 

3rd OECD point, was determined based on the descriptors included in the model. Euclidean 

distance method available in Ambit discovery software [75] was used with a 95% threshold, 

i.e. the domain was calculated to contain 95% of the molecules of the training set. Then, the 
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predictivity inside the applicability domain was calculated based on the molecules of the 

validation set belonging to this domain. Corresponding coefficients for external validation 

were denoted R²in, RMSEin, MAEin, Q²F1in, Q²F2in, Q²F3in and CCCin. 

 

4. Results and discussion 

4.1. DSC results 

The reactivity data of organic peroxides are shown in Tables 2 and 3. The ranges of detected 

onset temperature (53-180°C) and decomposition heat (441-2622 J/g) cover most of the 

commercial grade of organic peroxides. One example of DSC curve is given in Figure 1. The 

concentration effect on the decomposition heat measured by unit mass of tested sample is 

linear in the range of the tested concentrations for the three tested organic peroxides (Figure 

2). That confirmed that the solvent did not contribute to the decomposition energy and that the 

models can be simplified from the concentration effect to only take into account the pure 

organic peroxides. 

 

4.2. Use of existing models 

QSPR models were developed by Lu and Mannan [45] for the heat and temperature of 

decomposition from a dataset of 16 organic peroxides. Even if these models presented good 

performances in terms of fitting (R²), they failed in robustness (Q²), in particular for the 

prediction of the onset temperature using MLR (Q²=0.108). Due to the low number of organic 

peroxides available in this study, models were not validated with an external set of molecules 

and their applicability domains were not defined. In a first step, 24 organic peroxides from our 

experimental database, different from the 16 molecules of the training set used by Lu, were 

computed on these MLR models (for both heat and temperature of decomposition) to perform 

an external validation and estimate their predictive power. The proposed model for the 

decomposition heat was not predictive considering R²ext=0.06, RMSEext=250 kcal/mol and 

MAEext=149 kcal/mol. The model developed for the prediction of the onset temperature was 

slightly better with R²ext equal to 0.67 but was still not predictive with RMSEext=67°C and 

MAEext=57°C. In the following, QSPR models were developed for these two reactivity 

properties from our experimental database of 38 organic peroxides allowing a complete 

validation. 

 

4.3. Multi-linear regressions for the decomposition heat  
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From more than 300 calculated descriptors, a first model was developed for the 

decomposition heat (ΔH in J/g) using the BMLR method. Considering the best compromise 

between the correlation and the number of descriptors, a four-parameter model was obtained:  

  

ΔH = -874 C + 3359 QOO,nbo + 366 S-
OO + 87 Srot – 2475 (4) 

 

Where C is the concentration of the target peroxide (gram of organic peroxide per gram of 

samples) with a t-test of -4.8, QOO,nbo is the average NBO charges for an oxygen in the -O-O- 

bond (t-test=-6.0), S-
OO is the local softness on the HOMO orbital of oxygen in the -O-O- 

bond (t-test=6.0) and Srot is the rotational entropy at 300 K (t-test=-3.9).  

In this equation, all descriptors present the same importance in the regression with close 

absolute values of t-test (from 3.9 to 6). The presence of the concentration as descriptor 

(already evidenced in Lu’s work [45]) should be particularly noticed as it mentions the 

importance of the organic peroxide concentration in the prediction of the decomposition 

energy. It also confirms that more the concentration is important, more the decomposition 

enthalpy measured for the tested sample is important (as illustrated in experimental results, 

section 4.1). Two other descriptors are directly related to the peroxide bond: the local softness 

and the NBO charges of oxygen which characterize the reactivity of this bond thus confirming 

the critical role of the dissociation of the -O-O- bond in the decomposition process.  

From a statistical point of view, even if the performances were good in terms of fitting with 

R²=0.90, RMSE=113 J/g, Q²LOO=0.83, R²YS=0.17, SDYS=0.10, the predictivity was very low 

with only R²ext=0.32 and RMSEext=358 J/g (Table 4).  

 

In a second step, a QSPR model was developed for the decomposition heat divided by the 

concentration of the organic peroxide (ΔH/C) in order to consider the influence of this 

parameter. Indeed, C may be more considered as a dilution effect on ΔH (as shown in Figure 

2) rather than a linear term in the MLR model contributing in the same way as molecular 

descriptors. A very interesting model was obtained with 4 parameters (see Table S1):   

 

ΔH/C = 54 1K – 990 nOO + 12934 dOO + 2631 QOO – 19371  (5) 

Where 1K is the order 1 Kier shape index (t-test= 12.7), nOO is the number of peroxide bonds 

(t-test=-14.9), dOO is the distance between the oxygen atoms of the peroxide bond (t-test=4.5) 

and QOO is the average Mulliken charges of these two O atoms (t-test=7.8). 
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The Kier shape index of first order is a topological index that encodes the number of atoms in 

the molecule and the relative degree of cyclicity [57,76]. The three other descriptors are 

linked to the peroxide bond. The most important descriptor (considering the t-test values) is 

the number of peroxide bonds in the molecule, confirming the accepted mechanism of 

decomposition of organic peroxides starting by an homolytic cleavage of the -O-O- bond 

[7,60].  

The predicted decomposition heat divided by the concentration using Eq. (5) as a function of 

experimental values was plotted in Figure 3 (see Table 2 for calculated property values). As 

illustrated in Table 4, the model was characterized by remarkable correlation (R2=0.97, 

RMSE=99 J/g) and robustness (Q2
LOO=Q2

10CV=Q2
7CV=0.94 and Q2

5CV=0.95). It did not result 

from chance correlation, since the models issuing from Y-randomization presented low 

correlations (R2
YS=0.17, SDYS = 0.10) as shown in Figure 4. Besides, the criterion of Rücker 

[68] was respected: R2−R2
YS (0.80) was higher than 2.3 SDYS (0.23). Finally, the predictivity 

for the 12 molecules of the validation set was very good (R²ext=0.81, RMSEext=301 J/g, 

Q²F1=Q²F2=0.74, Q²F3=0.77 and CCC=0.82). For this model, no molecule of the validation set 

was out of the applicability domain implying that the same performances were obtained 

considering the applicability domain of the model.  

This model was fully validated and presented better performances than the one previously 

proposed [45]. Indeed, if the coefficients of determination were quite similar (R2=0.97 for eq. 

5 and R2=0.92 for Lu), this new model presents better robustness (Q²=0.77 versus Q²=-0.81 

respectively). 

 

4.4. Multi-linear regressions for the onset temperature 

A MLR model was also developed for the prediction of the onset temperature of 

decomposition. A three-parameter model (see Table S2) was found to be the best compromise 

between correlation and number of descriptors among the 8 equations including up to 9 

descriptors sorted out by the BMLR method (equation 6) with R²=0.84 and Q²=0.77 (Figure 

5). 

 

Tonset =144 F-
OO + 29 nOO – 20 gap + 194 (6)  

 

Where nOO is the number of peroxide bonds (t-test=3.6), F-
OO is the average local Fukui 

function on O atoms of the peroxide bond (t-test=7.4), gap is the eV energy difference  

between the LUMO and HOMO orbitals (t-test=-4.4). This gap, a positive number, is an 
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indicator of the stability of the molecule: the larger the gap is, the more stable is the molecule. 

F-
OO is the Fukui function (quantum chemical descriptor) that characterizes the reactivity and 

more specifically the electrophilic attack on the peroxide bond. It’s worth to note that the 

dissociation energy did not appear in the model indicating that even if the first step of the 

decomposition is the cleavage of the homolytic peroxide bond, the decomposition process is 

also strongly influenced by the reactivity of radicals formed [7,60]. Nevertheless, two 

descriptors were linked to the peroxide bond: F-
OO and nOO confirming again the role of the 

peroxide bond in the decomposition process. The former was already present in the model for 

the prediction of the decomposition heat divided by the concentration (eq.5) but for equation 

6, the most important descriptor was F-
OO considering the value of the t-test, indicating the 

importance of quantum chemical descriptors in the prediction of this property.  

The determination coefficient was slightly lower than the model of Lu [45] in terms of fitting 

(0.84 vs. 0.92) but the robustness was higher (0.77 instead of 0.108). Excluding the single 

molecule of the validation set out of the applicability domain (2,5-dimethyl-2,5-di(tert-

butylperoxy)hexane), the predictivity inside the AD was good with R²in=0.83, RMSEin=14°C, 

Q²F1=Q²F2=0.78, Q²F3=0.83 and CCC=0.90 (see Table 4). 

It is noteworthy that the concentration was not included in the multi-linear equation (as 

proposed by Lu [45]), thus indicating that, contrary to the decomposition heat, it does not 

affect the onset temperature. 

 

5. Conclusion  

In this study, the largest experimental database including thermal properties for 38 organic 

peroxides obtained from homogeneous measurements was built to develop and validate the 

first QSPR models for the prediction of the heat and the onset temperature of decomposition. 

Considering more than 300 descriptors including quantum chemical ones calculated with the 

density functional theory, two MLR models presenting high performances were constructed 

according to all OECD principles for the validation of QSAR/QSPR models for regulatory 

use. The number and quality of experimental data (principle 1) allowed validating them on a 

series of internal and external tests (principle 4). A four-parameter model was obtained for the 

prediction of the decomposition heat divided by the peroxide concentration reaching high 

performances in terms of fitting, robustness and predictivity (R²=0.97, Q²=0.94 and 

R²ext=0.81). A three-parameter model presenting also good performances was sorted out 

(R²=0.84 and Q²=0.77, R²ext=0.80) for the prediction of the onset temperature of 

decomposition. Algorithms are unambiguous (principle 2) and their applicability domains are 
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clearly defined (principle 3). Finally, descriptors included in the models were chemically 

pertinent (principle 5) such as the number of peroxide bonds in the molecule, the distance 

between the oxygen of this bond and the charge of these atoms, confirming that the homolytic 

cleavage of the -O-O- bond is critical in the mechanism of decomposition of organic 

peroxides. The pertinence of quantum descriptors was also demonstrated to reach high 

performances in terms of predictivity. These models can now be used to fulfil requirements of 

REACH regulation or as a first screening tool indicating predicted data related to reactivity 

hazards in view of development of new organic peroxides.  
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Figure 1. Example of a DSC curve. Case of tert-butyl peroxy-2-ethylhexanoate (CAS 3006-

82-4) 

 
Figure 2. Evolution of decomposition heat measured as a function of concentration. 

Sample 1: tert-butyl peroxypivalate (CAS 927-07-1); sample 2: di-tert-butyl peroxide (CAS 

110-05-4); sample 3: tert-butyl peroxy-2-ethylhexanoate (CAS 3006-82-4) 

 
Figure 3. Experimental vs. predicted values of the decomposition heat divided by the 

concentration (ΔH/C) 
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Figure 4. Correlation of the models issued from Y-randomization (R2

random) vs. level of 

randomization, as estimated by the correlation between the randomized and actual 

experimental values (R2(Yrandom/Yexp)) 

 
Figure 5. Experimental vs. predicted values of the onset temperature (Tonset) 
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Table 1: Families of organic peroxides 

Kind of organic peroxides General formula 

Dialkyl peroxides R1 O O R2 
Diacyl peroxides 

R C O O C R

O O

 
Hydroperoxides R O OH 
Peroxyacids 

R C OOH

O

 
Peroxyesters 

R1 C O O R2

O

 
Peroxyketals R O O

R O O

C

R1

R2 
Peroxycarbonates and peroxydicarbonates 

O C O O C O

O O

RR  
Ketone peroxides 

C OO

R2

R2

OHHO

 
 

 



24 

Table 2: Experimental and predicted values for the decomposition heat (J/g). Highlighted 

values are molecules of the validation set. Concentration is expressed in gram of organic 

peroxide by gram of sample. 

N° Name Conc. ΔHexp  ΔH/Cexp  ΔH/Cpre

d  
1 Dibenzoyl peroxide 0.744 -1170 -1573 -1579 
2 Tert-butyl peroxy-3,5,5-trimethylhexanoate 0.992 -869 -876 -1186 
3 Dicumyl peroxide 0.994 -866 -871 -798 
4 Tert-butyl peroxy-2-ethylhexanoate 0.992 -1185 -1194 -1164 
5 Tert-butyl peroxy-2-ethylhexylcarbonate 0.975 -1096 -1124 -1208 
6 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane 0.989 -1334 -1349 -1669 
7 Tert-butyl peroxypivalate 0.752 -1150 -1529 -1482 
8 Di-(2-ethylhexyl) peroxydicarbonate 0.99 -1003 -1013 -1084 
9 Tert-amyl peroxy-2-ethylhexanoate 0.975 -1067 -1094 -1111 
10 Di-tert-butyl peroxide 0.992 -1175 -1185 -1289 
11 Di-tert-amyl peroxide 0.984 -1086 -1104 -1181 
12 Dilauroyl peroxide 0.99 -795 -803 -743 
13 Tert-butyl peroxybenzoate 0.986 -1528 -1550 -1532 
14 Tert-amyl hydroperoxide 0.841 -1993 -2370 -2081 
15 Tert-butyl hydroperoxide 0.685 -1386 -2024 -2124 
16 Tert-butyl cumyl peroxide 0.955 -1027 -1076 -1036 
17 2,5-dimethyl-2,5-dihydroperoxyhexane* 0.736 -2622 - 3562 n.a.  
18 1,1-di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane 0.958 -1504 -1570 -1597 
19 1,1-di-(tert-butyl peroxy) cyclohexane 0.504 -989 -1962 -1828 
20 Tert-amyl peroxy-2-ethylhexyl carbonate 0.971 -975 -1004 -1159 
21 Ethyl-3,3-di-(tert-amyl peroxy) butyrate 0.65 -1027 -1580 -1696 
22 Tert-amyl peroxy-3,5,5-trimethylhexanoate 0.965 -981 -1017 -1141 
23 Tert-butyl peroxyisopropylcarbonate 0.75 -1124 -1499 -1500 
24 Di-n-propyl peroxydicarbonate 0.99 -1824 -1842 -1844 
25 Di-(3,5,5-trimethylhexanoyl) peroxide 0.755 -767 -1016 -976 
26 Didecanoyl peroxide 0.991 -871 -879 -964 
27 2,2-di-(tert-butyl peroxy) butane 0.496 -1060 -2138 -2103 

28 2,5-dimethyl-2,5-di-(2-ethylhexanoyl peroxy) 
hexane 0.977 -1092 -1118 -1095 

29 1,1-di-(tert-amyl peroxy) cyclohexane 0.602 -1029 -1709 -1767 
30 Tert-butyl peracetate 0.477 -1066 -2234 -1672 
31 2,5-di(tert-butylperoxy)-2,5-dimethyl-3-hexyne 0.471 -837 -1777 -1692 
32 Di-(4-tert-butylcyclohexyl) peroxydicarbonate 0.952 -586 -615 -826 
33 Dicetyl peroxydicarbonate 0.911 -441 -485 -382 
34 Dimyristyl peroxydicarbonate 0.974 -557 -572 -606 
35 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate 0.908 -834 -919 -950 
36 Tert-butyl peroxydiethylacetate 0.990 -1225 -1238 -1305 
37 1,1,3,3-tetramethylbutyl hydroperoxide 0.914 -1545 -1690 -1830 
38 3,3,5,7,7-pentamethyl-1,2,4-trioxepane 0.979 -1523 -1556 -1547 

*outlier
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Table 3: Experimental and predicted values for the onset temperature of decomposition 

(Tonset, °C). Highlighted values are molecules of the validation set.  

N°  Name experimental prediction  
1 Dibenzoyl peroxide 105 110 
2 Tert-butyl peroxy-3,5,5-trimethylhexanoate 114 112 
3 Dicumyl peroxide 143 144 
4 Tert-butyl peroxy-2-ethylhexanoate 96 105 
5 Tert-butyl peroxy-2-ethylhexylcarbonate 125 116 
6 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane 148 123 
7 Tert-butyl peroxypivalate 85 95 
8 Di-(2-ethylhexyl) peroxydicarbonate 65 67 
9 Tert-amyl peroxy-2-ethylhexanoate 98 109 
10 Di-tert-butyl peroxide 153 145 
11 Di-tert-amyl peroxide 149 145 
12 Dilauroyl peroxide 86 73 
13 Tert-butyl peroxybenzoate 121 103 
14 Tert-amyl hydroperoxide 143 127 
15 Tert-butyl hydroperoxide 91 128 
16 Tert-butyl cumyl peroxide 147 151 
17 2,5-dimethyl-2,5-dihydroperoxyhexane 127 111 
18 1,1-di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane 120 118 
19 1,1-di-(tert-butyl peroxy) cyclohexane 121 118 
20 Tert-amyl peroxy-2-ethylhexyl carbonate 123 116 
21 Ethyl-3,3-di-(tert-amyl peroxy) butyrate 140 131 
22 Tert-amyl peroxy-3,5,5-trimethylhexanoate 118 115 
23 Tert-butyl peroxyisopropylcarbonate 127 114 
24 Di-n-propyl peroxydicarbonate 53 61 
25 Di-(3,5,5-trimethylhexanoyl) peroxide 87 75 
26 Didecanoyl peroxide 88 74 
27 2,2-di-(tert-butyl peroxy) butane 137 144 
28 2,5-dimethyl-2,5-di-(2-ethylhexanoyl peroxy) hexane 95 106 
29 1,1-di-(tert-amyl peroxy) cyclohexane 121 123 
30 Tert-butyl peracetate 129 111 
31 2,5-di(tert-butylperoxy)-2,5-dimethyl-3-hexyne 144 145 
32 Di-(4-tert-butylcyclohexyl) peroxydicarbonate 85 67 
33 Dicetyl peroxydicarbonate 63 62 
34 Dimyristyl peroxydicarbonate 60 60 
35 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate 92 107 
36 Tert-butyl peroxydiethylacetate 93 106 
37 1,1,3,3-tetramethylbutyl hydroperoxide 127 128 
38 3,3,5,7,7-pentamethyl-1,2,4-trioxepane* 180  n.a. 

*outlier 
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Table 4: Performances of the new MLR models 

Property ΔH (J/g) ΔH/C 
(J/g) 

Tonset 
(°C) 

Number of 
descriptors 4 4 3 

R² 0.90 0.97 0.84 
RMSE 113 99 12 
MAE 71 67 9 
Q² 0.83 0.94 0.77 
Q²5cv 0.85 0.95 0.68 
Q²10cv 0.82 0.94 0.78 
Q²7cv 0.83 0.94 0.78 
R²YS 0.17 0.17 0.13 

SDYS 0.10 0.10 0.09 

R²ext 0.32 0.81 0.80 
RMSEext 358 301 16 
MAEext 207 173 11 
Q²F1 0.24 0.74 0.74 
Q²F2 0.23 0.74 0.74 
Q²F3 0.28 0.77 0.78 
CCC 0.53 0.82 0.87 
R²in 0.32 0.81 0.83 
RMSEin 358 301 14 
MAEin 207 173 10 
Q²F1in 0.24 0.74 0.78 
Q²F2in 0.23 0.74 0.78 
Q²F3in 0.28 0.77 0.83 
CCCin 0.53 0.82 0.90 
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