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ABSTRACT: Extraction of salt by leaching process is used intensively nowadays. This process extracts salt by dissolving th
mineral with water.n this analysis about cavity dissolution modeling, we consider the case of a binary system, i.e., a

solute corresponding to the solid that is dissolved by a “solvent” (mainly water). Rock salt dissolution is cont
thermodynamic equilibrium at the interface, i.e., equality of the chemical potentials. In this paper, a lezplilitmim Diffuse
Interface Model (DIM) and an explicit treatment of the brine-salt interface (using an ALE (Arbitrary Lagrangian-Eulerian
technique) are introduced in order to solve such dissolution problems. The control equations are obtained by upscaliads micro-
equations for a solid-liquid dissolution problem using a volume averaging theory. Based on this mathénaidation
dissolution test cases areepented. We introduce and discuss the main features of the method. Illustrations of the ir
between natural convection and forced convection in dissolution problems are preserttezitand and space evolution of

rock salt-fluid interface is shown through several examples.

evolution of the fluid-solid interface, for instance using
1. INTRODUCTION an ALE (Arbitrary Lagrangian-Eulerianjethod [4].
Dissolution of porous media or solids is widely The second uses a Diffuse Interface Model (DIM) to
concerned in many industrial fields, e.g., acid injectionsmooth the interface with continuous quantities [1, 3, 6 ],
into petroleum reservoirs, dissolution of rocks caused byike the liquid phase volume fraction, species mass
underground water, etc. In the latter, rock dissolutionfractions, etc.
creates underground cavities of different shapes angiowever, there are several difficulties associated with
sizes, which induces a potential risk of collapse asaLE method for the dissolution problem: in particular,
shown in Fig.1. In most applications, modeling suchthe need for fine meshes near the dissolving interface
liquid/solid  dissolution problems is of paramount can lead to severely deformed grid elements inducing
importance. numerical problems (instabilities, need for remeshing,
etc.).

On the contrary, it is easier to implement a DIM model
because of the smoothing of the interface singularity,
and resulting codes are more numerically stable and
more efficient. In a previous study, Golfier et al. [5]
showed that a non-equilibrium Darcy-scale model was a
good candidate for a DIM dissolution model. In their
‘ lfE T work, the Darcy-scale balance equations were obtained
s S /. by averaging small-scale (micro-scale) equations, with
Fig 1 Land Susidénce in Central Kansas Related to Saﬁhe_help of the Volume_ avefaging theory as introduced by
dissolution Whitaker [12]. In particular, it was able to capture the
instability pattern such as wormhole during the
Among all methods used for mode”ng dissolution dissolution of a porous medium, which is known to be a
process, we present two ways for simulating thisvery difficult numerical problem. Their results showed
problem. The first one is a direct treatment of thethat this non-equilibrium model can also be used to




simulate local equilibrium states which are renuarg
of the original dissolution problem. Thereforec#n be
used as a diffuse interface model to simulate ditiso
problems instead of explicit tracking of the disgimn
interface (such as in ALE frameworks).

In this previous work, density gradients induced by

spatial variations of concentration were neglected.

Indeed Golfier et al. [5] model considers the ldyphase
species only as a tracer.

For most problems, for instance cavity in salt
formations, we may have very high concentration
gradient due to the high solubility of salt aroutne
solid/liquid interface. Neglecting strong density
gradients may bring inaccuracy to the prediction of
dissolution. This may be the case with salt forovai
since the solubility of salt is around 360 g/l in
comparison with that of gypsum which is about 216 g

Consequently, the density gradient should be censit
for an accurate analysis. In this paper, a Darejesc
diffuse interface model (DIM) including density den
flows is deduced from the original liquid/solid
dissolution in the case of a binary system (follogvi
Golfier et al. [5]). For a first study about cavity
dissolution modeling, we consider the case of aryin
system, i.e., a chemical solute constitutes thie ot is
dissolved by a “solvent” (mainly water in most preal
applications).

The balance equations, which include the mass balan
equations for th@ (fluid) ando (rock salt solid) phases,
and species in thg-phase, are obtained in the form of
two partial differential-equation models, with an
exchange term between thighase and-phase.

In the next section, the original model is introeld@nd

the corresponding Darcy-scale model is obtainedh wit
the help of an averaging theory. In the following
sections, several numerical simulations are predent

Solving a dissolution problem requires a speciahtfr
tracking numerical technique, which is often
computationally time consuming. Alternative modgts
not require an explicit treatment of the movingeifdce.

Instead, partial differential equations are writfen €,

and theconcentratiornw,, (masse fraction of species A

in the phasep), which lead to a diffuse interface as
illustrated in Figure 2. We will present below ttveo
formulations.

Fig. 2 . Original dissolution (sharp interface e teft) and
Diffuse Interface Model (on the right).

The original solid/liquid dissolution problem care b
described by classical convective-diffusive madariize
and Navier-Stokes equations, etc. To express tid DI
model, we start from these original solid/liquiduations

to generate Darcy-scale equations, the correspgndin
Darcy-scale quantities and effective coefficientdth

the help of the volume averaging theory [12], aaidrig
into account the density function of concentrationthe
first subsection, the original model for the dissioin
problem is introduced. In the second subsection, we
present the upscaling method leading to the “Darcy-
scale” equations.

Comparison between the results using either ALE or2.1 The original multiphase model

DIM shows good agreement. Then we show the ability . . - - .
of the DIM model to deal with complex problems:tsal W& consider a binary liquid phageontaining chemical

fingering phenomena resulting from fluid flow
instability, in-situ scale modeling and comparisoh
kinetic dissolution and shape for salt and gypsum.

2. DISSOLUTION MODEL

Two types of dissolution model are considered. The

original dissolution problem is illustrated in Figu2 for
a binary system. The solid/liquid interface is dimx
mathematically by a surface at which the liquid
concentration is equal to an equilibrium conceraratlf

we introduce a scalar phase indicata, (volume

fraction of theB-phase, porosity), it has a value of 1 in
the liquid and zero elsewhere, as illustrated guFe 2.

species A and B, and a solid phaseontaining only
chemical species A.

Fig. 3: In-situ induced problem by dissolution {Jefand
explanation of the variables at the local levethe interface

(right).



In Figure 3, Vs Vg, Wy, Ny, represent the velocity of the

fluid far away from the interface, the speed of ;tﬂrlase,B
near the interface, the recession rate, and themabrto the
interface, respectively. In the following, boldtées indicates
either vector or tensor variables.

We write the different balance equations below. The

total mass balance equation for faphaseis

)
%m[qpﬂvﬁ) =0 (1)

The mass balance equationsdpecies A and B in the
B-phase are written as,

0
% +U EqpﬂwAﬂvAﬂ) =0 (2)
0

(Pgt“’sﬁ) +0 [q pﬂ%ﬂVBﬂ) =0 (3)

where w,, and a,; represent the mass fractions of

species A and B, respectively. The general massnbal
equation for a moving-phase is written as

0p
“Fo 4N =
o {po,v,)=0

In the case of the fluid, we will use the Navieol&s
equations. This set of equations is recalled bdtmvthe
S-phase.

ov, B )
P W"-Vﬂmvﬂ =Pp 9= UR + 1 UV
(5)

wherev, represents the velocity of tifiephase, 1P,
the pressure gradient in tfephase, 1/ the viscosity of

the s-phase ang the gravity. At the-c interface A, ,
the chemical potentials for each species shoulddoml
for the different phases. Therefore, for the spdiizary
case under investigation, we have the followingaditu
at a given pressuf@ and temperaturé:

,uAﬂ(a)Aﬂ,P,T):/JM(a)M,P,T) at A, (6)

hg = Wag at

Aso

We deduce from the mass balances for species Band
the following relations at thg® — o interface:

P55 (Vg =W) Oy, = 0,00, (V, —W) [y, LA,
Pplss (VB,B - W) s = 0,Ws, (Var - W) th,, atAy,

And the following expression for the total massabak
at the 8 — o interface gives:

(7)

Py (vﬂ—w) [, = 0, (v, —W)hy, at A, (8)

where W represents the velocity of the interface with
N, the interface normal, and we havg =v,, . Let us
underline that only two of these three latter eiqust are

independent. From the above equations and using a
theory of diffusion [11], we have:

PpasN ag = PV ~ PpD gl 9)
Then,
Pphs\Vp, —W) N, =

P "

Mo [qpﬁwAﬂ (v —w) _'OﬂDABDwAG) atAs,

(4) The mass balance for species A, can then be exgress

as follow:

ol p,w,

% +0p,w,v,) =0 0,000,
The whole balance equations presented above are
sufficient to solve the physical problem, providit

the overall surrounding boundary conditions areo als
given. After some equation transformations we hiee

two following
expressions:

(11)

pﬂ_pa
N, V,=n, v, +——-""-D, Ow,, | atA,, (12)
o ﬂ[E P.0= ) *“3] %

Pp

mDAﬁDwAﬂJatAﬂa (13)

Ng W=Ng, [Evg +

whereD, ; represents the diffusion coefficient.

It is this last formula which expresses explicitlye

where w,; is equal to 1. It must be emphasized that inrecession velocity used for an explicit computatifn

the complete binary case, i.e., whep, is not equal to

1, there is also a relation similar to the aboveatign
for the other components.

This results is a classical equilibrium conditiompiosing
an equilibrium concentratiordd,,) for species A, i.e.,

the interface (e.g. ALE). The flux balance for the
different species at the interface is described/dryous
equations. It is important to note that it is oa tasis of
these expressions that we construct the recession
velocity of the interface and thus the dissolutiaite.

The dissolution problem should be completed with th



set of equations to describe the boundary conditmin The volume averaging theory [10, 12] will be used t
the fluid domain (because this one is transient). upscale the balance equations formulated at the por
nscale (Figure 4).The averaged form of balance émuat

The simulation of the dissolution process has bee . )
of species A can be expressed as:

implemented in the ALE frameworks using the above
analysis, in which the location of the interfaceve®m a<,0/;wAg>

accordingly. — +0 Eqp/zwA/;VAa> =

As it is well-known, the dissolution process caaddo 1 (14)
very sharp fronts at some points of the interfaared -= I Ngo DDsC0ns (VA,B _W)

lead to huge numerical difficulties. We can circiemt \Y Ao

them by using a Diffuse Interface Method, whiclvasy

suitable for such analysis. Contrary to "sharp mesti ~ The above equation can then be transformed as:
which consider the interfadmetween the two phases as a

discontinuous surface, a diffuse interface methoda<pﬁwfw> +DE4,0 Y >=

considers the interface as a transition layer whbee ot C\VPTNE

quantities vary rapidly but smoothly. The whole cdm (@) (b) (15)
constituted by the two phases is considered to be 1

continuous medium without any singularities noicstr U EqpﬂDAﬂDwAﬁ> v ,[ N LDsWss (VAB _W) dA
distinction of solid or liquid, etc. (see Figure 2) © i

(d)
Neglecting the density variation, Golfier et al.] [5

studied one example of a diffuse interface modeis’s ~ The different terms (a), (b), (c) and (d) express
a non-equilibrium dissolution model that gives Husie ~ accumulation, convection, diffusi@mndphase exchange
interfface model depending on a mass exchangéerms, respectively. In the same manner, we defiee

coefficienta . intrinsic average of the mass fraction as,
It has the ability to be very close, with a propkoice of _ B _ 4 _i
the exchange term (i.&,) to the local equilibrium Qpp = <wf¥?> = &5 <wf¥?> Y, Iw/‘ﬂ (r) dv

solution, which is equivalent to the original dikgimn s

problem. and the superficial average of the velocity gives:

Based on Golfier et al. [5] work, we develop, ireth ;1
following subsection, a diffuse interface methodlem V :<V/;> =&y <V/;> :VIVﬂ(f)dV
the form of a Darcy-scale dissolution model consiage \Z

the effect of density variation. ] ) ]
where £, is the volume fraction of th-phase,V, is

N , B . o
2.2 Darcy non-equilibrium model the filtration velocity and<vﬂ> is theB-phase intrinsic

o . average velocity. After several assumptions andesom
In our case, the-phase is immobile. Therefore, we have . oihematical treatment of the different equatiors w
V,, = 0Qin the following analysis. have the following control equations for the diffus
interface model (DIM) [12]:

L0Q,, _ -
%@—E—+QNNEQM—DQQ@DMDQM%

,o;,a( _nAﬁ)(weq -Q AG)

(16)

0,0

£+ 0oN,) = (@ =0 ) (17)
volume averaging space and
Fig. 4. Averaging volume at pore scale level and o€, Ep .
material point position vector (left) and 3-phasesdel ~ ~Po 5~ = Po =5~ = Ppd (a)eq _QM) (18)
(the third phase may be insoluble species for mtsta
(right). whereD,,is the macroscopic diffusion/dispersion

coefficient,



" suchthat 0.c0.. V= £.0.0 On the basis of microscopic considerations and some
Ps t<’0ﬂ A"}> 8P s assumptions described above, we finally get the

anda is the exchange term between the two phases. Th@acroscopic transport equation.

macrOSCOpiC difoSion/diSperSion CoeﬁiCient aan th The term involving the exchange Coefﬁciwt comes

exchange term are obtained by solving the closurg. i, the equation as a source term for the phsaVe
problem characterized by two boundary value problem observed that when the saturation in a materiattpgei

The determination of the two "mapping variables" reached then:

(closure variables) during upscaling requires sg\ivo _

additional boundary value problems. The resolutén Wy _QAﬁ

these issues is carried out for representative agiis. o

These are not unique, as shown in the Figure 5. :>a—tﬂ =0 = Ep = Cte

Although we have formulated the problem the "most
accurately,” we have at present no macroscopic mode
unless we specify some specific unit cell in ortter
determine its actual properties. We have adoptealin
modeling macroscopic literature values for diffusio

POROUS MEDIUM ZDUNITCELL

In the case of DIM use, i.e., not a real porous iorad
problem, the choice of the exchange coefficient
a expression depending on the porosity is arbitréry.
must, however, be observed a nullity condition wtten

////////%/%//////// material point is considered strictly in the flyplase or

strictly in the solid phase. This is illustratedrigure 6.

(1)

(2)

®3)

Fig. 5: Examples of 1D, 2D and 3D unit cells [15]

For example, if we assume that the deviation ofitlas
fraction of species A is as following:

e(x. 0 = £(x.)

8(e(x.0) =a
et

0(s(x.1) =
ot

Poros((l’y

Qo =105 Q5 + 55 (@, = Q )
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The two closure variables ak% and Sp -

Diffuse
Interface

Solving two boundary value closure problems allass Fluid T
to express the macroscopic effective values acegriti o =[,7f]“(%‘9u)
their value at the microscopic scale. In other \sotte - ; ’ |
physical properties at the macroscopic level aré no ‘ g /
"phenomenological macroscopic" but built on theibas Porous Media

of physical properties observed-defined at the
microscopic scale.

Fig. 6: Porous domains : "fluid"-interface-solidda@xpression
of the volume fractiore
Let's recall for example the effective macroscopic

N . ) P We must underline that, in the DIM model, therents
diffusion tensoDAﬂ, the macroscopic effective

“pure liquid phase” (Figure 6) sinces;is used
exchange coefficierd and the effective densitg): continuously to represent the fluid as well as sbéd
regions. Therefore, the Navier-Stokes equationsnare

. 1 longer suitable for this situation. Instead, we adopt a
Dps =Dyl | +5[;1V I (npgbg)dA —€[;l<bg\7g> (19) Darcy-Brinkman model [2] to take the place of Navie
Aso Stokes equations for the momentum equations,
a:l j LDM(nﬁU D]]sﬁ)dA (20)
Vi (1_“)eq) Hy (Qs) . 4
o A, - (0P - 059) - 14, (Q ) KV, =0 (21)

s

*

Pp = pﬂwAﬁ>

1
Ep QM



where K is a function of £,. The Darcy-Brinkman R SO S——

T

equation will approach Stokes equation wheis very
large and will simplifies to Darcy’'s law whef is very
small. If inertia terms are not negligible, a saniDarcy
penalization of Navier-Stokes equations may be .used :

3 NUMERICAL MODELLING

For numerical simulations, COMSOLis used for both
ALE and DIM simulations. In order to use the DIM
model more freely and effectively, we also devetbpe
our own code for the DIM simulations. Our own code g
adopts a Finite Volume difference method for

discretization with an upstream scheme to stabilize S ——— }
advection terms. Fig. 8. Thé mas§™fraction distribution"witfi thie AlNFodule

and Navier-Stokes equations at time t = 1000s (PA)H13]

Figure 8 and 9 show that the solid/liquid interlabave
For the simulations, a 2D geometry is firstly adopas moved due to dissolution. A larger interface
illustrated in Figure 7. Pure water is injectedhwd  displacement can be seen for the larger Péclet eymb
constant velocity o) into a channel whose walls are as the concentration gradients are obviously steepe
formed by two parallel salt blocks, resulting ineth
dissolution of the solid walls. The calibrated (f&uailt)
parameters used in this modeling are illustrate@able
1.

3.1 Example of a plane flow problem

For the same reason, the interface displaceméatger
near the inlet than near the outlet.

Ua 0285

W Arow: Velo city fleld
"

Table 1. The parameters used for simulation exasnple

| Parameter | Value | Unit | :
Do 2.165 x 107 Kg/m?
05 1.0 x 103(1 4+ 0.7385ws) | Kg/m?
13 1.2 x 1077 Kg/ms
L 2 x 1073 m
Dot 1.3x 1077 m?/s
Weq 0.27 -
Uy under choice m/s

=]

) 0000 0012 0003 0804  COOS 0006 0007 0008 0.003 001 0

Fig. 9. The mass fraction distribution with the AlModule
and Navier-Stokes equations at time t = 1000 s=(P@) [13]

Concerning the velocity, itJo = 10° ms®, the Péclet =100 St Cocsnomon, ) ) e 3500 i 053
number (PE) Calculated aS PQJEL/Dsan (Dsalt rOCk Salt 3 Contour: Concentation, epsi [mel/m”]  Arrow: Velceity field
diffusion coefficient in water) is close to uniiye., same .
importance of diffusion and advection mechanisnige T 7 a

ALE module is adopted for original solid/liquid 6 -
dissolution simulations, while the second methothes ; L—J
Darcy-scale DIM method. i

Po . | I -
Liquid-phase i 02
6mm £y

0 0001 0002 0,003 0,004 0,005 0.006 0,007 0,008 0,003 0,01

bbb

Min: 0.500 Min: 0.0200

10mm
Fig. 10. The volume fraction (porosityﬁ)ﬁ distribution at

Fig. 7. The 2D geometry used for the simulatiomepies. 1000 s using DIM model (Pe = 0.1) [13].



Figures 10 and 11 show sharp volume fraction graslie interface will become thinner while with smaller
around the interfaces. The comparison between thaumbers it will become thicker. This changes the
different figures reveals that one can obtain simihass concentration profile near the interface rathemthize
fraction distributions and interface displacemebts  total exchanged mass.

using either the ALE module or the DIM model. As 2 Whenever density variation is present in the fhidses
better explicit comparison, Figure 12 compares the y P '

. . o the gravity (buoyancy force) can play an importaié
interface displacement along the y-direction verss(isr in mass and heat transports, through the mechasism

DIM, we utilize the lines wheree; equals 0.5 10 paral convection. In our case, the dissolutiothefsalt
represent the interface location). The comparidmws  walls results in higher concentrations around the
that the results from the different models reach ainterface than in other fluid regions. Therefotenakes

tolerable agreement. sense to study the influence of gravity effectsrugee
Timeo 1000 Surface: Gonesnation, eps fmal /i o 050 Mo 0392 dissolution and fluid flow. To characterize the \gta
e Contour. Conoentration, epsi [mol,fm3] Arrew: Velocity fisld # eﬁects for diSSOlUtlon problem’ One Can refer Mt
i 09 Rayleigh number, Ra, which is defined as the rafio

buoyancy forces to mass and momentum diffusivities.

0.8

; B HsDg

This natural convection phenomenon, often calldd sa
fingering, is well illustrated by Figures 13 and 14

0.5

0.4

‘ | 0.3 Qu
- .27
J . lt_fo.z

0.1

01 B 0 [ [ f —
0 0.001 0.002 0,003 0,004 0.005 0.006 0,007 0.008 0.003 0.01 Win: 0,500 Min: 00200

Fig. 7. The volume fraction (porosity) distributiat 1000s

using DIM model (Pe = 10) [13]. Fig. 13: Examples of concentration plumes for a 2D
simulation with gravity at time 100 s and 1000 d aalt block
size 8 mm.
—— ALE Pe=0.1
oneon! - = -ALE Pe=10
- - - - DIM Pe=0.1 i
0.0055 - —-—-DIM Pe=10 i
0.0050
>~
0.0045
00040 T
00035 1 Fig. 14: Examples of concentration plumes for a 2D
o simulation with gravity at time 100 s and 1000 d aalt block
0.0030 . : : : . size 16 mm.dolor scale bar as in Fig. 33
0.000 0.002 0.004 0.006 0.008 0.010
X We show that the shape on the top of the chanrel ha

lost its regularity and the wavy shape is due tgsjual
) ] ) Rayleigh convective instability which induces a tear
Fig. 12. Comparison of the interface shape at t080% motion of fluid particles. The heavy fluid (more

between ALE and DIM [13]. Y and X are the coordmat the o1 rated) goes downward and increases the disolut
cross section of the interface. upward

It has to be reminded that, for the diffuse inteefa
model, the choice of the exchange terd, in an
appropriate range will not severely influence the
evolution of dissolution, because the “diffuse ifdee”

is not a real interface: with larger numbers the



3.2 Axisymmetrical cavity The deduced inlet velocity is 8 cm/s during 4 days

This section is devoted to the numerical modelihgro then 4 cm/s during 8 days.

experimental “large scale” dissolution process. gbal
is to show the ability of the DIM method to tackle N a2

difficult problems with geometry singularities and ,
natural convective components.

55
0.2

a5

35

25

0.1

15

1 [T A -0.2 0 02 04 06 08 1 12 14 16 18 2 22 V4.6643x107

I " Fig. 17. Isovalue of the porosity after 4 daysidvfor unity).

From the Axisymmetrical shape of the cavity the
computed dissolved volume is around 12 fthe
measured in-situ is around 1f)m

T AL
75 1

7
6.5

Fig. 15. lllustration of the experimental salt rodissolution i
process (right) and shape of the cavity after 1¢s daight) .
[16]. N

a

A concentric leaching well was drilled to the firdgpth *
(The salt layer is located at about 280 metershjephe
tubing is constituted by two concentric tubes. Tfresh 2
water was injected through the central annulusnguti2 :
days [16]. This method is known alirect leaching ” |
process The inlet flow is 3 ith during 4 days followed %7 o o7 o4 s o8 1 17 i+ 15 15 3 22 Vo
by 1.5 ni/h during 8 days [16]. The Figure 16 depict the Fig. 18. Isovalue of the porosity after 12 daysigvor unity).
experimental setting and the final shape of thetgav

(obtained by sonar).

02

0.1

From the axisymmetrical shape of the cavity the

~ computed dissolved volume is around 38 fithe
We shows below some results of our numericalmeasured in-situ is around 43)m

modeling. Figure 16 shows the axisymmetric mesh and . . .
model. In Figure 19 it can be observed the time evolubbma

not sharpbutthe diffusefluid-salt interfaces.

=
‘A

Qutlet .

Porosity [-]

Inlet (1)

14 16 18

Fig. 16. Geometry and boundary condition for theitya  Fig. 19 . Examples of the distribution of the pdtpst a line
dissolution model. located at the middle of the model and at sevaras (1 to 12

days).
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04 02 0 02 04 06 08 1 12 14 16 18 2 22 24

Fig. 20 . Streamlines and vectors field after 4sday '(:ig_-d2_3- '3‘)”3'“9 of the porosity in gypsum aftér years
void in re

We observe that the very low dissolution rate for
gypsum material and the cavity shape which is very
different from that obtained with salt. The natural
convection is very small due to the low solubiliy
gypsum. We have extended our two-phase DIM to three
phases [14]. In the case of multi-phase (threegd)abe

air phase occurring in many groundwater or mining
problems is taken into account. In order to improve
computation the DIM method is used with an AMR
(Adaptative Mesh Refining) [14]. Figures 24 andgdze
Figures 20 and 21 gives illustrations of the stiézas an illustration of the numerical simulations.

and fluid velocity field at two time steps. We csimow

the effect of the natural convection. g

04 02 o0 02 o4 06 08 1 12 1a 16 18 2 22 24

Fig. 21. Streamlines and vectors field after 8 days

6em

The numerical method was extended to a three-phases
(gas-liquid-solid) [14] problems and to other dissty =
matter. For gypsum, for instance, it dissolveslamving
water about one hundred times more rapidly than
limestone, but at only about one thousandth the ot
halite. Figures 22 and 23 show the shape of thizyciawv

a gypsum medium, using the same hydrodynamic
conditions as above for the salt.

10cm

Fig. 24. Example of a three phase-AMR result [14] .
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Fig. 22. Isovalue of the porosity in gypsum afteyears (void
in red)
Fig. 25. Porosity, salt concentration and saturagifter 2.16s

The two examples (Figures 23 and 24) are for allsm (4]

gypsum layer thickness (4.4 m) and an inlet vejyoaitl cm/s.



4 CONCLUSION

For simulations of solid-liquid dissolution processone
can use either explicit treatment methods (e.g. ALE
this paper) or diffuse interface methods (a locah-n
equilibrium DIM in this paper).

The ALE is not suitable for simulating the problems
with complex interfaces, e.g., sharp angles, porous
media, as it relies strongly on the mesh shapdahdn
contrary, the DIM is more suitable to simulate
dissolution problems, as the whole domain is coragos
by a phase field (volume fraction of liquid phasehis
paper). In this paper a local non-equilibrium dsiu

4,

5.

interface model based on a porous medium theory isg.

extended to study dissolution problems, with dgnsit
variations taken into account.

As the DIM considers the density variations, sirtiala
with gravity becomes available. For a dissolution
problem with high concentration gradients, for epéen
NaCl dissolved into water, Raleigh-Bénard physical
instabilities can be aroused under this situatias.
expected, examples show that the physical instabdi
enhanced by increasing the Ra number. Unstablesflow
salt fingers, and dissolving interface induced Mietge
are observed. Actually, the physical instabilitynegnic

is not only controlled by the Ra number, but alslated

to the Pe number [13] In the space Ra-Pe, intenacti
have been well documented [13] and the trends @f th
influences, show extremely complicated patterrse T
physical instability during dissolution processiss
certainly a problem which has to be looked atirthfer
study.

Furthermore, the potential advantage of using tfiesa

interface model is that it enables us to introduce 1o

automatic remeshing algorithms, such as AMR
algorithm, which can greatly improve the calculatio
speed and accuracy, since very fine meshes argedqu

7.

8.

9.

10.

11.

13.

near the interface. The method has been extended to

multi-phase problems and to gypsum material. DIM
method is so robust that it can perform succdysful
numerical dissolution for a wide range of dissalnti
rates. Our ultimate goal is to strongly couple (tways
coupling) the dissolution process with the mechalnic
behavior of the dissolving formation for instance.
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