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AN ANISOTROPIC ELASTOPLASTIC MODEL FOR GEOMATERIALS AND NUMERICAL 

IMPLEMENTATION 

 

ABSTRACT 
 

An anisotropic constitutive model is proposed in this paper accounting for both structural 

anisotropy and induced anisotropic plasticity. It is assumed that the rock is composed of a matrix and of 

potential planes of weakness. The matrix is assumed to be linear, transversely isotropic and the plasticity is 

described by a non linear yield function where the parameters are deduced from the nonlinear Hoek-Brown 

envelopes in pre- and post-peak, and derived from the laboratory characterization. A non-associated flow 

rule is used with a distinction between compression and extensional stress paths, as well as the absence of 

volumetric strain beyond large plastic distortion.  

The planes of weakness are considered as known a priori or assumed to be oriented perpendicular 

to the direction of the current minor principal stress. An elastic-perfectly plastic behavior according to the 

Mohr-Coulomb criterion is assumed in the planes of weakness; while the elastic part is considered as 

linear and transversely isotropic.  

Finally, the proposed model was implemented in FLAC
3D

 and used to simulate triaxial 

compressions to provide a verification of the implementation. The applicability of the implemented model 

to reproduce damage (pre-peak) and/or failure developments around a circular opening is checked. The 

GCS drift, one of the mine-by experiments set up at the main level of the Meuse/Haute-Marne 

Underground Research Laboratory, is selected for this first application. 
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INTRODUCTION 
 

Numerous experimental results available in the literature indicate that most sedimentary and 

metamorphic rocks, such as shales and slates, display a strong anisotropy of behavior and strength. These 

types of rocks usually exhibit some preferentially oriented structures or possess distinct bedding planes, 

which results in transversely isotropic behavior at the macroscopic scale: this is particularly the case of 

Tournemire shale (Niandou et al., 1997) or the Callovo-Oxfordian claystone (David et al., 2005). 

Based on the experimental results, various failure criteria for anisotropic materials have been 

proposed where a large review can be found in Duveau et al. (1998). Furthermore, various constitutive 

models were developed in order to approach the anisotropic mechanical behavior. These are mainly (a) the 

empirical models based on the theory of variational cohesion and / or friction (e.g., McLamore & Gray 

1967, Saroglou et Tsiambaos 2008, Wang et Yu 2014); (b) the models built on the concept of ubiquitous 

joint with several planes of weakness, (c) the models where damage and/or plasticity are incorporated and 

formulated in the framework of irreversible thermodynamics (Pietruszczak et al., 2002, Yu et al., 2013). 

Since 2000, the French National Radioactive Waste Management Agency (Andra) has been 

constructing an Underground Research Laboratory (URL) at Bure with intent to demonstrate the feasibility 

of a geological repository in the Callovo-Oxfordian claystone (COx) formation by collecting in situ 

experimental data. The excavation of galleries at the main level of the laboratory showed a significant 

fracturing induced by the excavation (Armand et al., 2014) in addition to structural or inherent anisotropy 

observed during the laboratory tests.  

Alongside this in situ investigation program and the laboratory characterization, several 

developments of rheological models and their implementation in numerical codes have also been 

undertaken. A macroscopic isotropic visco-elastoplastic model, which accounts for the impact of induced 

damage and fracturing on the delayed strain rates, has already been proposed in our previous studies 

(Souley et al., 2011). However, this model did not allow a full explanation of the different types of 

observed fractures, their extension, some convergence anisotropy and ratios, or the reproduction of some 

in situ pore pressure observations. 



 
 

 

For this purpose a macroscopic anisotropic phenomenological model (including both the 

structural anisotropy and the induced anisotropic plasticity) has been proposed in this paper. It consists in 

an extension of the implicit model for strength anisotropy implemented in ITASCA codes. The basic 

assumption is that the failure of an anisotropic material is due to either fracturing of bedding planes (or 

weakness planes) or the failure of the rock matrix. The formalism is therefore based on approaches with 

weakness planes commonly called “Discontinuous weakness plane” or “Ubquituous joints” (aimed to 

account for rock mass strength and anisotropy within large-scale continuum models, Sainsbury et al., 

2008) with one of the first models was proposed by Jaeger (1960) and known as ”the single plane of 

weakness theory”. 

 

BRIEF REVIEW OF THE ANISOTROPIC BEHAVIOR OF GEOMATERIALS 

 

In the literature, many experimental studies have been conducted to study the mechanical 

behavior of anisotropic geomaterials characterized by a large directional dependency: existence of an 

anisotropy of the elastic modules and the strengths as a function of the load orientation. These results were 

also confirmed by the study of several materials having generally a transverse isotropy by Attwell & 

Sandford (1974), Niandou et al. (1997), with the main features: (a) the strength of anisotropic material 

depends on the stress state and the loading orientation with respect to the stratification, (b) the minimum 

strength is generally reached when the angle of inclination β between the major stress and the weak planes 

ranges from 30 to 60°, (c) the ratio of resistance in the two main directions related to the anisotropy or the 

ratio between the minor and major strengths are used to quantify the degree of anisotropy, (d) failure may 

occur in very complex ways, combining sliding and separation along the planes of weakness, and a shear 

band in the matrix.  

Research on Callovo Oxfordian claystone by measurement of the propagation velocities of 

ultrasonic waves showed a structural anisotropy. The work conducted by David et al. (2005) confirms the 

anisotropy of the wave propagation speed. The anisotropy of both the wave propagation speed and the 

dynamic modules has been also observed on the mechanical laboratory tests with acoustic emissions 

monitoring (Sarout & Guéguen 2008).  

The anisotropy of the mechanical behavior of the Callovo Oxfordian was studied by a series of 

tests carried out in different orientations with respect to the stratification. The results show an anisotropy 

of deformation modulus, with a modulus ratio II
E

E⊥

 between 1.05 and 1.4. 

Traditional measures of modules (from compression tests) show that the anisotropy could be 

larger, but still less than a ratio of 2. The ratio between the strength as a function of β and the strength in 

the isotropic plane varies between 1 and 0.8. Results showed that the strengths in the directions parallel 

and perpendicular to the stratification are close and slightly higher than those measured at 45 ° with respect 

to the bedding plane with a ratio close to 0.8 for the majority of the performed tests. However, these results 

need to be confirmed by additional measures according to different mineralogy. 

Models based on the concept of "Discontinuous Weakness plane" allow a description of the 

physical mechanism related to the process of failure. In general, an anisotropic material is viewed as an 

isotropic body containing some planes of weakness at the macroscopic scale. In this case the basic 

assumption is that the failure of the anisotropic material is due to the fracture planes as well as to the rock 

matrix. Assuming that the weakness planes are oriented along the cracks and based on the extension of 

Griffith theory, several criteria are proposed in the literature (Walsh & Brace, 1964, Hoek & Brown 1980, 

Hoek 1983). Generally speaking, the rock matrix is modeled by nonlinear criteria involving the three 

invariants of stresses, while sliding along the planes of weakness follows the Mohr-Coulomb criterion or 

the JRC-JCS model of Barton-Bandis (1985) developed for rock joints (Wang & Huang 2009). 

The proposed model is based on the concept of ubiquitous joint and yielding may occur either in 

the solid or along the weak planes depending on the stress state, the orientation of the weak planes and the 

material properties of solid and weakness planes. 

 



 
 

 

FORMULATION OF THE MODEL 

 

In the absence of sufficient data (especially quantitative) on directional dependency of the 

strengths and plastic flows (hardening/softening), we firstly propose a relatively simple model that can 

integrate the anisotropy of the elastic behavior and that of rupture, but sufficiently generic and 

phenomenological so that it can be subsequently enriched on the basis of (a) new knowledge and 

experimental data, (b) other phenomena not taken into account here (damage in the framework of 

continuum damage mechanics, hydromechanical couplings, time-dependent behavior, etc.).  

 

Case of the intact rock matrix  
 

The rheological model proposed is based on results obtained from different laboratory 

characterizations. The main features of the short-term mechanical behavior observed on the samples of 

claystone under triaxial tests can be summarized as follows: the behavior is linear under low deviatoric 

stresses; the loss of linearity of stress-lateral strain curves begins approximately at 50% of the peak value 

of the deviator stress. Under low confining pressures, a brittle failure of the samples is observed and 

corresponds to the formation of a shear band inclined with respect to the sample axis. There is a strong 

dependence of the mechanical behavior on the confining pressure, marked by a transition from a brittle 

toward a ductile behavior. 

It has been shown that a failure criterion based on the Hoek–Brown (1980) criterion (eq. 1) is 

suitable for describing the shear strength of the COx claystone and as a result an elastoviscoplastic and 

isotropic model was proposed (Souley et al., 2011). However, since the COx claystones in their natural 

state have no tectonic fractures, classical signification of the Hoek & Brown parameters cannot be used for 

determining the rock mass strength from the results of tests on samples (and taking into account the 

fracturing of rock). 

 2

3 3 c 3 cm sσ = σ − − σ σ + σ                              (1) 

where σ1 and σ3 are major and minor (absolute value) principal stresses (compressive stresses are 

negative), m and s are material constants, σc is the value of stress reached at the initiation and peak under 

unconfined compressive condition. 

 

After some manipulations, the generalization of equation (1) in the space of three stress invariants 

(p, q, θ) leads to the following criterion for damage initiation and peak strengths: 

 
2

m 2

s c

4 cos cos sin B
F q t q p

3 A 3 A3

 θ θ θ
= + − + − 

 
                             (2) 

where p represents the mean stress, q the generalized deviatoric stress and θ the Lode’s angle, A and B are 

two independent parameters (A = m σc and B = s σc
2
, evaluated at the initiation and peak). The parameter 

tc (≤ 1) has been introduced in order to account for a potential difference of material strength for 

compression and extension loading paths. 

 

Under tensile stresses, we propose a «cutoff» of mean stress to the value of tensile strength σt (in 

triaxial condition, which is by default: B/A), this leads to following yield surface in tension: 

 m

t tF p= − σ                              (3) 

 

As shown by the experimental results, we assume that the behavior of COx claystone is 

transversely isotropic. Assuming that the results (small changes in strength) of tests previously discussed 

or Brazilian tests are representative of the strength characteristics of the rock matrix, then it follows that a 

quasi-isotropic failure can be considered as a first approximation of rock matrix failure. The induced 

anisotropy due to the change of stresses will be approximated by an assumption of the existence of a 

weakness plane with a certain orientation. As a result, the independent parameters A and B do not change 

with the loading direction.  

In 2005, some complementary tests carried out on claystone samples made it possible to specify 

the evolution of the irreversible volumetric deformation. From these tests, it came out that the hypothesis 

of associated flow rule tended to over-estimate the material dilatancy. Indeed, experimental data (Chiarelli 



 
 

 

et al., 2003; Zhang & Rothfuchs, 2004) exhibit generally a contracting behavior. At best, a dilatancy 

develops in the last phases of the tests according to the confining pressure. The following form of plastic 

potential is adopted. 

 ( )m

s c

cos sin
G t q p

33

 θ θ
= − + β γ 
 

                             (4) 

The rate of dilatancy β(γ), where γ (the internal flow variable) is the plastic distortion, varies between a 

minimum value β0 and a maximum value βm, its evolution was first proposed by Chiarelli et al. (2003) and 

used by many authors thereafter: 

 ( ) ( ) b

m m 0 e β− γ
β γ = β − β − β                              (5) 

where bβ is the plastic flow velocity. 

Finally an associated flow rule is assumed in tension. 

 

For residual strength, the same shapes of yield function as the peak are suitable when the 

confining pressure does not exceed the transition stress between the ductile and softening behaviors, σ3
bd

. 

Beyond this confining pressure, residual strength coincides with the peak yield function. The needed 

parameters of residual strength (when σ3 <σ3
bd

) are sr and mr. By default sr is taken equal to 0 and mr is 

back-calculated so that the residual strength intercepts the maximum resistance for σ3
bd

 of confining 

pressure. 

The strain hardening in pre-peak and strain softening in post peak are modeled as a linear change 

of A with respect to the internal plastic variable (from the initiation Ai to the peak Ap). We also considered 

a parabolic evolution of parameter B as a function of γ, with horizontal tangents at peak and the beginning 

of residual phase, respectively, for the hardening in pre-peak and softening in post-peak. 

 

Case of weakness planes (induced anisotropy)  

 

The failure criterion on the weak plane, whose orientation will be defined later, is a composite 

Mohr-Coulomb envelope with strength «cutoff» in tension (similar to the FLAC
3D

 Ubiquitous Joint Model). 

This is justified since we can associate each plane of weakness as a dilatant (or not) rock joint (depending 

on the roughness type: primary and / or secondary). At this stage, we simply consider a basic failure 

criterion. The projection of a state of stress on the composite envelope is controlled by a non associated 

flow and an associated flow rules, respectively for shear and tensile failure. 

Let (s, t, n) be the local system of reference axes related to the weakness plane consisting of (s, t) 

and n pointing in the direction of the unit normal of this plane. The magnitude of the tangential (shear) 

stress component on the weak plane, and the associated shear strain variable are: 

 2 2

sn tn
τ = σ + σ   and  wp 2 2

sn tn
γ = ε + ε                              (6) 

 

The generalized stress vector used to describe weak-plane failure has four components: σss, σtt, 

σnn, τ. The components of the corresponding generalized strain vector are: εss, εtt, εnn, γ
wp

. The weak-plane 

failure criterion with a tension cutoff is expressed in terms of (σnn, τ) as follow:  

 

wp

s nn wp wp

wp t

t nn wp

F tan C

F

 = τ + σ φ −


= σ − σ

                             (7) 

where φwp, Cwp and t

wpσ  are respectively the friction, cohesion and tensile strength of the weak plane. 

 

The potential function is composed of two functions used to define shear (non associated) and 

tensile (associated) plastic flow, respectively: 

 

wp

s nn wp

wp

t nn

G tan

G

 = τ + σ ψ


= σ
                             (8) 

where ψwp is the weak-plane dilation angle. 

 



 
 

 

Several experimental studies have established a correlation between the mechanical behavior of 

geomaterials and their microstructure (Kranz 1983). Microscopic observations on samples of several rocks 

subjected to different stress levels showed that microcracks follow the deformations of extension under 

certain preferential directions. This phenomenon induces a dilatancy and induced anisotropy. Based on 

different experimental results, some authors propose that the driving force of the induced anisotropic 

damage could be directly related to the positive part (extension) of the total strain tensor after the spectral 

decomposition introduced by Orizt (1985) and supplemented by Ju (1989).  

As the failure along the plane of weakness may be either in shear or in tension, it can be supposed 

that the weakness plane remains normal to the direction of the minor principal stress. Indeed, the fact to 

consider that the plane of weakness is related to the positive part of the strain tends to exclude the shear 

failure that may occur under a compressive loading path. In the numerical implementation, the orientation 

of the weakness plane (in each element) is arbitrary and corresponds to an input data to be introduced by 

the user. By default, the normal of weakness plane is taken as the direction of the minor principal stress. 

 

Constitutive equations and numerical implementation  

 

Assuming that only small strains occurred, the total strain increment dε can be subdivided in an 

elastic part 
e

dε and a plastic part 
p

dε : 

 
e p

d d dε = ε + ε    with  
p G

d
∂

ε = λ
∂σ

                             (9) 

where λ is the plastic multiplier and G is the plastic potential for shear or tensile failure, for both solid rock 

and weakness plane related to the induced anisotropy. 

 

If C  represents the fourth order elastic compliance tensor for transversely isotropic geomaterial, 

the incremental expression of Hooke’s law in terms of generalized stress and strain tensors has the form: 

 
e

d Cdσ = ε                            (10) 

 

Finally, the consistency condition dF(κ, σ) = 0 allows to express the stress increment as a 

function of total strain increment: 

 

F G
C : C :

d C d
F G F G

: C :

    ∂ ∂
⊗    

∂σ ∂σ    σ = − ε
 ∂ ∂ ∂ ∂

− 
∂σ ∂σ ∂κ ∂ϖ  

                           (11) 

where F is the yield function; κ is the accumulated plastic strain (e.g. γ for matrix failure or γwp
 for failure 

along the weakness plane); ϖ is the generalized deviatoric stress (q) for matrix failure and the tangential 

stress (τ) for failure along the weakness plane. 

 

For both (rock matrix and weakness planes) failures, a function representing the diagonal between 

Fs = 0 and Ft = 0 is evaluated in order to select the type of failure (in shear or in tension). At each step, the 

computation of new stresses is achieved by testing firstly failure in the solid matrix, then along the plane of 

weakness. More precisely, the main procedure is summarized below. 

 

• The first approximation of stress tensor σi
, is evaluated by adding to the previous stress tensor the 

stress increment computed from the total strain increments and the Hooke’s law. 

• Computation of the yield function for rock matrix, F
m
(p

i
, q

i
, θi

) according to eqns 2 and 3. If the 

stress state, σi
, satisfies the yield criterion: F

m
(p

i
, q

i
, θi

) > 0, the new increment of stresses is 

computed as well as the new stress tensor, σo
. If F

m
(p

i
, q

i
, θi

) ≤ 0, the current stress components 

are: σo
= σi

. 

 

 



 
 

 

The resulting stress tensor, σo
, is then examined for failure on the weak plane.  

 

• The corresponding stress components in the local axes, σ’
o
, are computed using the 

transformation from global x-, y-, z-axes to the local system of reference s-, t-, n-axes. 

• Computation of the yield function for weak plane, F
wp

(σnn’
o
, τ’

o
) according to equation (6). If the 

stress state σ’
o
 verifies the yield criterion F

wp
(σnn’

o
, τ’

o
) > 0, the new increment of stresses is 

computed as well as the new stress tensor, σn
. If F

wp
(σnn’

o
, τ’

o
) ≤ 0, the current new stresses are: 

σn
= σ’

o
. 

• Back to global system of reference x-, y-, z-axes. 

• Parameters depending on the internal plastic variable are updated.  

 

This routine has been written in C++ and compiled as a Dynamic Link Library (DLL) file that can 

be loaded whenever it is needed.  

All parameters have already been identified from triaxial tests for the short-term response (Su, 

2003, Chiarelli 2003). Note that, results of laboratory tests showed a wide variability of peak and residual 

plastic strains, they can be viewed as calibration parameters for in situ applications. Parameters related to 

the failure along planes of weakness were not for the time based on a characterization campaign: the 

choice of the considered values is arbitrary and deserves further attention in future studies. Also for 

reasons of simplicity the elastic characteristics along transverse planes of weakness are considered 

identical to those of the matrix as by default (E1=Es, Young modulus in the isotropic (matrix) and 

weakness plane; E3=En, Young modulus in the direction normal to the isotropic (matrix) and weakness 

plane; G13=Gsn, shear modulus in the anisotropic plane; ν12=νst and ν13=νsn, Poisson coefficient 

respectively in the isotropic and anisotropic planes). Table 1 provides the list of parameters and input 

values. 

 

Table 1. Values of input parameters 

Parameter Value Parameter Value Parameter Value Parameter Value 

E1=Es 5600 MPa mi 1.5 mp 2 σ3
bd

 25 MPa 

E3=En 4000 MPa si 1 sp 0.128 sr 0 

G13=Gsn 
 (a)

 σci 9.6 MPa σcp 33.5 MPa mr(output) 2.172 

ν12=νst 0.3 Cwp 1 MPa φwp 15° γpeak
 3.75 10

-3
 

ν13=νsn 0.25 σwp
t
 1 MPa ψwp 5° γresidual

 8.5 10
-3

 

β0 -0.1 βm 0.3 bβ 600 tc 1 
(a) G13=1807 MPa is computer based on the relation of Lekhnitski (1981) 

 

VERIFICATION AND APPLICATION 

 

Triaxial compression path 

 

In order to verify the model (constitutive equations and numerical implementation), several 

triaxial compression tests with confining pressures of 0.01, 1, 5, 10, 20, and 30 MPa are simulated. Figure 

1 presents the deviatoric stress – axial, lateral and volumetric strain curves for different confining 

pressures. The difference between predicted strengths and those obtained in laboratory tests is related to 

the lower values of the parameters si, σci, mi, sp, σcp, and mp used in this study. The lower values are 

appropriated for modeling of in situ structures, whereas the mean values allow to well reproduce the 

laboratory strengths. From figure 1a, we note that the post-peak behavior is confining pressure dependent: 

the transition stress between brittle failure and ductile behavior is clearly marked and with an input value 

of transition stress, σ3
bd

, about 25 MPa. The resulting curves display four regions (elastic, hardening in 

pre-peak, softening in post-peak and residual phases) when the confining pressure is below the transition 

stress level σ3
bd

. It displays three regions (elastic, hardening and perfect plastic phase) under high 

confining pressure. These curves are qualitatively similar to the experimental ones (which were not 

reported herein). 



 
 

 

Figure 2 shows a comparison in terms of the elastic limit, the peak and residual strengths between 

the simulation (corresponding values in Figure 1) and theory (Eq. 1). A good agreement can be observed 

as numerical and analytical solutions coincide. More precisely, the relative error for peak strength is less 

than 0.1%, and 3% for the elastic limit and residual strength respectively. This validates the numerical 

implementation of the proposed anisotropic elastoplastic model in FLAC
3D

. 
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Figure 1. Triaxial compression tests: (a) numerical simulations, stress vs strains; (b) laboratory tests, stress 

vs axial displacement 
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Figure 2. Elastic limit, peak and residual strengths: numerical and analytical solutions 

 

Application to a circular opening of Meuse-Haute Marne Underground Research Laboratory 

 

The aim of this section is to provide a verification of the implementation for non-triaxial stress 

paths and to show numerically the ability of the implemented model to evaluate the extent of damaged (in 

pre-peak) and failed (post-peak) zones around a circular underground excavation. The GCS drift excavated 

in the direction of the principal horizontal major stress is selected for this application. This is one of the 

several mine-by experiments set up at the main level -490 m of the Meuse/Haute-Marne URL where an 

anisotropic in situ stress state has been measured (Wileveau et al, 2007). The GCS drift has a circular 

section with a 2.6 m radius and can be considered as an isolated gallery. 

We deliberately chose a drift oriented in the direction of the principal horizontal major stress, 

leaving a very low stress anisotropy ratio (between the principal minor horizontal stress and principal 

vertical stress) of 0.98 in the drift section and for which earlier simulations performed in the framework of 

the isotropic continuous approaches failed to reproduce the extension of fractured zones and the ratio of 

convergence observed in situ. 



 
 

 

Taking into account the knowledge on the in situ stress state, σv, σh and σH are considered to be 

equal respectively to 12.7, 12.4 and 16.12 MPa, corresponding to the maximal stress ratio of 1.3. In the 

numerical model centred at the depth of 490 m, the three initial in situ stresses are distributed according to 

the depth. Roller displacement conditions were applied to the base of the model whereas boundary stresses 

(depending on the depth) were applied to the others planes (top and lateral limits of the model). 

Figure 3 shows the extent of plastic zones around the circular opening. In this figure the legend 

“hard”, “soft”, “res” correspond respectively to the shear failure of the rock matrix in the pre, post peak 

and residual region. “Shear” and “tens” are associated to the shear and tensile failures along the plane of 

weakness. Plastics radius in the vertical and horizontal directions are respectively 3.4 and 5.3 m, that is to 

say 0.65 D and 1.02 D. These extensions are in the range of fractured (connected or not) zones extensions 

observed around the drifts oriented in the direction of the major horizontal stress (Armand et al., 2014). 

For this instantaneous mechanical calculation, the horizontal and vertical convergences are 

respectively 5.2 and 4 cm, this corresponds to an initial convergence ratio of 1.3. 

 

 
 

Figure 3. Extent of plastic zones around the opening 

 

Figure 4 shows the profiles of radial, orthoradial and axial stresses along two radial lines at approximately 

0° and 90° with respect to x-axis as a function of the radial distance from the gallery center. From the 

profile of orthoradial and axial stresses, one can distinguish different regions (elastic, pre-peak and post-

peak and residual, without particular transition between the post-peak and the residual domains) through 

the slopes of curves. In particular at θ = 90°, the first loss of slope can be noticed along the profile of 

orthoradial and axial stresses: the corresponding radial distance (approximately 3.4 m) is in accordance 

with the previous investigation of plastic zone extent. Between this radial distance and 6 m, there is a non-

monotonic evolution of orthoradial and axial stresses in relation to the plastic area formed at ± 65 ° with 

respect to horizontal direction. 

 

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 5 10 15 20 25 30

S
tr

es
se

s 
(M

P
a

)

Radial distance (m)

sqq

srr

saxial

srq

(a)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 5 10 15 20 25 30

S
tr

es
se

s 
(M

P
a
)

Radial distance (m)

sqq

srr

saxial

srq

(b)

 
 

Figure 4. Radial, orthoradial, axial and shear stresses along radial lines (a) at 0° (b) at 90° 



 
 

 

CONCLUSION 

 

This paper presents the development of an anisotropic constitutive model for transversely 

isotropic geomaterials, its numerical implementation in the three-dimensional code FLAC
3D

, as well as its 

verification and validation. Firstly, a non-linear elastoplastic model based on the interpretation of 

laboratory test performed using the Hoek-Brown failure criterion, is presented. The elastic anisotropy, the 

almost isotropy of strength observed on the available tests carried out in several directions, the induced 

anisotropy observed on the in situ structures are the main ingredients for this model. The rock behavior is 

characterized by a non-linear behavior in pre peak, a non-linear softening in post-peak and a perfectly 

plastic behavior in the residual phase. As observed on laboratory tests, the model takes into account the 

transition between the softening in post-peak under low confining pressures and the ductile behavior under 

high confining pressures. 

Simulation of triaxial compression tests at different levels of confining pressure provides a 

verification of the implemented model. The resulting curves display four regions (elastic, hardening in pre-

peak, softening in post-peak and residual phase) when the confining pressure is below the transition stress, 

and three regions (elastic, damage and perfect plastic phase) under high confining pressure. In addition, the 

elastic limit, the peak and residual strengths derived from these simulations are compared with the 

theoretical envelopes: the corresponding relative error does not exceed 1%. 

The ability of the implemented model to reproduce the plastic zones around an underground drift 

excavated in the Callovo-Oxfordian claystone is successfully tested. The results provide new insights on 

the understanding of the deformation mechanisms observed around the structures of Meuse/Haute-Marne 

Underground Research Laboratory. 

 

Next step will be to enrich the proposed model on the basis of new knowledge and experimental 

data, and/or other phenomena that have not been taken into account here (damage in the framework of 

damage mechanics, hydromechanical couplings, time-dependent behavior etc.). 
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