Analysis of the sources and dynamic processes leading to the increase of atmospheric CO2, black carbon and other trace species during recent urban pollution events in the Paris megacity region : a synergy of resources provided by the IPSL OCAPI platform
Résumé
Nowadays, more than 50% of the global population leave in urban centers which activities generate large anthropogenic emissions of CO2 (more than 70% of fossil fuel CO2 comes from urbanized/industrialized areas) and reactive gases that endanger our climate, the health of human beings and surrounding ecosystems. The worst situations are encountered during urban pollution events that usually form under anticyclonic conditions. Analyzing the contribution of the local and regional sources of urban CO2 and co-emitted species vs the remote ones, as well as the nature of these sources and the dynamical processes that lead to the building of such events can provide interesting knowledge for helping urban policy makers to better identify the role of anthropogenic/biogenic sources on the urban air composition and to take proper decisions in matter of CO2 and pollutants sources mitigation. With 12 million of people, Paris (France) is the second megacity in Europe. In 2016, two pollution events occured in the Paris region during which the instrumental platform OCAPI (http://observations.ipsl.fr/composition-atmospherique-en-idf.html) from IPSL (Institut Pierre Simon Laplace) was mobilized in collaboration with air quality governing actors (AIRPARIF, INERIS) to collect a bunch of observations. Five sites located in the urban, peri-urban and rural areas of Paris were equiped with in-situ analyzers (CO2, CO, black carbon, 13CO2, COS) ; Fourier transform spectrometers for column measurements (XCO2, XCO, XCOS), particle filters (for aerosols size and content analysis) ; air samples (levoglucosan, 14CO2, VOCs) ; and Lidar profilers (boundary layer height ; wind profiles). These data, combined with a backtrajectories analysis, give information about the dynamical processes that lead to the formation of the pollution events and on the contribution of local, regional and remote sources. The analysis of the correlations between the trace species and of the isotopic content of carbon in CO2 provides further clues on the nature of the anthropogenic and biogenic sources involved in the urban pollution events. Especially, the role of agricultural spreading through the observation of ammonium nitrate particles and the contribution of biomass burning through levoglucosan and black carbon measurements will be discussed.