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HIGHLIGHTS 25 

• Polycyclic aromatic compounds including PAH, oxy- and nitro-derivatives 26 
• Includes several compounds not previously measured in road tunnels 27 
• Measured in road tunnels and urban background 28 
• Large decline in PAH, but not nitro-PAH since 1992-96 29 
• 1-Nitropyrene promising specific marker of diesel exhaust 30 

  31 
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ABSTRACT 32 

Vehicular emissions are a key source of polycyclic aromatic compounds (PACs), including 33 

polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAH) and nitrated (NPAH) 34 

derivatives, in the urban environment. Road tunnels are a useful environment for the 35 

characterisation of on-road vehicular emissions, providing a realistic traffic fleet and a lack of direct 36 

sunlight, chemical reactivity and non-traffic sources. In the present investigation the concentrations 37 

of selected PAHs, OPAHs and NPAHs have been measured in the Parc des Princes Tunnel in Paris 38 

(PdPT, France), and at the Queensway Road Tunnel and urban background site in Birmingham 39 

(QT, U.K). A higher proportion of semi-volatile (3-4 ring) PAH, OPAH and NPAH compounds are 40 

associated with the particulate phase compared with samples from the ambient environment. A 41 

large (~85%) decline in total PAH concentrations is observed between 1992 and 2012 42 

measurements in QT. This is attributed primarily to the introduction of catalytic converters in the 43 

U.K as well as increasingly stringent EU vehicle emissions legislation. In contrast, NPAH 44 

concentrations measured in 2012 are similar to those measured in 1996. This observation, in 45 

addition to an increased proportion of (Phe + Flt + Pyr) in the observed PAH burden in the tunnel, 46 

is attributed to the increased number of diesel passenger vehicles in the U.K during this period. 47 

Except for OPAHs, comparable PAH and NPAH concentrations are observed in both investigated 48 

tunnels (QT and PdP). Significant differences are shown for specific substances between PAC 49 

chemical profiles in relation with the national traffic fleet differences (33% diesel passenger cars in 50 

U.K. vs 69 % in France and up to 80% taking into account all vehicle categories). The dominating 51 

and sole contribution of 1-Nitropyrene observed in the PdPT NPAH profile strengthens the 52 

promising use of this compound as a diesel exhaust marker for PM source apportionment studies. 53 

 54 

Capsule Abstract: Polycyclic aromatic hydrocarbons and their oxy- and nitro-derivatives have 55 

been determined in a road tunnels and an external background site to elucidate sources and temporal 56 

trends. 57 
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Keywords: Polycyclic aromatic hydrocarbons; Nitro-PAH; Oxy-PAH; Vehicular emissions, Diesel 58 

exhaust. 59 

 60 
1. INTRODUCTION 61 

Polycyclic aromatic hydrocarbons (PAHs) are a class of atmospheric pollutant, identified as being 62 

carcinogenic in humans (IARC, 2010). Exposure to PAHs is associated with excess risk of lung 63 

cancer (WHO, 2000) as well as other adverse health effects including bronchitis, asthma, heart 64 

disease and reproductive toxicity (Choi et al., 2010). PAHs therefore contribute to poor ambient air 65 

quality, particularly in urban areas and require careful monitoring and investigation to understand 66 

their concentrations, behaviour and fate in the environment. 67 

 68 
The PAH congener benzo[a]pyrene (BaP) is widely used as a marker for PAHs in the atmosphere as 69 

BaP constitutes a substantial proportion of the total carcinogenic potential of the total PAH burden 70 

(Delgado-Saborit et al., 2011). The European Directive 2004/107/EC sets a target value of 1 ng m-3 71 

in the PM10 fraction for the annual mean concentration of BaP. In the United Kingdom (U.K.), an 72 

air quality standard of a 0.25 ng m-3 annual average is included in the National Air Quality Strategy. 73 

 74 
The World Health Organisation (WHO) has recommended guidelines for concentrations of BaP 75 

producing excess lifetime cancer risks of 1/10 000, 1/100 000 and 1/1 000 000 of 1.2, 0.12 and 76 

0.012 ng m-3, respectively (WHO, 2000). It is estimated that 20% of the population of the EU is 77 

exposed to BaP levels higher than the EU target of 1 ng m-3 and 88% is exposed to levels higher 78 

than the reference level of 0.12 ng m-3 (EEA, 2015).  79 

 80 
PAHs are typically generated as by-products from the incomplete combustion and pyrolysis of 81 

fossil fuels and wood as well as the release of petroleum products. PAHs can therefore originate 82 

from domestic, industrial, transport and accidental combustion sources as well as natural processes 83 

(Ravindra et al., 2008; Jang et al., 2013; Alam et al., 2015). Anthropogenic sources are expected to 84 
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dominate the PAH burden in the ambient air over the naturally occuring component (Wild and 85 

Jones, 1995). PAHs are chemically reactive with atmospheric lifetimes of hours to days (Keyte et 86 

al., 2013). Consequently, urban PAH concentrations are primarily influenced by local and regional 87 

emissions and processes. 88 

 89 
A range of compounds receiving increasing interest are PAH derivative compounds such as 90 

oxygenated (OPAH) and nitrated (NPAH) polycyclic aromatic hydrocarbons. NPAH and OPAH are 91 

also shown to exert cytotoxicity, immunotoxicity and carcinogenicity (IARC, 2012, 2013; Durant et 92 

al., 1996; WHO, 2000), and are a particular concern due to their direct acting mutagenicity (Bolton 93 

et al., 2000; Fiedler and Mücke, 1991).  94 

 95 
OPAHs and NPAHs result from primary emission from combustion processes (Gullet et al., 2003; 96 

Shen et al., 2012b, c; Sidhu et al., 2005; Simoneit et al., 2007; Fine et al., 2002; Fitzpatrick et al., 97 

2007; IARC, 2012, 2013; Cho et al., 2004; Jakober et al., 2007; Tang et al., 2002; WHO, 2000) 98 

although compared with primary PAHs, relatively few data are available. A comprehensive 99 

overview of currently available data on primary combustion sources of individual OPAH and 100 

NPAH compounds was recently provided by Keyte et al. (2013). 101 

 102 
In addition to direct combustion sources, OPAHs and NPAHs also result from gas-phase and 103 

heterogeneous reactions of primary PAH with atmospheric oxidants (e.g. OH, NO3,N2O5 and O3) 104 

(Keyte et al., 2013 ; Atkinson and Arey, 1994; 2007). It has been shown that this atmospheric 105 

processing of PAH can be an important secondary source of NPAH and OPAH congeners that 106 

contributes significantly to their observed atmospheric concentrations (Albinet et al., 2007, 2008a; 107 

Ringuet et al., 2012a; Reisen and Arey, 2005; Eiguren-Fernandez et al., 2008; Arey et al., 1990; 108 

Atkinson and Arey, 2007). 109 

 110 
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Numerous studies have suggested PAHs can contribute significantly to the observed carcinogenicity 111 

and/or mutagenicy of ambient air (Albinet et al., 2008a; Bethel et al., 2001; Durant et al., 1998; 112 

Gupta et al., 1996; Hannigan et al., 1998; Pedersen et al., 2004; 2005; Tuominen et al., 1988; 113 

Umbuzeiro et al., 2008; Wang et al., 2011 ; Bonfanti et al., 1996; Harrison et al., 2004). 114 

 115 
However, it has been indicated in some studies that semi-polar fractions of atmospheric PM extracts 116 

(likely to contain OPAH and NPAH compounds) can display higher direct acting mutagenicity than 117 

non-polar extracts (likely to contain PAH compounds) (Jariyasopit et al., 2014a,b; Lewtas et al., 118 

1990; Nishioka et al., 1985; Pedersen et al., 2004; Umbuzeiro et al., 2008; Wang et al., 2011). 119 

These studies therefore suggest that NPAH and OPAH may pose more toxic hazard in the urban 120 

environment than PAH.  121 

 122 
Road traffic is considered a key primary source of PAHs, OPAHs, NPAHs in urban areas (Fraser et 123 

al., 1998; Jakober et al., 2007; Lim et al., 1999; Oda et al., 1998; Rogge et al., 1993a; Staehelin et 124 

al., 1998; Zhu et al., 2003). For example, it has been estimated that motor vehicle emissions account 125 

for between 46 and 90% of total PAHs in ambient PM in urban areas (Nikolaou et al., 1984; Jang et 126 

al., 2013). 127 

 128 
There is therefore a need accurately to assess the relative and overall contribution of road traffic 129 

makes to the concentrations of different PAHs, OPAHs and NPAHs in the ambient urban 130 

atmosphere in relation to other primary combustion sources (e.g. industrial emissions and domestic 131 

burning), secondary sources (e.g. reactive input and volatilisation from surfaces) as well as other 132 

influencing factors such as reactive or photolytic loss processes.   133 

 134 
However, accurately measuring on-road vehicular emissions is complicated by the mixture of 135 

engine and fuel types and emission control technologies present. Furthermore, experimental studies 136 
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in a laboratory will only yield data on specific vehicles, engine characteristics and/or fuel 137 

formulations (e.g. Zielinska et al., 2004a,b).  138 

 139 
Sampling in road tunnels is expected to provide a more realistic traffic profile than using 140 

dynamometer tests (Oda et al., 2001; Wingfors et al., 2001). Road tunnels provide the advantage of 141 

a realistic distribution of on-road vehicles ; relatively low rates of dispersion and chemical reactivity 142 

; and a lack of inputs from other primary sources. Additionally, repeated monitoring in a tunnel 143 

environment can assess historic changes in PAH emission profiles in response to changes in fuel 144 

usage or emission control measures (Ravindra et al., 2008).  145 

 146 
Relatively few studies have characterised the on-road emission profile of PAHs, NPAHs and 147 

OPAHs in tunnel environments (Wingfors et al., 2001; Dimashki et al., 2000; Smith and Harrison, 148 

1996; Ho et al., 2009; Fraser et al., 1998). Furthermore, many previous on-road emission studies 149 

have sampled only the particle-phase component (Chen et al., 2013; Eiguren-Fernandez and 150 

Miguel, 2012; Marr et al., 1999; Miguel et al., 1998; Phuleria et al., 2006) and a large number of 151 

studies report results in terms of PAH emission factors i.e. mass emitted per unit volume/weight of 152 

fuel consumed (Marr et al., 1999; Miguel et al., 1998) or unit distance of vehicle travel (Fraser et 153 

al., 1998; Kam et al., 2012; Staehelin et al., 1998).  154 

 155 
In the present investigation, the total (gas + particle phase) concentrations of selected PAHs, 156 

OPAHs and NPAHs were measured in a road tunnel environment in central Birmingham, U.K and 157 

simultaneously at an urban background site in southwest Birmingham. Comparative measurements 158 

(only particle phase) were performed in a tunnel of the Paris ring road (France). The specific aims 159 

were to i) obtain realistic ‘traffic signatures’ for these compounds; ii) compare investigated tunnel 160 

concentrations and chemical profiles in relation to the national vehicle fleet compositions; iii) 161 

compare these tunnel concentrations with those observed in the ambient urban environment ; and 162 
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iv) assess the temporal trend of these compounds in the tunnel and relate this to observed changes in 163 

traffic characteristics during this period.  164 

 165 
 166 
2. EXPERIMENTAL 167 

2.1 Study Location 168 

Sampling was conducted inside the Queensway Road Tunnel (QT) in Birmingham, U.K. in 169 

September 2012 and inside the Parc des Princes Tunnel (PdPT) of the Paris ring road, France in 170 

June 2013. The sampling locations are shown in Figures S1 and S2 of the Supplementary 171 

Information (SI). The main differences between both sampling locations lie in the traffic fleet 172 

composition. In UK, gasoline vehicles are dominant and diesel powered passenger cars accounted 173 

for about 32% of total cars in 2012 (DfT, 2014) (Figure S3). In France among the 38 million 174 

vehicles, 68.6% were diesel in 2013. Taking into account all vehicle categories including heavy 175 

trucks, this proportion was about 80% for diesel (CCFA, 2014). 176 

 177 
The QT in Birmingham passes under the city centre, providing a main through route for a dual 178 

carriageway, which constitutes part of a major highway through the city. The tunnel is 179 

approximately 544 m long with natural ventilation, with the north- and south-bound traffic 180 

separated by a concrete dividing wall. The speed limit in the tunnel is 30 mph.  181 

 182 
Concurrent air sampling was conducted at a background site at Elms Road Observatory Site 183 

(EROS) on the University of Birmingham campus, approximately 3 km south of the city centre. 184 

These samples provide an ‘ambient background’ concentration to be subtracted from the tunnel 185 

concentrations to calculate a ‘traffic’ concentration. During the sampling campaign the average 186 

temperature was about 11.5±2.2 °C. A description and details of the background site have been 187 

discussed previously by Harrad et al. (2003) and Alam et al. (2015).  188 

 189 
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The PdPT is part of the Paris ring road which constitutes the major road around the French capital. 190 

The tunnel passes under the Parc des Princes football stadium and is 580 m long with forced 191 

ventilation. Is about 5 m high and 52 m wide divided into two carriageways separated by a wall, 192 

comprising the internal (clockwise direction) and external ring roads (anticlockwise direction). 193 

Tunnel speed limit in 2013 was 80 km h-1. 194 

 195 
Daily traffic flow data are not available for the QT itself and traffic counts were not performed 196 

during sampling. Traffic counts, supplied by the Department of Transport are available for sites on 197 

the same road at a distance of approximately 200m from either end of the tunnel. Daily traffic 198 

counts in 2012 at these sites were estimated at ~75 000 and ~25 000 vehicles per day for roads to 199 

the south and north east of the tunnel respectively. It is assumed, based on the number of potential 200 

traffic routes/origins available, that the latter of these traffic counts will be a better approximation of 201 

tunnel traffic flow for the sampling days conducted. 202 

 203 
For PdPT, traffic data including vehicle counts, average speed and tunnel fill rate, were recorded 204 

during the sampling campaign and provided by the Paris city council (Marie de Paris). Total 205 

average daily traffic was about 210 000 vehicles per day with an equal distribution for the internal 206 

and external ring roads (Figure S5). Mean vehicle speed was slightly higher for the external ring 207 

road than for the internal one (69 and 57 km h-1, respectively) and inversely for tunnel fill rate (12 208 

and 18%, respectively). The latter is a measure of congestion and indicates freely flowing traffic. 209 

 210 
 211 
2.2 Sampling Procedures  212 

Air samples were collected in QT, following a procedure utilised previously in air monitoring 213 

studies in Birmingham by members of this research group (Smith and Harrison, 1996; Lim et al., 214 

1999; Dimashki et al., 2000; 2001; Harrad et al., 2003; Harrad and Laurie, 2005). A high volume air 215 

sampler (PM10, Tisch Environmental Inc., Cleves, Ohio, USA), adapted to sample both particle-216 
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phase and gas-phase pollutants was deployed in an emergency breakdown lay-by in the southbound 217 

section of the tunnel. 24 hour air samples were taken on four separate weekdays, in order to include 218 

both morning and evening rush hour periods. Total air volume sampled during ~24 hour sampling 219 

periods during this study varied from ~800-1200 m3. 220 

 221 
In PdPT, PM10 particulate samples were collected on 9 consecutive days using a high volume 222 

sampler DA-80 (with cooled sample storage, ≈ 10°C) (Digitel, Hegnau, Switzerland) (sampling 223 

duration 24 hours, started at midnight, 30 m3.h-1). The sampler was located in the middle of the 224 

tunnel on an emergency exit of the internal ring road. 225 

 226 
Total particulate matter was collected on quartz fibre filters (for QT: Whatman, obtained from 227 

VWR International, Lutterworth, Leicestershire, UK; dimensions, 8” x 10”; retention efficiency 228 

>99%; for the PdPT: Tissu quartz Pallflex, Ø = 150 mm). For QT, Gas-phase sample was collected 229 

using cylindrical polyurethane foam (PUF) plugs (dimensions 3” x 3 3/8”, flame retardant-free, 230 

Tisch Environmental Inc., Cleves, Ohio, USA). Two PUF plugs were loaded in series inside a 231 

cylindrical metal tube (PUF holder) fitted downstream of the filter holder.  232 

 233 
Prior to sampling, filters were heated at 450oC for 24 hours to reduce organic impurities. PUFs were 234 

pre-cleaned by ultrasonication twice in a solvent mixture of DCM, hexane and methanol (1:1:1 by 235 

volume) followed by ultrasonication in hexane only. After collection, samples were wrapped in 236 

aluminium foils, sealed in polyethylene bags and stored at < -10oC prior to extraction and analysis.  237 

 238 
 239 
2.3 Sample Extraction and Clean-Up  240 

QT and EROS samples were analysed for 18 PAHs, 4 OPAHs and 12 NPAHs (Table S1) using 241 

similar methodologies to those described previously (Delgado-Saborit et al., 2013). PdP samples 242 

were analysed for 21 PAHs, 30 OPAHs and 32 NPAHs (Tables S2, S3, S4 and S5) using similar 243 
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procedures described in previous works (Albinet et al., 2006, 2007, 2008a, b, 2013, 2014; Ringuet 244 

et al., 2012 a, b) and standard methods EN 15549 and TS 16645 for PAHs. All solvents 245 

(dichloromethane, hexane, pentane, methanol) used in sample extraction and cleanup were HPLC 246 

grade (purity >98%), obtained from Fisher Scientific or Aldrich. Filter and PUF samples were 247 

extracted separately in order to determine particulate and gas phase analyte concentrations 248 

independently.  249 

 250 

Briefly, QT and EROS filters and PUFs were spiked with 1000 pg μL−1 deuterated internal 251 

standards for quantification. Samples were placed in a glass flask, immersed in DCM and 252 

ultrasonicated at room temperature (25°C) for 20 min. Sample extracts were then reduced under a 253 

gentle stream of nitrogen to a volume of 1 mL prior to sample clean-up. Due to the large volume of 254 

solvent required for PUF extractions, these sample extracts were initially transferred to Turbovap 255 

apparatus (Biotage Ltd, Uppsala, Sweden) and blown down under a gentle stream of nitrogen 256 

(20oC) to 5 mL. Sample extracts were initially cleaned by filtration using a clean glass Pasteur 257 

pipette chromatography column filled with a small amount of glass wool and 0.5 g of fine 258 

anhydrous sodium sulphate (puriss grade for HPLC, Sigma-Aldrich Company Ltd., Gillingham, 259 

U.K.). Sample extracts then underwent further concentration to almost dryness under a gentle 260 

nitrogen flow and were made up to a volume of 1mL with hexane. Sample extracts were then 261 

subject to a solid phase extraction step, based on the methodology described by Albinet et al. (2006) 262 

and Cochran et al., (2012). An aminopropyl solid phase extraction tube (Sigma-Aldrich Company 263 

Ltd., Gillingham, UK.) was pre-eluted with 3x 1mL aliquots of DCM followed by the same 264 

measure of hexane. The sample was then passed through the column and target compounds were 265 

eluted by the sequential DCM/hexane solvent gradient (3 x 1mL) of 20/80%, 35/65%, 50/50%. This 266 

resulted in optimum recovery of PAH, NPAH and OPAH compounds in one sample extract for 267 

analysis.  268 

 269 
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PdPT filters were cut into punches of 47 mm diameter. A punch was used for PAH analysis and 270 

extracted using ASE 200, Dionex (3 DCM cycles: 120 °C, 140 bars, 6 min heat time, 6 min static 271 

time) . Extracts were then blow down under a gentle stream of nitrogen (Zymark, Turbovap II) and 272 

redissolved in acetonitrile for UPLC/Fluorescence analysis. The second punch filter was used for 273 

NPAH and OPAH analysis. Filters were extracted using QuEChERS-like procedure developed 274 

previously for particulate-bound PAH and PAH derivatives analysis (Albinet et al., 2013; 2014). 275 

Briefly, punches were placed in centrifuge glass tubes and 7 ml of acetonitrile were added to 276 

perform the extraction using a Multi-tube Vortexer (DVX-2500 Multi Tube Vortexer, VWR) during 277 

1.5 min. After extraction, samples were centrifuged for 5 min at 4500 rpm (Sigma 3-16 PK 278 

centrifuge). The supernatant extract was collected and reduced near to dryness under a gentle 279 

nitrogen stream. Reduced extracts were then dissolved in dichloromethane (100-200 µl). A clean up 280 

step was applied for extracts dedicated to GC/NICI-MS analysis of NPAHs and OPAHs. The clean-281 

up was performed on silica SPE cartridge (SiOH chromabond, Macherey Nagel, 3 ml, 500 mg) with 282 

a first elution of pentane (1 ml discarded) and then the collection of eluted extract with 9 ml of 283 

65:35 (v/v/) pentane-DCM. Purified extracts were then reduced near to dryness under a gentle 284 

stream of nitrogen and then reconstituted in about 100 µL of acetonitrile.  285 

 286 
2.3 Sample Analysis 287 

QT and EROS samples were analysed for PAH compounds using Gas Chromatography (GC – 288 

6890N Agilent Technologies) fitted with a non-polar capillary column (Agilent HP-5MS, 30 m, 289 

0.25 mm ID, 0.25 µm film thickness – 5% phenylpolysiloxane) in tandem with a Mass 290 

Spectrometer (5973 N, Agilent Technologies) operated in electronic ionisation (EI) and selective 291 

ion monitoring (SIM) mode. For OPAH and NPAH analysis an Agilent Technologies GC-MS (GC 292 

6890W and 5973 MSD) equipped with a Restek Rxi-PAH column (60 m, 0.25 mm ID, 0.1 µm film 293 

thickness) was operated in negative ion chemical ionisation (NICI) and SIM mode. Methane (99.9% 294 

purity; Argo International Ltd, UK.) was used as the reagent gas for the NICI analysis.  295 
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Quantification of all target compounds was based upon the ratios of analyte response peak area to 296 

that of an appropriate deuterated internal standard. Standards of perdeuterated and native PAH (all 297 

compounds) and NPAH compounds (>98% purity in toluene or isooctane) (1-nitronaphthalene-d7; 298 

3-nitrofluoranthene-d9; 1-nitropyrene-d9 and 6-nitrochrysene-d11) and p-terphenyl-d14 recovery 299 

standard (>99% purity, in toluene) were obtained from Greyhound Chromatography, Merseyside, 300 

UK, as pre-prepared solutions by Chiron AS, Trondheim, Norway. Perdeuterated (9-fluorenone-d8 301 

and anthraquinone-d8) and native OPAH internal standards and 1-fluoro-7-nitrofluorene recovery 302 

standard (purity >98%) were obtained initially as solids from Sigma-Aldrich Company Ltd., 303 

Gillingham, UK and solutions prepared by dilution with hexane.  304 

 305 

PAHs of the PdPT samples were analyzed by UPLC/UV-Fluorescence (Thermo Scientific, Dionex 306 

Ultimate 3000) using a C18 UPLC column (Zorbax Eclipse PAH, 2.1 mm x 150 mm x 1.8 µm. 23 307 

PAHs were quantified using external standard solution calibration. recovery control. Before 308 

extraction a known amount of 6-methylchrysene was added to the samples and used as standard 309 

extraction recovery control (Table S2). NPAHs and OPAHs were analyzed by GC/NICI-MS 310 

(Agilent 7890A GC coupled to 5975C MS, methane as reagent gas) (Albinet et al., 2006, 2014) 311 

using an Optima-5MS Accent column (30 m x 250 µm x 0.25 µm) and operated in SIM mode. 312 

Quantification of OPAHs and NPAHs was performed by internal standard calibration using native 313 

standards and deuterated surrogate compounds added before extraction (Table S3 and S4). 9-314 

Fluorenone-d9 and 1-nitropyrene-d9 were used as surrogate standards. 315 

 316 

Quality assurance experiments were performed to assess the accuracy, precision and reproducibility 317 

of the extraction, clean-up and analysis methods. Replicate analysis of Standard Reference Material 318 

1649b (urban dust), provided by the National Institute of Standards and Technology (NIST), was 319 

conducted using the procedures outlined above. The mean concentrations of 6 (INERIS, PdPT) and 320 

10 (University of Birmingham, QT and EROS) SRM samples were in good agreement with 321 
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reference concentrations provided by NIST for PAHs and those reported in the literature for NPAHs 322 

and OPAHs (Albinet et al., 2014 and references therein). Field blank filters and PUFs (n=1 for each 323 

phase, at each site) were collected in order to evaluate any contamination during the sampling and 324 

analytical procedures. Compounds showing field blank sample concentrations higher than 30% of 325 

mean tunnel sample concentrations were excluded. All results presented here were corrected for 326 

field blank concentration values. 327 

 328 

3. RESULTS AND DISCUSSION  329 

3.1 Concentrations of PAHs, OPAHs and NPAHs 330 

Mean concentrations of the same PAHs, OPAHs and NPAHs measured in the QT and PdPT and the 331 

proportion of each compound present in the particle-phase for QT, are presented in Table 1. 332 

Concentrations of additional NPAHs and OPAHs analysed in PdPT samples are presented in Table 333 

S5. Compounds below quantification limit are not reported in the table.  334 

 335 
Lower molecular weight (LMW) PAHs (MW<203) comprised ~93% of average total PAH mass 336 

(QT, gaseous and particulate phases), consistent with previous measurements in tunnel and roadside 337 

locations (Harrad and Laurie, 2005; Smith and Harrison, 1996; Benner et al., 1989 ; Ho et al., 2009; 338 

Fraser et al., 1998; Khalili et al., 1995), and emission studies of gasoline and diesel vehicles 339 

(Schauer et al., 1999; 2002; Zhu et al., 2003; Zielinska et al., 2004a,b). Focusing on compounds 340 

mainly associated with the particulate phase (from BaA to Cor), results obtained for both tunnels 341 

showed comparable individual PAH concentration levels. 342 

 343 
Previous studies by Alam et al. (2013) and Harrad and Laurie (2005) have reported ‘traffic 344 

increment’ concentrations of PAHs in Birmingham. These were derived by subtracting 345 

concentrations at the Elms Road background site (EROS), from those measured simultaneously at a 346 

nearby roadside location. The relative concentrations of individual PAHs in the tunnel are similar to 347 

those of the ‘traffic increment’ reported in these previous studies.  348 
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In QT, 9F was the dominant OPAH compound measured. BaAQ was present at very low 349 

concentration, indicating a relatively low traffic input of this compound, in agreement with previous 350 

road tunnel measurements (Fraser et al., 1998). 9F was observed predominantly in the gas phase, 351 

while AQ, MAQ and BaAQ were present mainly in the particulate phase. Interestingly, OPAH 352 

concentration levels observed in the PdPT were significantly lower notably for AQ and MAQ. 353 

 354 
1 and 2NNap isomers were the most abundant NPAHs compounds measured, predominantly 355 

present in the gas-phase (QT). The observed ratio of 1NNap/2NNap was ~1.8. This ratio is slightly 356 

higher than previously observed in the same tunnel by Dimashki et al. (2000). 1NPyr and 9NAnt 357 

were the dominant particle-phase NPAHs measured in both tunnels. These compounds have been 358 

identified as the two principal NPAHs present in diesel emissions (Campbell and Lee, 1984; 359 

Paputa-Peck et al., 1983; Ratcliff et al., 2010; Schuetzle et al., 1982; Zhu et al., 2003; Zielinska et 360 

al., 2004b).  361 

 362 
2NPyr and 2NFlt are found in relatively low levels in the tunnels. These compounds are generally 363 

not observed in vehicular emissions and are the principal products of gas-phase (OH and/or NO3 364 

initiated) reactions of Pyr and Flth respectively (Atkinson and Arey, 1994). The low concentration 365 

of these compounds in the tunnel is in agreement with previous measurements by Dimashki et al. 366 

(2000) and is consistent with the absence of direct sunlight and low oxidant concentrations resulting 367 

in negligible photochemical reactivity in the tunnels. 368 

 369 
3.2 Comparison with Previous Tunnel Studies  370 

Table 2 provides a comparison between PAH levels observed in the present study (QT) with three 371 

previous road tunnel measurements of total (particulate + gas phase) PAH concentrations.  372 

 373 
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Considerable differences can be noted between these studies. Pollutant concentrations can be 374 

expected to vary considerably in different tunnel environments due to differences in traffic fleet 375 

composition (e.g. relative level of gasoline- and diesel-fuelled vehicles), level of traffic congestion, 376 

fuel formulations, emission control measures (e.g. legislative requirements), tunnel characteristics 377 

(e.g. dimensions, level of ventilation) and meteorological conditions (e.g. relative humidity, 378 

temperature). For example, the relatively high concentrations of PAHs observed in the Baltimore 379 

Harbour Tunnel by Benner et al. (1989) compared with other studies may be attributed to the higher 380 

proportion of gasoline-fuelled vehicles in this location at this time.  381 

 382 
The concentration of semi-volatile (3-4 ring) PAHs is considerably lower in the present study than 383 

reported in previous studies. Semi-volatile PAHs Acy, Ace, Flo, Phe, Ant, Flt and Pyr have been 384 

observed in relatively high concentrations in diesel emissions (Ratcliff et al., 2010; Rogge et al., 385 

1993a; Schauer et al., 1999; Zhu et al., 2003; Zielinska et al., 2004b). The estimated proportions of 386 

diesel heavy duty vehicles (HDVs) in the relevant studies were <3% (present study); 9% (Benner et 387 

al., 1989); 8-24% (Wingfors et al., 2001); and 47% (Ho et al., 2009). The low relative contribution 388 

of diesel HDVs may therefore be a contributing factor to the reported concentrations of LMW 389 

PAHs in these tunnel studies.  390 

 391 
The PAH concentrations measured in the QT were linearly regressed against corresponding road 392 

tunnel emission factors derived by Wingfors et al. (2001) and Ho et al. (2009). A very good 393 

correlation (R2>0.9) was observed between measured concentrations in this study and the emission 394 

factors calculated by Wingfors et al. (2001) for a road tunnel in Gothenberg, Sweden. This can 395 

possibly be attributed to similarities in tunnel characteristics, sampling techniques, traffic fleet 396 

composition (vehicle types and fuel compositions) and emission controls measures present in the 397 

two locations.  398 

 399 
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No correlation was found between measured concentrations in the QT and the emission factors 400 

derived by Ho et al. (2009) in the Shing Mun Tunnel, Hong Kong. This suggests very different 401 

traffic fleet composition, emission control measures and/or fuel formulations exist between the two 402 

locations and this causes considerable differences in PAH emission profiles. 403 

 404 
Measured concentrations of OPAHs and NPAHs in road tunnels are relatively lacking in the 405 

literature. Gorse et al. (1983) measured 1NPyr concentrations in the Allegheny Mountain Tunnel in 406 

Pennsylvania, USA in 1981. The maximum reported concentration was ~3 times lower than the 407 

mean concentrations measured in the present investigation (QT and PdPT). Benner (1988) 408 

measured mean concentrations of ~0.3 ng/m3 for 1NPyr and 9NAnt in the Baltimore Harbour 409 

Tunnel in 1985, in good agreement with the levels observed in the present study.  410 

 411 
 412 
3.3 Comparison of chemical profiles of both investigated tunnels  413 

Particulate phase PAH, OPAH and NPAH chemical profiles obtained for both tunnels are presented 414 

in Figure 1.  415 

 416 
OPAH chemical profiles were similar for both tunnels. Significant differences in the contribution of 417 

specific substances were observed for PAHs and NPAHs. For instance, larger contributions of Pyr 418 

and 1NPyr were observed for the PdPT while the contributions of heavier PAHs (BPy, IPy, Cor) 419 

and 9NAnt were lower than in the QT. Differences observed could be explained by the national 420 

traffic fleet differences between both tunnels with a significant higher proportion of diesel vehicles 421 

in France (PdPT, up to 80%) and, conversely, a larger proportion of gasoline cars in U.K. (QT, 422 

about 66%). Pyr (Ratcliff et al., 2010; Zhu et al., 2003) and especially 1NPyr (Paputa-Peck et al., 423 

1983; Hayakawa et al., 1994; Zielinska et al., 2004a,b; Schulte et al., 2015), are compounds mainly 424 

associated with diesel emissions while heavier PAHs are described in the literature as compounds 425 
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mainly emitted by gasoline engines (Li and Kamens, 1993; Miguel et al., 1998; Rogge et al., 426 

1993a). 427 

Complete profiles obtained at PdPT taking into account all the quantified OPAHs or NAPHs are 428 

presented on Figures S6 and S7. 1-Naphthaldehyde and benzanthrone were the dominating 429 

compounds for OPAHs. Among all the quantified NPAHs, 1NPyr was the dominating and sole 430 

contributor to the NPAH chemical profile in such a highly diesel impacted environment. These 431 

findings suggest the use of this compound as specific diesel exhaust marker for aerosol source 432 

apportionment studies (Schulte et al., 2015). 433 

 434 
 435 
3.4 Gas-Particle Phase Partitioning of PAH, OPAH and NPAH 436 

The phase partitioning behaviour of PAH, OPAH and NPAH in QT and ambient measurements are 437 

different (Table 1).  438 

 439 
For most LMW 3-ring compounds and HMW 5+ ring compounds, the proportion of compounds in 440 

the particle phase in the QT is similar to that observed at background site EROS. However, semi-441 

volatile compounds (e.g. Pyr, Flt, Ret, 9F, AQ, MAQ, 2NFlo) display markedly higher proportions 442 

in the particle phase in the tunnel than in the ambient atmosphere. The phase partitioning behaviour 443 

of PAH, OPAH and NPAH as a function of compound MW is therefore markedly different for the 444 

tunnel and ambient samples (Figure 2) with greater proportions of each compound class present in 445 

the particulate phase. 446 

 447 
Higher particulate phase contributions may reflect the more dominant role of direct emissions from 448 

vehicles in the tunnel, which may be associated to a greater extent with fine particles (Albinet et al., 449 

2008b). Zielinska et al. (2004a) suggest that Flt and Pyr emissions were predominantly in the gas-450 

phase when vehicles were idle or at low engine loads but at higher vehicle load, a much larger 451 

proportion of these compounds were present in the particulate phase, particularly for diesel 452 
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vehicles. This could indicate vehicles in the tunnel were operating under relatively higher load, thus 453 

contributing to higher particulate concentrations of these compounds. However, lower daytime 454 

temperatures and higher particulate matter concentrations in the tunnel favour partitioning into the 455 

condensed phase (Yamasaki et al., 1982) and this is a more likely explanation. 456 

 457 
Retene (Ret) is not commonly associated with road traffic (Wingfors et al., 2001) and is typically a 458 

marker for wood combustion (Ramdahl, 1983) and recently described as highly emitted during coal 459 

combustion (Shen et al., 2012a). The lower Ret concentrations observed in the QT relative EROS 460 

suggest non-traffic sources dominate and transportation of Ret from the ambient atmosphere outside 461 

the tunnel may be responsible for observed tunnel concentrations. The higher proportion of Ret in 462 

the particulate phase in the tunnel relative to EROS is therefore unlikely to be source-driven. This 463 

observation supports the argument that temperature and particle loading are the dominant factors, as 464 

suggested above.  465 

 466 
3.5 Comparison of QT and Ambient Concentrations  467 

It is assumed that concentrations of PAHs, OPAHs and NPAHs measured in the tunnel result 468 

entirely from on-road vehicular emissions (including exhaust and non-exhaust emissions). 469 

Comparing levels of compounds measured in the QT with those observed at the background site 470 

EROS (tunnel/ambient ratios) will allow the assessment of other influencing factors (e.g. non-traffic 471 

sources, relative rates of atmospheric loss processes) to their overall and relative concentrations in 472 

the urban atmosphere. The tunnel/ambient ratios measured in the present study are shown in Figure 473 

3. It can be seen that these ratios vary considerably for different individual compounds. 474 

 475 
 476 
Mean total PAH concentration was ~4.5 times higher in the tunnel than the mean concentration at 477 

EROS. Similarly, Kim et al. (2012) noted that PAH concentrations were ~6 and 10 times higher in 478 

the Bukak Tunnel in Seoul, South Korea, than were measured at an ambient roadside location 479 

during spring and winter respectively. Wingfors et al. (2001) also noted total PAH concentrations in 480 



20 
 

the Ludby Tunnel in Gothenburg, Sweden were an order of magnitude higher than those measured 481 

in heavily trafficked urban areas. These observations are generally consistent with the lower rate of 482 

dispersion and lower chemical reactivity in the tunnel environment compared with the ambient 483 

atmosphere.  484 

 485 
The considerable variability in tunnel/ambient ratios between different PAHs, can be attributed to 486 

differences in traffic source contribution at the ambient site, physiochemical properties, and/or 487 

relative reactivity rates of individual PAH compounds. The only PAH compound to exhibit a 488 

tunnel/ambient ratio of <1 was Ret. This is consistent with this compound resulting primarily from 489 

wood or coal combustion used for residential heating in this period rather than road traffic (Shen et 490 

al., 2012a; Bari et al., 2010; Fine et al., 2002; McDonald et al., 2000; Ramdahl, 1983). 491 

 492 
LMW (3-4 ring) compounds Flo, Phe, Ant, Flth, Pyr display relatively low (3 to 4.5) tunnel/ambient 493 

ratios. Given that these compounds, are expected to be relatively abundant in traffic emissions this 494 

observation is somewhat surprising. For example, Phe, Flt and Pyr are the dominant PAHs in diesel 495 

exhaust (Ratcliff et al., 2010; Zhu et al., 2003 and PdPT results) and therefore may be expected to 496 

display enhanced ratios. This observation suggests non-traffic sources (e.g. domestic wood and coal 497 

combustion or revolatilisation of pollutants from road and or soil/vegetation surfaces) may 498 

contribute significantly at the ambient site, resulting in relatively low tunnel/ambient ratios.  499 

 500 
It has been previously been indicated that PAH concentrations measured in the U.K. atmosphere 501 

can be influenced by the secondary input due to volatilisation from soil, vegetation and/or road 502 

surfaces (Dimashki et al., 2001; Harrad and Laurie, 2005; Lee and Jones, 1999). For example, Lee 503 

and Jones (1999) noted a significant positive correlation between the concentration of Phe, Flt and 504 

Pyr and temperature in a semi rural site in northern England, indicating the possibility of 505 

temperature-driven evaporation from vegetation and/or soils influencing concentrations.  506 
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Evidence for secondary surface volatilisation at the Birmingham University site has been discussed 507 

by Dimashki et al. (2001) and Lim et al. (1999). It was indicated however, that volatilisation from 508 

surfaces was more significant in the city centre than at the University site. However, it is possible 509 

that PAH concentrations at the EROS background site are influenced by secondary input from 510 

surface volatilisation and that this has influenced the observed tunnel/ambient ratios of LMW 511 

PAHs.  512 

 513 
Interestingly, the tunnel/ambient ratio of Flt is higher than that of Pyr, despite higher OH reactivity 514 

noted for Pyr relative to Flt (Atkinson et al., 1990; Brubaker and Hites, 1998). This may suggest Pyr 515 

concentrations at EROS may be ‘buffered’ by volatilisation from soil or vegetation surfaces to a 516 

much greater degree than Flt resulting in lower tunnel/ambient ratio. 517 

 518 
The tunnel/ambient ratio of Acy is considerably higher than those of other PAHs. This is consistent 519 

with relatively high gas-phase OH reactivity of this compound (Brubaker and Hites, 1998; Reisen 520 

and Arey, 2002). The lack of direct sunlight inside the tunnel is likely to result in minimal 521 

reactivity, leading to enhanced ratios. However, while Ant is shown to display similarly fast 522 

reactivity towards OH (Brubaker and Hites, 1998), the observed tunnel/ambient ratio is lower than 523 

expected. This may suggest the ambient concentration of Ant is substantially influenced by non-524 

traffic sources, either primary or non-combustion related. 525 

 526 
Most HMW PAHs (MW>228) display relatively high tunnel/ambient ratios compared with LMW 527 

PAHs. BaA and Chr display particularly high ratios compared with other PAHs, which may reflect 528 

a relatively low contribution of non-traffic sources of these compounds at the ambient sites, and/or 529 

low atmospheric reactivity. 530 

 531 
The relative differences in tunnel/ambient ratios between HMW PAHs may arise in part from the 532 

relative stability of these compounds towards atmospheric degradation. For example, BaP displays a 533 
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relatively high tunnel/ambient ratio compared with other 5 ring PAH compounds. This may be 534 

attributed to greater susceptibility of BaP to heterogeneous reactivity in the ambient atmosphere 535 

(Jariyasopit et al., 2014a; Ringuet et al., 2012b; Cazaunau et al., 2010; Perraudin et al., 2007). 536 

 537 
DBA displays a relatively low tunnel/ambient ratio. This is consistent with a relatively low input 538 

from road traffic, as indicated by Jang et al. (2013) who assessed a ‘traffic’ profile at London 539 

monitoring sites, and may indicate an alternative seasonally-dependent combustion source 540 

influencing the ambient sites.  541 

 542 
The low (<1) ratios observed for BaAQ indicate that this compound is not emitted to a significant 543 

degree by road vehicles and is present in higher levels in the ambient atmosphere. This suggests 544 

levels of this compound observed at EROS result primarily from a non-traffic combustion source 545 

such as natural gas home appliances (Rogge et al., 1993b), wood or coal combustion (Shen et al., 546 

2013) or uncontrolled domestic waste combustion (Sidhu et al., 2005).  547 

 548 
NPAHs generally display higher tunnel/ambient ratios than unsubstituted PAHs, although there is 549 

wide variability between individual compounds. Relatively high ratios were observed for 1NNap, 550 

2NNap, 2NFlo, 9NAnt, 3NFlt, 1NPyr and 6NChy. These compounds are expected to be 551 

predominantly associated with diesel exhaust emissions (Ball and Young, 1992; Campbell and Lee, 552 

1984; IARC, 2013; Paputa-Peck et al., 1983; Rappaport et al., 1982; Schuetzle et al., 1982; 553 

Schuetzle and Perez, 1983; Zhu et al., 2003; Zielinska et al., 2004a,b with lower input from other 554 

combustion sources (WHO, 2000).  555 

 556 
The principal atmospheric loss process for NPAHs is expected to be photoreactivity including direct 557 

photolysis (Atkinson et al., 1989; Fan et al., 1995; 1996a,b; Phousongphouang and Arey, 2003; 558 

Ringuet et al., 2012b; Jariyasopit et al., 2014a). For example, Atkinson et al. (1989) noted 559 
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atmospheric lifetimes for 1NNap and 2NNap due to photolysis were ~38 and ~28 times shorter 560 

respectively than the corresponding gas-phase reactions with OH.  561 

Photolysis is not expected to occur significantly in the tunnel environment where direct sunlight is 562 

absent. It is expected that the principal source of NPAHs in the urban environment is diesel vehicle 563 

exhaust with a much lower input from other combustion sources (Ciccioli et al., 1989; WHO, 2000; 564 

Keyte et al., 2013). The very high tunnel/ambient ratios for a number of NPAH compounds may 565 

therefore reflect more rapid photolytic and/or reactive losses in the ambient atmosphere. 566 

 567 
While Holloway et al. (1987) noted relatively long photolysis half lives for 1NPyr and 3NFlt of 1.2 568 

to 6 days and 12.5 to >20 days respectively, other studies suggest this process can be a potentially 569 

significant atmospheric sink for particle-bound NPAHs. Fan et al. (1996a) derived half-lives due to 570 

photolytic decay for 1NPyr, 2NFlt and 2NPyr on diesel soot and wood smoke in an outdoor 571 

chamber of 0.8 to 1.2 hr with faster reaction noted for 1NPyr on wood smoke particles. 572 

 573 

The results of the present study suggest 1NPyr is degraded more rapidly than other NPAHs. While 574 

Fan et al. (1996a) indicated the structure of particle-associated NPAH compounds does not 575 

influence the rate of degradation, it has been suggested elsewhere that the isomeric structure of the 576 

compound does influence the rate of photolytic decay (Pitts, 1983). For example, Holloway et al. 577 

(1987) and Feilberg and Nielsen (2000) have indicated 1NPyr decays up to 10 times more rapidly 578 

than other MW 247 NPAHs.  579 

 580 
Dimashki et al. (2000) observed levels of 1NPyr and 9NAnt in the tunnel ~6  and ~2 times higher in 581 

the Queensway Road Tunnel than in the ambient urban atmosphere of Birmingham respectively. 582 

This previous study was conducted in central Birmingham during winter. The QT/EROS ratio in the 583 

present study is shown to be a factor ~10 and ~4.5 higher than the previous study for 1NPyr and 584 

9NAnt respectively. This may partly be attributed to higher input of pollutants in the city centre 585 
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compared to the background EROS site and the fact that sampling in the present study was 586 

conducted in the late summer leading to potentially faster rates of photolytic degradation in the 587 

ambient atmosphere.  588 

 589 
The tunnel/ambient ratio of 1NNap is a factor ~2.2 higher than that of 2NNap. Experimental studies 590 

indicate 1NNap will exhibit a rate of photolysis ~1.3 – 8 times higher than that of 2NNap (Atkinson 591 

et al., 1989; Phousongphouang and Arey, 2003). This would suggest the observed difference in 592 

ratios for the two NNap isomers is due to differences in the rates of photolytic degradation and the 593 

relatively long exposure time of air samples collected at EROS.   594 

 595 
The relatively low ratios observed for 7NBaA indicate only a minor contribution from traffic for 596 

this compound at the ambient site.  7NBaA has been measured in vehicular emissions (Karavalakis 597 

et al., 2009; Zhu et al., 2003). However, the previous study in Birmingham did not detect this 598 

compound in the QT but did observe measureable levels in the city centre (Dimashki et al., 2000).  599 

 600 
2NFlt and 2NPyr are expected to result from atmospheric reactions with minor input from road 601 

traffic (Atkinson and Arey, 1994). A tunnel/ambient ratio of <1 was observed for 2NFlt, consistent 602 

with little formation in the tunnel. However, 2NPyr displays a ratio of ~5 which is unexpected.  603 

 604 

3.6 Temporal Trend in PAH and NPAH in QT Concentrations  605 

Previous measurements of PAH (Smith and Harrison, 1996) and NPAH (Dimashki et al., 2000) 606 

concentrations have been made in the Queensway Road Tunnel. A comparison between the results 607 

of the present study and these previous investigations could therefore provide an assessment of 608 

temporal changes in emission profiles. Some caution is needed in interpreting theses changes as 609 

both sets of data derive from relatively short periods of measurement and hence week-to-week 610 
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variability cannot be assessed. Concentrations of OPAHs have not previously been measured in the 611 

tunnel.  612 

 613 

A comparison of total (gas + particle phase) PAH levels measured in the tunnel in 2012 and 1992 is 614 

shown in Table 3. A decline of ~85% for total PAH concentration is noted between 1992 and 2012 615 

measurements. This observation is in agreement with the historical reduction in PAH levels 616 

reported in road tunnel studies in the Unites States (Benner et al., 1989; Eiguren-Fernandez and 617 

Miguel, 2012). The magnitude of concentration reduction varies considerably between individual 618 

compounds. The majority of compounds (Ace, Flo and HMW PAHs) exhibit a decline of >90% 619 

while Phe, Flt and Pyr exhibit a decline of <80%.  620 

 621 
A number of factors have been shown to be responsible for reduction of PAHs from road vehicles. 622 

These include changes to fuel formulations (Westerholm and Egebäck, 1994) e.g. use of biofuels 623 

(Ratcliff et al., 2010) or use of additives to enhance the cetane or octane number (Williams et al., 624 

1986; Zhu et al., 2003); innovations in engine design e.g. use of three-way catalysts (Rogge et al., 625 

1993a; Schauer et al., 2002; Westerholm and Egebäck, 1994; Zielinska et al., 2004b) and 626 

improvement in exhaust emission control measures e.g. particulate filters (Hu et al., 2013), with 627 

their implementation being principally driven by increasingly strict government legislation (Perrone 628 

et al., 2014). Other factors e.g. state of vehicle maintenance and ambient conditions (e.g. 629 

temperature) are also shown to influence PAH emissions from road traffic (Zielinska et al., 2004b).   630 

 631 
The observed reduction of PAH levels in the QT can be attributed, to a large degree, to the 632 

introduction of mandatory catalytic converters to the U.K in 1993. Catalytic converters have been 633 

shown to reduce the emissions of PAHs in gasoline-fuelled vehicles by 92-99% (Rogge et al., 634 

1993a; Schauer et al., 2002; Westerholm and Egebäck, 1994; Zielinska et al., 2004b). For example, 635 

Benner et al. (1989) measured PAH concentrations in the Baltimore Harbour Tunnel, USA, a factor 636 
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5-10 lower than a study conducted 10 years earlier (Fox and Stanley, 1976). This was attributed to 637 

the introduction of catalytic converters which were first used in the USA in 1974.  638 

 639 
However, progressively stringent legislation pertaining to vehicular emissions of both gasoline and 640 

diesel vehicles is also likely to have contributed to PAH emission reductions. It is indicated that 641 

different stages of EU legislation on new vehicle emission limits (91/441/EEC) has resulted in 642 

progressively reduced PAH emissions since 1993 (Perrone et al., 2014).  643 

 644 
The relative concentration of individual PAHs has changed significantly over this period. Indeed, 645 

the combined contribution of (Phe + Flt + Pyr) to ƩPAH burden has increased from ~44% in 1992 646 

to ~72% in 2012. Gasoline-fuelled vehicles are shown to emit higher levels of HMW compounds 647 

e.g. BaP, IPy, BPy, Cor (Marr et al., 1999; Miguel and Pereira, 1989; Miguel et al., 1998) while 648 

diesel is generally shown to be a greater source of semi-volatile compounds such as Phe, Flt, and 649 

Pyr (Chen et al., 2013; Harrison et al., 1996; Miguel et al., 1998). This observation could therefore 650 

suggest a greater contribution of diesel emissions over the previous 20 years in the tunnel.  651 

 652 
In the period 1994 to 2012, the number of gasoline-fuelled cars in the U.K decreased by ~500,000 653 

while the number of diesel-fuelled passenger cars increased by ~7.8 million (DfT, 2014). This trend 654 

has seen the relative proportion of diesel cars in the U.K traffic fleet increase from ~7% in 1994 to 655 

~33% in 2012 (see Figure S3).  656 

 657 
The trend in the number of gasoline and diesel vehicles on the road is reflected in the volume of 658 

gasoline and diesel fuel supplied to the U.K market (see Figure S4) and national fuel sales. In the 659 

UK, sales of gasoline fuel decreased by ~43% between 1990 and 2011, from 33 billion litres to 19 660 

billion litres. Meanwhile the sales of diesel fuel more than doubled over this period, from ~12 661 

billion litres in 1992 to ~25 billion litres in 2011 (UKPIA, 2012). 662 
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 663 
A comparison in concentrations of four NPAHs measured in the present study in 2012 and those 664 

measured by Dimashki et al. (2000) in 1996 is shown in Table 4. The previous measurements were 665 

made on only one sampling day, while the current study is the average of four separate sampling 666 

days so comparison of results must be done with caution. 667 

 668 
In contrast to the significant historical decline noted for PAH concentrations, little or no decline in 669 

NPAH concentration is noted. The mean levels of NNap isomers measured in the present study fall 670 

within the range of concentrations measured in 1996 while the concentrations of 9NAnt and 1NPyr 671 

were within 1 standard deviation of the the lower range of concentrations measured in 1996.  672 

 673 
1NNap, 2NNap, 9NAnt and 1NPyr are all present in diesel exhaust emissions in relatively high 674 

levels (Campbell and Lee, 1984; Draper, 1986; Paputa-Peck et al., 1983; Zhu et al., 2003) and are 675 

present in low/negligible emissions from gasoline vehicles (Zielinska et al., 2004b). The increase in 676 

relative contribution of diesel vehicles in the U.K traffic fleet from 1996 to 2012 may therefore 677 

have a stronger influence on changes in observed NPAH concentrations relative to PAHs.  678 

 679 
Evidence for the increased importance of NPAH in urban air over time has been indicated 680 

previously. For example, Matsumoto et al. (1998) noted the concentration of BaP declined 681 

significantly in the period 1975 to 1992 in the heavily trafficked region of Sapporo, Japan, while the 682 

mutagenicity of collected particles remained unchanged. The authors suggested this could be 683 

attributed to an increase in diesel traffic and the possible associated increase in NPAH 684 

concentrations.  685 

 686 
The lack of increase in observed NPAH levels in the tunnel over this time may suggest that while 687 

the volume of diesel traffic has increased, the emissions of NPAHs from individual diesel vehicles 688 

may have declined. Indeed, improved exhaust after-treatment (e.g. use of catalytic devices or 689 
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particulate traps) and fuel formulation has been shown to reduce NPAH and OPAH emissions  690 

(Fiedler and Mücke, 1991; Marinov et al., 2009; Nielsen et al., 1999; Ratcliff et al., 2010; 691 

Westerholm and Egebäck, 1994; Zhu et al., 2003).  692 

 693 

The results of the present study therefore suggest that the temporal variation in PAH and NPAH 694 

concentrations in the QT have been influenced by both an increase in the number of diesel vehicles 695 

in the U.K traffic fleet and a net reduction in emissions from individual vehicles in response to 696 

changes in fuel formulation and engine/exhaust system design. The results suggest the NPAH/PAH 697 

ratio from on-road vehicular emissions in the U.K. has increased substantially in the last 20 years. 698 

This demonstrates the need to monitor more carefully the concentrations of NPAHs and their 699 

contribution to poor ambient air quality in urban areas. 700 

 701 
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TABLE LEGENDS 1224 

Table 1.  Mean±standard deviation of PAH, OPAH and NPAH concentrations measured in the 1225 
Queensway Road Tunnel (n=4), Parc des Princes Tunnel (n=9) and at EROS (n=4). 1226 

 1227 
Table 2.  Comparison of total (P+V) PAH concentrations and percentage of concentration in the 1228 

particulate phase (%P) in different road tunnel measurements.  1229 
 1230 
Table 3.  Comparison of mean total (particulate + vapour) PAH concentrations measured in the 1231 

Queensway Road Tunnel in 1992 (Smith and Harrison, 1996) and 2012 (present 1232 
study).  1233 

 1234 
Table 4.  Comparison of total (particulate + vapour) NPAH concentrations measured in the 1235 

Queensway Tunnel in 1996 (Dimashki et al., 2000) and 2012 (present study).   1236 
 1237 
 1238 
FIGURE LEGENDS 1239 
 1240 
Figure 1.  Comparison of particulate phase PAH, OPAH and NPAH chemical profiles obtained 1241 

for both investigated tunnel environments (Parc des Princes and Queenway road 1242 
tunnels; n=9 and 4, respectively). 1243 

 1244 
Figure 2.  Plots of % of component in the particulate phase vs. molecular weigh for a) PAHs, b) 1245 

OPAHs and c) NPAHs, measured in the tunnel (black dots, solid black line) and at 1246 
EROS (white dots, dotted line).  1247 

 1248 
Figure 3.  Mean ratios of concentrations measured in the Queensway Road Tunnel to those 1249 

measured simultaneously at the Elms Road background (n=4).  1250 

 1251 
1252 
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Table 1. Mean±standard deviation of PAH, OPAH and NPAH concentrations measured in the 1253 
Queensway Road Tunnel (n=4), Parc des Princes Tunnel (n=9) and at EROS (n=4). 1254 

 1255 

a – Gaseous + particulate phases, n=4 1256 
b – Only particulate phase, n=9 1257 
c - Gaseous + particulate phases, n=4 1258 
d – below quantification limit 1259 
e – 2+3-Nitrofluoranthene concentrations 1260 
nm -  not measured  1261 

 
PAHs 

Mean QT 
(ng m-3) a 

% Particle-
phase 

Mean PdPT 
(ng m-3) b 

Mean EROS 
(ng m-3) c 

% Particle-
phase 

Acy 10.0±3.7 1 nm 0.2±0.1 2 
Ace 3.3±1.6 3 0.1±0.1 0.4±0.2 4 
Flo 12.0±13.0 1 0.2±0.0 3.8±1.1 1 
Phe 81.1±25.7 5 3.8±0.6 25.8±1.3 4 
Ant 8.0±3.4 7 0.6±0.1 2.0±1.0 5 
Flt 13.6±2.9 49 6.8±1.0 3.0±1.0 10 
Pyr 11.1±3.6 67 7.5±1.0 3.7±0.6 11 
Ret 0.8±0.4 67 0.6±0.0 2.0±0.3 18 
BaA 1.0±0.1 72 0.7±0.1 0.1±0.0 69 
Chr 1.6±0.6 70 1.2±0.4 0.1±0.0 75 
BbF 0.8±0.2 88 0.8±0.2 0.4±0.2 71 
BkF 1.2±0.2 79 1.0±0.3 0.2±0.0 72 
BeP 0.8±0.1 90 0.8±0.2 0.1±0.0 77 
BaP 0.9±0.3 91 0.8±0.3 0.1±0.0 80 
IPy 0.8±0.4 95 0.9±0.4 0.2±0.1 78 

DBA 0.2±0.1 65 0.2±0.1 0.1±0.1 91 
Bpy 1.7±0.5 95 1.7±0.6 0.3±0.1 81 
Cor 0.8±0.2 99 0.8±0.2 0.1±0.0 91 

OPAHs Mean QT 
(ng m-3) a 

% Particle-
phase 

Mean PdPT 
(ng m-3) b 

Mean EROS 
(ng m-3) c 

% Particle-
phase 

9F 7.1±1.9 18 0.1±0.0 1.1±0.4 6 
AQ 3.7±1.3 94 0.2±0.0 0.7±0.2 61 

MAQ 1.7±0.5 100 0.1±0.1 0.4±0.1 78 
BaAQ 0.0±0.0 100 0.0±0.0 0.1±0.0 95 

NPAHs Mean QT 
(ng m-3) a 

% Particle-
phase 

Mean PdPT 
(ng m-3) b 

Mean EROS 
(ng m-3) c 

% Particle-
phase 

1NNap 1918±438 2 <QL d 118±58 2 
2NNap 980±816 3 <QL 135±103 2 
2NFlo 94±87 95 31±5 13±10 50 
9NAnt 294±154 88 41±11 34±16 59 
1NFlt 1916 75 nm 13±15 79 
2NFlt 9±8 100 19±14 e 11±4 83 
3NFlt 18±15 95 nm 1±0 76 
4NPyr 8±0 89 3±4 2±1 80 
1NPyr 343±148 96 287±94 5±3 86 
2NPyr 15±3 86 <QL 6±3 81 
7NBaA 2±3 94 18±13 1±1 96 
6NChr 5±2 88 7±9 0±0 94 
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Table 2. Comparison of total (P+V) PAH concentrations and percentage of concentration in the 1262 
particulate phase (%P) in different road tunnel measurements.  1263 

  This studya 
Ho et al. 
(2009)b 

Benner et al. 
(1989)c 

Wingfors et al. 
(2001)d 

 
ng m-3 %P ng m-3 %P ng m-3 %P ng m-3 %P 

Acy 10 1.2 645 0 nm nm 12 4 
Ace 3 3 1748 0 nm nm 8 15 
Flo 12 1.2 209 0.7 nm nm 46 3 
Phe 81 5 205 4 209 12 179 21 
Ant 8 7 32 4 38 14 15 51 
Flt 14 49 45 46 56 55 73 84 
Pyr 11 67 45 59 58 51 87 87 
Ret 0.8 67 nm nm nm nm 0.3 100 
BaA 1 72 5 99 8 99 3 100 
Chr 2 70 8 74 14 85 4 97 
BbF 0.8 88 1 100 11 100 1 100 
BkF 1 79 0.3 100 11 100 0.1 100 
BeP 0.8 90 0 n 5 100 1 100 
BaP 0.9 91 1 100 6 100 1 100 
IPy 0.8 95 0.2 100 5 100 0.5 100 

DBA 0.2 65 0.3 100 nm nm 0.2 100 
BPy 2 95 0 nm 8 100 2 100 
Cor 0.8 99 nm nm nm nm 0.5 100 

 1264 

a – Queensway Road Tunnel, Birmingham; Sept 2012; estimated 25 000 vehicles per day  1265 
b – Shing Mun Tunnel, Hong Kong; Weekday noon samples; summer 2003; 53 000 vehicles per day   1266 
c – Baltimore Habor Tunnel, USA; 1985-86; mechanical ventilation; traffic flow unknown 1267 
d – Ludby Road Tunnel in Gothenberg, Sweden; April 2000; 20 000 vehicles per day  1268 
nm – not measured  1269 
  1270 
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Table 3. Comparison of mean total (particulate + vapour) PAH concentrations measured in the 1271 
Queensway Road Tunnel in 1992 (Smith and Harrison, 1996) and 2012 (present study).  1272 

 1273 

  
Tunnel concentration (ng m-3) 

% Decline 1992 (n=8) 2012 (n=4) 
Acy 95 10 90 
Ace 114 3 97 
Flo 167 12 93 
Phe 333 81 76 
Ant 51 8 84 
Flt 48 14 71 
Pyr 55 11 80 
BaA 14 1 93 
Chr 26 2 94 
BbF 13 0.8 93 
BkF 5 1 88 
BaP 13 0.9 93 
IPy 22 0.8 96 

DBA 4 0.2 95 
BPy 35 2 95 
Cor 12 1 94 

∑PAH 1122 158 86 
 1274 

  1275 
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Table 4. Comparison of total (particulate + vapour) NPAH concentrations measured in the 1276 
Queensway Road Tunnel in 1996 (Dimashki et al., 2000) and 2012 (present study).   1277 

 1278 

  

Tunnel concentration (pg m-3) 

2012 (This Study) 1996 (Dimashki et al., 2000) 

1NNap 1918±461 560-2120 

2NNap 980±820 620-1570 

9NAnt 294±165 370-760 

1NPyr  343±157 440-690 

 1279 

  1280 
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 1281 

Figure 1. Comparison of particulate phase PAH, OPAH and NPAH chemical profiles obtained for 1282 
both investigated tunnel environments (Parc des Princes and Queenway road tunnels; n=9 and 4, 1283 
respectively). 1284 
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 1287 

Figure 2. Plots of % of component in the particulate phase vs. molecular weigh for a) PAHs, b) 1288 
OPAHs and c) NPAHs, measured in the tunnel (black dots, solid black line) and at EROS (white 1289 
dots, dotted line).  1290 
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 1291 

Figure 3. Mean ratios of concentrations measured in the Queensway Road Tunnel to those 1292 
measured simultaneously at the Elms Road background (n=4).  1293 
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 1296 


