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Abstract. An ensemble Kalman filter (EnKF) has been cou- and simulation errors, probably due to the large density of
pled to the CHIMERE chemical transport model in order to observation sites. From these sensitivity tests, an optimal
assimilate ozone ground-based measurements on a regionebnfiguration was chosen for an assimilation experiment ex-
scale. The number of ensembles is reduced to 20, which atended over a three-month summer period. It shows a simi-
lows for future operational use of the system for air qual- larly good performance as the 10-day experiment.

ity analysis and forecast. Observation sites of the European
ozone monitoring network have been classified using crite-

ria on ozone temporal variability, based on previous work by1
Flemming et al. (2005). This leads to the choice of specific

subsets of suburban, rural and remote sites for data aSSimHQ‘ropospheric ozone plays a major role in air pollution due

tion and for evaluation of the reference run and the assimiyg jts impact on human health and vegetation growth (WHO,
lation system. For a 10-day experiment during an ozone poly003; Felzer et al., 2004). Ozone as a strong oxidant affects
lution event over Western Europe, data assimilation allowsihe hyman respiratory system and is associated with a risk
for a significant improvement in ozone fields: the RMSE i of premature mortality (Bell et al., 2005). Cumulative ozone
reduced by about a third with respect to the reference runyptae through leaf stomata over a given threshold causes in-
and the hourly correlation coefficient is increased from 0-75jury to vegetation (Fowler et al., 2009). Among other tasks,
to 0.87. Several sensitivity tests focus on an a posteriori dizne GMES (Global Monitoring for Environment and Secu-
agnostic estimation of errors associated with the backgrouniyy nrograms foster the development of environmental mon-
estimate and with the spatial representativeness of 0bseVggyring of ozone and other pollutants using a combination of
tions. A strong diurnal cycle of both these errors with an state-of.the-art numerical models and in situ and space-borne
amplitude up to a factor of 2 is made evident. Therefore,spseryations. In this framework, the European project GEMS
the hourly ozone background error and the observation erGiohal and regional Earth-system Monitoring using Satel-
ror variances are corrected online in separate assimilatiofyte and in-situ data) and the follow-up projects MACC and
experiments. These adjusted background and observationgiacc | (Monitoring Atmospheric Composition and Cli-
error variances provide a better uncertainty estimate, as Velhate, http://www.gmes-atmosphere.promoted and con-
ified by using statistics based on the reduced centered ranin e to promote monitoring of atmospheric constituents

dom variable. Over the studied 10-day period the overalliom global to regional scale at a high spatio-temporal reso-
EnKF performance over evaluation stations is found rela-j tion (Hollingsworth et al., 2008).

tively unaffected by different formulations of observation

Introduction
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Operational forecasting systems of regional air quality hand of the background error covariance matrix (BECM) and
are generally based on modeling platforms in synergy withon the other hand of the observation error covariance ma-
observations for evaluation, model post-processing and/otrix (OECM). The relative values of the BECM and of the
data assimilation. A review of such platforms has recentlyOECM in the observation space allow weighting of the confi-
been performed by Kukkonen et al. (2012). They are of-dence between observations and background estimate. In ad-
ten based on regional chemical transport models (rCTMsMition, the BECM matrix will serve to propagate the innova-
whose deterministic forecasts are driven in real time by antions (observed value minus background one) spatially. The
offline or online numerical weather forecast model provid- principal origin of uncertainties in rCTMs are model param-
ing meteorological fields and by global CTMs for chemi- eterizations (chemistry, transport, deposition) and input data,
cal boundary conditions. Among these air quality forecastingwhich include emissions, meteorological fields and chem-
systems, the PREV'AIR platformwivw.prevair.org Rouil ical boundary conditions (Beekmann and Derognat, 2003;
et al., 2009) delivers daily air quality forecasts of pollutant Mallet and Sportisse, 2006). Thus, the sensitivity to these
concentrations such as ozone, nitrogen oxides and partidactors and the fact that some species are transported out of
ulate matter. This computational chain involves the rCTM the limited model domain reduce the importance of initial
CHIMERE (Schmidt et al., 2001; Bessagnet et al., 2004;conditions in the overall error budget (Blond and Vautard,
Menut et al., 2013) on the continental scale (Europe) and2004; Sandu and Chai, 2011). In order to obtain an accu-
over a French domain. The regional scale simulations basethte 4-D analysis, a strategy consists in the correction of in-
on the CHIMERE model have been widely evaluated againstirect or possibly unobserved quantities such as emissions
measurements and give satisfactory results, particularly toates or even wind fields using variational (Elbern et al.,
simulate ozone peaks (Honoré et al., 2008). In addition t02007; Semane et al., 2009) or sequential methods (Brunner
model simulations, analyses resulting from data assimilatioret al., 2012; Miyazaki et al., 2012) such as Kalman filters.
of observations in near real time provide a better representaHowever, if surface ozone observations are assimilated into
tion of the surface pollutant concentrations. a one-hour frequency, this reduces the importance of the er-

One of the challenges of these air quality modeling chainsror growth during the forecast.
is to provide uncertainties and errors associated with the In this study, an ensemble Kalman filter (EnKF) method is
modeling results. These uncertainties can be estimated bgmployed to correct the near surface ozone fields directly. To
the comparison of simulations obtained by different mod-do this, background and observation errors need to be esti-
els and the same sets of observations. For instance, modetated. An ensemble of simulations following a Monte Carlo
simulations have been compared against ozone surface olapproach is used to determine a flow-dependent BECM ma-
servations in Europe (Vautard et al., 2007, 2009) and in thdrix. In former studies, improving the background error rep-
United States (Solazzo et al., 2012b) in the context of theresentation greatly helped in increasing the analysis accuracy
AQMEII (Air Quality Model Evaluation International Initia- and the forecast performance of the EnKF (Constantinescu et
tive). Ensembles of model simulations and their statisticalal., 2007a, b; Wu et al., 2008; Agudelo et al., 2011; Tang
combinations have also been evaluated against satellite olet al., 2011; Curier et al., 2012). One approach employed
servations for tropospheric NQQHuijnen et al., 2010) and to construct a representative background ensemble was to
O3 (Zyryanov et al., 2012). These studies helped to identifyperturb the main model parameters affecting the ozone er-
if uncertainties given by the ensemble spread can represemor variance and correlation (Hanea et al., 2004). Another
the error distribution for instance in terms of geographical strategy employed in data assimilation is to adjust the BECM
and temporal patterns. iteratively using diagnostics such as Desroziers diagnostics,

Data assimilation methods, which consist in the integra-which derive background errors intrinsically from the assim-
tion of chemical observations in the simulations, are now rec4lation procedure (Desroziers et al., 2005; Schwinger and El-
ognized as crucial in the air quality community (Carmichael bern, 2010).
et al., 2008; Zhang et al., 2012). After pioneering workinnu- The rCTM CHIMERE that is used in this study has al-
merical weather predictions such as the 4D-Var (Talagrandeady been successfully coupled to a local EnKF square
and Courtier, 1987; Courtier and Talagrand, 1987), assimilaroot scheme (Evensen, 2004) in order to assimilate tropo-
tion methods already developed for meteorology have beepheric ozone columns derived from the IASI instrument
successfully applied to air quality simulations and were fo-(Coman et al., 2012). In this paper, we assess the setup of the
cused in particular on ozone pollution. These are optimal in-CHIMERE-ENKF in the context of the assimilation of sur-
terpolation (Ol, Blond et al., 2003), the 4D-Var (Elbern et face ozone data. We have built a consistent ensemble of as-
al., 1997), the ensemble Kalman filter and the reduced ranisimilation and evaluation stations for a summertime episode
square root filter (RRSQRT, Van Loon et al., 2000; Hanea(Fig. 1). According to the model resolution, the observation
et al., 2004). These data assimilation methods can also berror is mainly due to the site representativeness for ozone,
used to improve the short-term forecast (Blond and Vautardwhich depends on space and time. The observations data set
2004; Elbern and Schmidt, 2001). The two key points of thecan be thinned a priori according to a rigorous classifica-
data assimilation process are the representation on the on@n (Curier et al., 2012) and/or estimated in the assimilation
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2 The CHIMERE-ENKF data assimilation setup and
diagnostics

o Background (evaluation)
o Rural (evaluation)
o Suburban (evaluation)
o Odense

Background (assimilation)
« Rural (assimilation)
«  Suburban (assimilation)

2.1 The EnKF algorithm

We implemented the EnKF that was first introduced by
Evensen (1994). This sequential filter allows a relatively
simple implementation of a sophisticated data assimilation
scheme appropriate for a large three-dimensional model such
as CHIMERE. We created an ensemble\ot= 20 perturbed
model states using a Monte Carlo method. They evolve for-
ward in time in order to obtain a forecasf;k from the time

step & — 1) to the time step.

. D < - A, i a a
B ew 35°€ xi,k =M (xi,k—l +q[vk—1xi,k—1)

whereg; x—1 = sd * 3; k1. 1)

Fig. 1. Modeled domain with sites retained for assimilation (filled

circles) and validation (filled in white circles). Colors indicate the are of represents the vector of forecasted ozone concen-
station type with red for suburban, blue for rural and green for baCk'trationgliNhere the subscripindicates the ensemble number

ground/remote stations. The rural evaluation station for which the . . .
S R . . Ozone concentrations at the next time step are simulated us-
o0zone concentration time series is plotted in Fig. 6 (located in the,

city of Odense in Denmark) is shown as a square filled in cyan. ing the CH,IMERE mOdeM} The noiseg; -1 is the prOd',
uct of spatially correlated fieldg; x—1 and a tunable coeffi-

cient with a relative standard deviation (SD). Pseudo-random
procedure following a parameterization dependent on stafields @i «—1) are derived from a two-dimensional Gaus-
tion types (Elbern et al., 2007). Then a first focus of this sian distribution with some fixed characteristics, namely zero
paper is to assess the impact of the observation representf€an and unitary variance (Evensen, 1994, 2003) and a fixed
tiveness on the assimilation performance. Following Flem-horizontal decorrelation length of 200 km (Boynard et al.,
ming et al. (2005) (hereafter denoted FLEMO5), we have2011; Coman et al., 2012). This parameter is close to the
performed a classification of the ozone stations that give a/alue of 270km used in several other studies (Chai et al.,
qualitative estimation of spatial representativeness. A sec2007; Constantinescu et al., 2007c; Frydendall et al., 2009)
ond focus is to investigate different formulations and diag_and in any case our results are similar to both values. These
nostics of the model and observation error and their impacPerturbations are added to the ozone fields after the analy-
on the assimilation skills. In particular, we study the diur- Sis step. As suggested in Sandu and Chai (2011), the same
nal variation of these errors. We investigate sensitivities tonoise is applied for all vertical layers inside the calculated
the BECM properties by perturbing both model parametersboundary Iayer and thus induces a vertical correlation in the
and the ozone state and by using the Desroziers diagnostackground error. The ensemble mean value oventen-
to estimate and tune the covariance inflation factor (Li et al.,Semble members is defined in E@):(

2009b). We also diagnose the observations error variance to N
evaluate its temporal variation as a function of the observa-fz =— Zx‘;,k. 2
tion types defined by the classification. In addition, we have i=1

tested an alternative way of the prescription of the OECM At the analysis step, the BECM is approximated by the
by using the Desroziers diagnostic. We compare the perforensemble spread over thé realizations of the model at a
mance of the assimilation system using these different errorgjiven time:

formulations for a 10-day simulation over Europe including a N

photochemical episode. The ensemble Kalman filter assimip;{ — 1 Z(xt el —x )T ©)
lation setup, including a description of the rCTM CHIMERE N & et b

and the a posteriori diagnostics is described in Sect. 2. We Then, measurements; are available along with the

present the classification of the surface ozone observationg = ~M_notedr: each ensemble member is updated follow-
in Sect. 3. Section 4 shows the evaluation of the CHIMEREing Eq. @): '

reference run. Different assimilation experiments of a short 1

period are presentgd in Sect. 5, wh!le an ozone analysis fqr 2 = x?k + p;{HkT (HkPLHkT + Rk) (yi — ngk), (4)

longer summer period is evaluated in Sect. 6. The conclusion

and future directions are given in Sect. 7. where H is a projection operator from the model space to
the observation space. In our case, it is a bi-linear interpo-
lation of the closest model grid cells values onto the obser-
vation location. Equation5) yields an analysis model state
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xﬁk, which is used for the initialization of the next forecast. (Eq. 1) by treating model and analysis error contributions
The background error covariance matrix is also updated ain the same framework. Finally, the ensemble design must

the analysis step using the following formula: reflect the background error and generate adequate error cor-
relations. This goal is difficult to achieve, as processes af-
pa—=pl — Pl T (HkPLHkT + Rk)_lHk Pl (5)  fecting model error sources are often not well known and/or

estimated. Because of the chaotic structure of the atmosphere
In an ensemble Kalman filter algorithm, the analysis er-and the ocean dynamics, the errors were first naturally rep-

ror statistics are given through the analysis procedure. On&eSented by a set of perturbed initial conditions (Evensen,
of the drawbacks of this method is the introduction of sam-1994). One way to build the ensemble in the EnKF frame-
pling errors due to the limited ensemble size. This leads to arfOrk consists of applying a perturbation to the state vector,

underestimation of the analysis errors caused by an artificial’®"® the 0zone concentration fields. Furthermore, the model
decrease of the ensemble variance in Bjjahd to spurious error can be approximated by the perturbation of physical pa-

correlation in the analyzed fields. This makes it necessaryameters and uncertain inputs of the model to set up a more
to localize spatially the analysis, in order to prevent long- Physically sound model ensemble, as initiated by the work
range spurious correlation (Houtekamer and Mitchell, 2001:0f Hanea et al. (2004). This approach is also tested in our
Hamill et al., 2001). The first approach to achieve this covari-Study, but the noise is not updated during the analysis step.
ance localisation is based on the introduction of a distancd™©" the CHIMERE model, following the work of Boynard
correlation in the BECM or in the observation error covari- €t @l- (2011), we add stochastic perturbations to the uncer-
ance matrix (OECM) that smoothes the gain progressively!&in INputs, namely .anthropogenlc and biogenic emissions,
to zero when distances between observations and model grid® Poundary conditions, the land use for dry deposition, and
cells increase. In our study we use a second method, whicin€teorological variables (Table 1). - _
is known as local analysis. Only observations within a fixed Concerming ozone assimilation with an EnkF, Constanti-

area around the analyzed cell are assimilated. Despite the[f€SCU €t al. (2007b) have shown that the most efficient way
different algorithms, covariance localization and local analy-© Maintain a sufficiently dispersive ensemble was to apply

sis yield similar results (Sakov and Bertino, 2010). Thus, at2" aqditive pertu'rbation for thg covariance inflation. Rather
each analysis step and for each grid cell, we perform a locaih@n just evaluating the consistency of the background er-
analysis with a horizontal cut-off radius of 250 km around 'O Weight in the analysis, we propose here also to use the
the analyzed cell. In the vertical, levels completely or par- D€sroziers etal. (2005) diagnostics to derive the background
tially located within the boundary layer are included. These®/TOr variance. In practice, diagnostics are computed in the
choices are made to avoid spurious correlation, as the enser@PServation space overobservations following Eq.§] for
ble size is quite low. Only three-dimensional fields for ozone the background error:
are included in the state vector at the analysis step. 12

There are two types of algorithms to solve Eq§. 4nd  (op)? = =) (yls’ﬂ_ yf> (0 —yh. 6)
(5): the stochastic EnKF, where observations are treated as Pi3
random variables (Burgers et al., 1998; Houtekamer and

Mitchell, 1998; Evensen, 2003) and several forms of deter- _Baec_ause they require the analyzed ensemble nyéan
ministic EnKF that use a square root decomposition of the/7X” (in the observation space), and the observatiéhand

_f . .
background error covariance matrix (Whitaker and Hamill, the forecasted ensemble megin= Hx' (in the observation
2002; Tippett et al., 2003; Evensen, 2004; Hunt et al., 2007 SPace), these quantities have to be computed a posteriori. The

and reference therein). These square root filters avoid th@PServation error can also be diagnosed following Ej. (
need to apply measurement perturbations and thus have a

P
lower _analysis error by reducing this additional source of (5,)2 = = Z(ylo — yla) 0P — ylf), (7)
sampling errors. Piz1
2.2 A posteriori diagnostics and error modeling The difference in these two equations is represented by the

first term of the product. Diagnosed background or observa-
In an EnKF, the background error is sampled by an en-tion errors will be small if the analysis estimate is close to the
semble of model realizations, which has the advantage obackground or observations, respectively. The background
evolving in time (in contrast to a static BECM associated error variance has been diagnosed in a variational framework
with Ol methods). As mentioned above, with finite and gen-for the assimilation of total ozone columns in global CTMs
erally small ensemble sizes, and due to significant mode(Massart et al., 2012; Schwinger and Elbern, 2010) and sur-
errors, the EnKF generally underestimates the analysis erfface ozone observations (Jaumouillé et al., 2012). In Li et
ror covariance matrix. Also, errors are increased due to thel. (2009b), the suggested tuning strategy of the covariance
model error during the forecast step. Thus, a particular stratinflation factor in EnKF consists in adaptively adjusting the
egy must be employed to inflate the ozone perturbationsmodel error standard deviation prescription. The ability of

Geosci. Model Dev., 7, 28302 2014 www.geosci-model-dev.net/7/283/2014/
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Table 1.Description of the model input field perturbation. Uncertainties are modeled by a log-normal perturbation with a prescribed standard
deviation and a fixed spatial-tempora) @ecorrelation length.

Parameter Standard deviation  Decorrelation length T

Boundary conditions

Top 30% 800 km 6h
Lateral 30% 3 kmx 500 km 6h
Dry deposition (9 land-use types) 25% 4000 km 6h
Anthropogenic emissions 50 % 800 km 6h
Vertical diffusion coefficient 40% 800 km 6h
Attenuation coefficient 20% to 100 % 800 km 6h
Photolytic rate 20 % (no clouds)

Biogenic emissions 30% 800km 24h
Temperature 1% 800 km 6h

the tuned ensemble to represent more accurate error stati®:3 The CHIMERE regional chemistry transport
tics has been demonstrated in assimilation exercises that take  model
into account different ranges of true background errors (Li
et al., 2009b). However, this error estimation requires (as th&cHIMERE is a state-of-the-art rCTM wivw.Imd.
whole assimilation procedure) that the forecast model mearpolytechnique.fr/ichimereMenut et al., 2013). The general
bias is small in practise. Besides, an accurate prior estimatéormulation and the first evaluation on a regional scale were
of these observations and background error variances allowgresented by Schmidt et al. (2001). Our simulations cover the
their simultaneous estimation, although the solution is notEuropean continental domain (Fig. 1) for eight hybrid f)
unique (Li et al., 2009b; Schwinger and Elbern, 2010). vertical levels from 995 hPa to 500 hPa (the height at the top
In addition, we propose to use an appropriate diagnosti®®feach boxis onaverage:42m, 115m, 240m, 455m, 838 m,
of the ensemble design, useful to compare the different ex1520 m, 2820 m and 5500 m). To reduce computational time,
periments, which is the reduced centered random variabléve worked on the 0:5x 0.5 horizontal grid spacing; also,
(RCRV) diagnostic (Candille et al., 2007). For each observa-2erosols are not included in the simulation. Meteorological
tioni of the system, the RCRV is defined by the ratio betweenvariables are obtained at 072% 0.25 resolution from the

the innovation and its associated error: Integrated Forecasting System (IFS) of the European Centre
o _ for Medium-Range Weather Forecasts (ECMWF). Analyses
RCRV — y; —Hx . ®) at OQ:OO uT _and 12:00UT and three-hourly output fo_recasts
\/m are linearly interpolated on an hourly basis and bi-linearly
0 b interpolated on the CHIMERE spatial domain. The PBL

Innovations are the differences between the observationB€i9ht parameterization is described in Menut et al. (2013);
1 the stable case, it is diagnosed followingkadiffusion

and the forecasted ensemble mean at the observation locH! h h h ol
tion. Errors are estimated by the square root of the sum of Obgpproach _(Troer:j _and Ma rt,b|1986) andha_ t ermg plume
servation error variancerf) and background error variance approach Is used in an unstable case (C e|_net and Teixeira,
(represented by the ensemble variamge), Here the obser- 2003). Biogenic emissions are calculated using the MEGAN

vation error variances(2) is set to 25 ppbfor all experiments model (Guenther et al., 2006; Curci et al.,, 2009) and hourly

. . anthropogenic emission fluxes are derived from the TNO
(cf. Sect. 5.1); packground engemble mean and Va”a]@e ( . (http://www.tno.nlj inventory (Visschedijk et al., 2007). The
are calculated in the observation space. For a representati

. . OZART 3.5 (Kinnison et al., 2007) global chemical trans-
ensemble (i.e., when errors variances are comparable to the

innovations), the RCRV should be normally distributed with port model running at 1.875« 1.878 has. been coupled
- to IFS (Flemming et al., 2009) and provides global trace
a zero mean and a standard deviation of 1. The mean of the

RCRYV indicates the weighted bias of the one-hour forecastd2S compositions on an hourly pa3|s fog, @O, HCHO,
o ; ; . NOy and SQ. In this way, we obtain three-hourly boundary
It is important in an EnKF framework, since systematic er-

rors are not taken into account in the analysis formulation conditions that are temporally and spatially interpolated on

However, the analysis allows globally an initialization of the the CHIMERE grid.
ensemble forecast from an unbiased ozone state.

www.geosci-model-dev.net/7/283/2014/ Geosci. Model Dev., 7, ZBR2-2014
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3 Characterization of the surface observations on a set of German stations (Fig. 2 and Table 2). We plot-
ted in Fig. 2 the daily ozone profile obtained for the sum-
Ozone observations used in this study are operated byner of 2009 averaged over each type of observation. Com-
national and regional networks across Europe and colpared to the yearly average, the summertime suburban pro-
lected through the European Environment Agency (EEA) infile shows a higher ozone concentration in the daytime while
the Airbase databasht{p://acm.eionet.europa.eu/databases/keeping the lowest nighttime ozone level, which is in accor-
airbase). A classification of 0zone measurement sites corre-dance with the variability criterion. Thus, differences in aver-
sponding to their representativeness is crucial for their useage ozone concentrations between station types are more im-
within the data assimilation procedure (cf. Sect. 5.1), eithemportant in the early morning and are weakest at 15:00 UTC,
for assimilating observed information (assimilation sites) orwhen all observation types reach similar daily maxima. Ob-
for evaluating analyzed fields (validation sites). Rather thanservations associated with the lowest daily variability are
relying on a station type classification of EEA (see for in- mostly representative of a remote environment instead of a
stance the European Union directive 2008/50/CE), we derivanountainous one because we reject stations located above
here a classification defined by a specific criterion related800 m height. Remote stations located between 300 ma.s.l.
to ozone concentrations. The area of representativeness agnd 800 m a.s.l. exhibit a higher baseline in 0zone concentra-
sociated with a station depends on the chemical and physitions probably associated with the tropospheric ozone verti-
cal sources and sinks of the compound of interest. This areaal gradient (Chevalier et al., 2007). These stations are there-
can be estimated knowing the surrounding emission intenfore discriminated from the remaining remote ones. The lat-
sity and atmospheric and surface fluxes such as depositioter are shared between remote continental and coastal sta-
rates and vertical mixing (Henne et al., 2010). This spatialtions under the influence of generally rather clean marine air
representativeness can be characterized using metadata sutiasses such as the Mace Head station in Ireland. Finally, the
as population density, land cover, emission inventories, to-use of the P50DV statistics can be extended to the whole of
pography and transport model results (Tarasova et al., 2007Europe with some exceptions; for instance, we can notice
Spangl et al., 2007; Henne et al., 2010). Another, much simthat remote stations with low ozone variability that are lo-
pler approach is based on the identification of the pollu-cated in Scandinavia do not have the highest daily mean, as
tion regime following statistics of the ozone concentrationsusually observed for remote stations. Furthermore, we note
themselves (FLEMO5, Joly and Peuch, 2012). In this paperthat the geographical distribution of the stations is coherent
we choose this approach because it has the advantage wiith their attributed environment (Fig. 1); for example, sub-
being directly targeted on the pollutant of interest (ozone)urban stations (red circles) are often located in high emission
and because it does not require any other metadata. Theegions close to urban areas such as Paris, Berlin or in the Po
FLEMOS5 classification is based on only two criteria, which Valley. Also, as seen from Table 2, results obtained with the
are the yearly median (P50) of the daily average (P50DA)FLEMOS5 approach are often consistent with the Airbase clas-
and of the daily variability (P50DV), which is the difference sification: around 90 % of the remote stations (FLEMO5) are
between the daily maximum and minimum divided by the rural (Airbase) and more than 80 % of the suburban stations
daily average (DA). Based only on the summertime P50DV (FLEMO5) are also “suburban” or “urban” in Airbase. How-
statistics (Table 1 in FLEMO5), we derive four station types ever, discrepancies are found in the ozone categorization with
from the entire set of available background Airbase stationgespect to the standard classification. For instance, the effect
with an altitude below 800 m above sea level (a.s.l.). Theseof the urban environment on ozone concentrations for many
are remote/mountain stations (P50B\0.68), rural stations  “urban” Airbase sites is small enough so that these sites are
(0.68< P50DV < 1.07), suburban stations (namely “U1” in still representative of a larger environment: these sites con-
FLEMOS5, 1.07< P50DV< 1.45) and urban stations (corre- stitute around 40 % of our (FLEMO5) total rural sites. Thus,
sponding to “U2”, “U3” and street (“S”) classes in FLEMO5, the classification procedure applied here allows us to obtain
P50DV> 1.45). According to this method, we find that the a significantly larger observational database than the initial
ozone hourly mean over each station type decreases whetlassification proposed by Airbase.
variability increases (Table 2). In the FLEMO5 classification,
generally high levels of N@and low levels of ozone are
found in densely urbanized areas and the inverse is true i@ Selection of the simulation period and evaluation of
rural and remote areas. This feature will be important later  the reference
in the paper when we will use different types of stations for
the validation of the assimilation procedure. Urban stationsUsing the model configuration described above, a reference
that have the highest daily variability are considered as nosimulation is performed for the period running from mid-
representative of the model grid spacing used for this studyMay to the end of August 2009. We evaluate the simu-
(0.5° x 0.5°); we will neither use these data for evaluation lated ozone fields against the selected set of observations for
nor for assimilation. The general behavior of the 0zone mearJune/July/August (JJA) 2009 including the period for which
and variability is close to the findings of FLEMO5 based assimilation experiments are performed from 14 August to
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Table 2. Number of stations, daily mean and median of the daily variability (P50DV) average over the different station types (lines) of the
FLEMOS classification (remote, rural, suburban). The number of corresponding stations in the initial Airbase (right columns) classification
(rural, suburban, and urban) is also indicated with the relative contribution (percentage) of the new station type.

N mean (ppb) P50DV Rural Suburban Urban
(period: JJA 2009) (period: JJA 2009) N&E405) (N =256) (N =391)
remote &300m) 47 38.8 0.56 42 (89 %) 4 (9%) 1(2%)
remote 300m) 42 36.5 0.58 32(76%) 3 (7 %) 7 (17 %)
rural 228 33.2 09 98(43%) 40(18%) 90 (39%)
suburban 376 31.6 117 63(17%) 70(19%) 243 (65%)
urban 359 30,1 146 170(47%) 139(39%) 50 (14 %)

square error (RMSE) for the JJA period. Statistics over the
whole summer demonstrate that daily values are on average
well reproduced by the model simulations. There is a min-
imum of the RMSE of about 8 ppb for all station types in
the afternoon. The decreasing amplitude of the diurnal cy-

- Remote (> 300m)
~— Remote (< 300m)
— rural
~— suburban

50

b I o I Y A N cle of ozone concentrations from the suburban to the remote
stations is also captured by the model. At suburban and ru-
;40 """""""""""""""""""""""""""""""""""""""""" ral stations, comparisons between observations and simula-
= tions show a good temporal correlation of the hourly values
;? 35 around 0.7-0.8 (Table 4); on average, observations are over-
S estimated all day long, except mid-afternoon. These errors
o

can be typically attributed to the model resolution in both the
horizontal and vertical directions. It does not allow a good
estimation of the subgrid processes such as vertical turbulent
transport and spatial variability of anthropogenic emissions
(Valari and Menut, 2010). This leads to an uncertain repre-
sentation of night-time and early morning chemistry, espe-
cially ozone titration, and probably also dry deposition. The
background ozone level (i.e., at the remote stations) is also
well captured; average errors range between 8 and 10 ppb,
but the correlation is lower (0.58). Simulation of remote sta-

Fig. 2. Average daily ozone profile during JJA 2009 for each type of oo ahove 300 m a.s.l. exhibits a much stronger positive bias
observation chosen for assimilation and validation (see ozone statis;

tics in Table 2). Colors indicate the station type, with red for subur- durlng_ nlgh;[tlhmeh, as the(zjselz lstatlons Fa]_rehgenelrally mﬁore rzpt;e-

ban, blue for rural, green for background stations under 300 m a.s.I?’ent":lt've 9_ Igher mode .ay.ers which are less afiecte .y

and orange for background stations between 300 m and 800 m a.s {IrY deposition and NO emissions. Therefore, we also plot in
Fig. 3 the average simulated ozone values and RMSE for the

second level, which corresponds to a height varying between
115m and 240 m. It shows that nighttime values are better
23 August 2009. During the latter period, anticylonic con- simulated at the second level for both the ozone mean and
ditions over central Europe followed by a low-pressure sys-RMSE.
tem led to a short ozone pollution episode between 19 and
21 August (see observations and the CHIMERE reference o ]
simulation in Fig. 5). Generally, the modeled ozone fields® Setup and results of assimilation experiments
appropriately represent the synoptic pattern: lower values ar?n this section, we shall present the setup and the results

simulated for westerly regimes when marine air masses flowmc the assimilation experiments aoplied to the 10-day sum-
into Europe and higher levels for periods of stagnation un- P pp Y

der anticyclonic conditions. In order to characterize the sim—;n?g(')rg: Fflr‘il:)s(: ;neﬁjug\lljvilt ﬁgoiégg:g'g%?g Z\Z/ZIZthe ?j”u'lt'lr?gn
ulation accuracy in different environments, the evaluation is P ) P P ' '

conducted separately for each station type using the Classifseveral sensitivity experiments will be presented with a fo-

30

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

25

20

9 12 15 18 21
Time (h)

cation presented above.
Figure 3 shows the average daily profile of the ozone ob

servations, the simulations, and the associated root mea%
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I6us on the background error (Sect. 5.3) and on the observa-
tion error (Sect. 5.4). A review of the different assimilation
xperiments is shown in Table 3.
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Fig. 3. Simulated (CHIMERE) and observed average diurnal ozone cycle and their associated RMSE during the 2009 summer. Results

are shown for the suburban stations (left), rural stations (middle left), and for background stations located below (middle right) and above
300 ma.s.l. (right). The corresponding number of stations and statistics are indicated in Table 4.

Table 3.List of assimilation experiments with different formulations of OECM and BECM. For the OECM, the range of standard deviations
is indicated; see Figs. 4 and 8 for an example of the noise and background error standard deviation profile.

OECM BECM
REF_ASSIM 5ppb fixed hourly noise profile
MOD_DESR 5ppb diagnosed hourly noise profile
NEWPAR 5ppb fixed noise profile and parameter perturbations
NEWPAR_MOD_DESR 5ppb diagnosed noise and parameter perturbations

TUNNING_OBS_TYPE f(station type) (3—7 ppb) fixed hourly noise profile

5.1 Setup of assimilation experiments the one hand the photochemical buildup of ozone and the
associated mid-day maximum is quite well reproduced by

. o
In order to increase the available data set and the spatia{hehrtTt].OdeI (rglatlve F;MSE 20%); .0? Ejhe.fhﬂtfr lhand,ttjhgl
coverage of observations, we keep observations from all th Ightime minimum of 6zone associated wi elowest daly

o ) : o
three station types (i.e., remote, rural and suburban) both fo BVL hehlght :’ tpar‘;ly mrli)seg I(rfil\?tlve Sl\fbs in urﬁ) tct)h4(3 r/o).rWe nt
assimilation and evaluation. Then, for each observation type ave chosen lo prescribe reiative perturbations that represe

we randomly divide the station set into two subsets (Fig. 1)_th|s diurnal error cycle (light blue curve in the left panel

In this way, we get one set for the assimilation with 350 sta-o_f Fig. ?)'b':'pa"y’ fOI(IjO]\cng thf c%/hcle (l?)ft e_nsgmt;le FTaI¥_
tions (remoteN = 44; rural: N = 117 suburbany = 189) sis, perturbations and forecasts, the obtained absolute fore-

and another one for evaluation with 344 stations (remote:caStGd ensemble standard deviation ranges between 4 and

N =45; rural:N = 112; suburbany = 187). Finally the av- 6ppb (Fig. 8).

erage nearest distance between two stations is around 37 kmggess:ﬁ?;{fsor;gggergii '\S/I (rs)nls r?észssle(fya?g:}n; Oc-]:r-
for the entire set of selected observations (assimilation imriation p ure. uming vatl

imilated©" correlation, the OECM matrix is defined by the obser-
observations. The assimilation period extends from 14 A-/ation error variance (dlagonal terms). As hlghllghted above
(Sect. 2), the main observational error source is the represen-

gust at midnight to 23 August at 23:00 UTC, with an hourly tativeness error (and thus is dependent on the model resolu-

assimilation step. ) :
b tion). The random part of the observation error can be de-

The inspection of relative errors of the CHIMERE refer- fined | f the standard deviati f ob
ence run shows that these errors exhibit a clear diurnal cy-Ine t".’ls an qt\rl]grage v_z ue I(IJ F © tshan .?r f EV""T |onB|o 3 i
cle (right panel of Fig. 4). This is due to the fact that on servations within a gnd cell. For the city of Fans, Blon
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Table 4. Comparison of the accuracy measures (hourly bias, RMSE and correlation coefficient, daily maximum and maximum of the daily
eight-hour ozone mean RMSE) for the reference run over suburban statiea8{(6), rural stationsN = 228), and for remote stations that
have altitude below 300 ma.s.IN(= 42) and aboveXN = 47). These statistics are computed from 1 June to 30 August 2009.

Accuracy measures Total Background Rural Suburban BackgrouBa@m)

Bias —2.86 -0.89 -2.0 —-3.6 3.45
RMSE (hourly) 10.19 8.43 9.88 10.57 11.76
Correlation 0.72 0.58 0.69 0.76 0.51
RMSE (8 h max) 7.36 6.61 7.17 7.55 9.57
RMSE (daily max) 9.5 864 95 9.6 13.92
35 70 5.2 Evaluation of the base case assimilation experiment

In order to analyze the performance of this REF_ASSIM
assimilation experiment, we compare results from the
CHIMERE reference run and the analysis (i.e., the mean of
the analyzed ensemble) against observations from evaluation
stations (which are not assimilated). Figure 5a shows the
simulated surface ozone on 20 August 2009 at 15:00 UTC
‘ L 3 along with the observations. The reference run correctly dis-
ity 512 ‘ O ity BT A plays spatial patterns associated with the episode in which
a cold front separates Europe into two parts: a western part
Fig. 4. Relative errors of the assimilated stations=£ 295) _for the  with marine air masses associated with low ozone values, and
REF_ASSIM experiment. In the left panel, we plot the diurnal pro- 5y gastern part associated with higher ozone concentrations
file of the standard deviation of the s:pa_\tla_lly correlated noise addedSXpanding from Italy up to Norway. Compared to the ref-
to the analyzed state after each assimilation step (brown curve) an : L )
grence, the analyzed field exhibits higher values and more

the observation error standard deviation (black curve). The forecas d al di h b
ensemble standard deviation is in green and the analyzed standaRfonounce spatial ozone gradients that seem to be more re-

deviation in orange. The RMSE (right panel) is calculated for the listic, as confirmed by observations (Fig. 5b); for instance,

reference run (blue curve), the ensemble mean analysis (red curvdi€ general underestimation of the peak; over a large region
and the one-hour ensemble forecast (purple curve). of Denmark, eastern Germany and Austria is corrected. As an

example, the time series of surface ozone observation at the

Odense stations (10.&, 55.4 N) in Denmark along with
et al. (2003) determined an observation error of 5ppb athe REF_ASSIM analysis and the CHIMERE reference run
15:00 UTC for a 6 km model resolution. Using observationsis plotted in Fig. 6. It shows a clear improvement of the anal-
from the AIRNOW database in the USA, Chai et al. (2006) ysis which, contrary to the reference run, captures the high
evaluated the ozone standard deviation inside a model grilemporal variability of the 0zone measurements including the
cell (60 km horizontal resolution) and got on average a dailyozone peak of 20 August. At this station, the temporal cor-
range between 5ppb and 13 ppb (at night). Finally, in theirrelation coefficient over the period is increased from 0.8 for
assimilation framework, they assumed an observation errothe reference run to 0.9 for the analysis. In locations where
of 8 ppb. Using the Hollingsworth and Lénnberg method only few measurements are available, observations assimi-
(Hollingsworth and Lénnberg, 1986), Flemming et al. (2004) lated from a single station are propagated over large areas as
got on average an absolute standard deviation of 5 ppb indein Spain or Greece (see Fig. 1 for the location of assimilated
pendently of the station type of the FLEMO5 classification. stations). Over these regions, often no validation stations are
Following this last study, an observation error standard de-available to verify if these changes are realistic. However, the
viation of 5ppb is used a priori. This value is also consis- spatial shape of the corrections, for instance over the North
tent with those typically used in other data assimilation sys-Sea, illustrates the ability of the sequential assimilation to ex-
tems (Hanea et al., 2004; Wu et al., 2008). It corresponds to éend innovations along with the ozone flow (in the northwest
lower relative error for the background stations as their meardirection) during the forecast step. We plot the average diur-
concentration is higher and also a lower relative error duringnal profile of ozone concentrations and for the RMSE during
the afternoon ozone maximum (Fig. 4). In the following, the the period between 14 August and 23 August 2009 (Fig. 7a).
setups of the model and observational errors will be referredMe notice an increase in the ozone baseline of 5ppb and in
to as the REF_ASSIM experiment; they correspond to thethe amplitude of the diurnal cycle for suburban, rural and
reference case to which the other assimilation experimentdackground stations located above 300 ma.s.l. For this pe-
will be compared. riod, the maxima over the suburban and rural stations are

: — Standard deviation (noise) ] " [~ RMSE REFERENCE
; ~ 2R : ! il RMSE FORECAST
30 ol (P) 60| - |es RMSE ANALYSIS

Errors (%)
Errors (%)

o3
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Fig. 6. Ozone measured (blue line) at the Odense evaluation site
(not assimilated) in Denmark (10.&, 55.4 N) compared with the
CHIMERE reference run (black line) and the REF_ASSIM analysis
(purple line).
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for instance, in the morning, suburban ozone levels are over-
estimated by the analysis while rural as well as mountain
ozone concentrations are underestimated. Some of the errors
can also be the result of reduced spatial representativeness of
the observations early in the morning.

In addition to these particular elements, we present the

90 statistics for the whole set of sites and for each station type
80 of the validation set on a daily basis for the hourly profile,
- daily peaks and the daily maximum of the running eight-hour
mean, which is an indicator for the impact of ozone expo-
60 g sure to human health (REF_ASSIM statistics in Table 5). The
502 RMSE of the analysis is largely reduced: by 30% as com-
408 pared to the reference run; around 95 % of sites retained for
30 S evaluation show a decrease of RMSE. The hourly correlation

# LAY T N 20 average over each day and over all the stations increased to

b 0.87 against 0.75 for the reference run; it is improved for all
g : - 10 station types (Table 5). Both the analysis and the reference
: c T - - 0 run only show a small bias (below 5 ppb for around 75 % of

the evaluation stations). The bias is not corrected (slightly
Fig. 5. Simulated ozone fields fofa) the CHIMERE reference  more positive) for the rural stations, but is reduced for subur-
run (top), (b) the REF_ASSIM analysis (middle), an@) the  ban and background ones. In order to evaluate an indicator of
MOD_DESR analysis (bottom) on 20 August at 15:00 UTC. Ozonethe impact of ozone exposure to human health, we also cal-
measgrements at validation stations are plotted by circles, squargs|ate the daily maximum of the running eight-hour mean;
e}nd triangles for, respectively, background, rural and suburban stz RMSE decreases from about 8ppb in the reference run
tions. to 5 ppb in the analysis. The assimilation allows an improve-
ment in the reproduction of the daily maxima, with errors
around 6—7 ppb (Table 5) while reducing the negative bias
underestimated by the CHIMERE simulation. Remote sta-for rural and suburban stations.
tions do not show the same behavior, and the ozone level is
even reduced with respect to summer average values. This 8.3 Sensitivity to the background error covariance
because some stations are located in Scandinavia or in the  description
United Kingdom, where weather conditions were not favor-
able for ozone formation (Fig. 5a). The diurnal cycle of er- Since the representation of BECM can be a crucial point in
rors shows overall reduced values and still shows a minimurrassimilation systems, we have evaluated the sensitivity to
of 6 ppb during daytime for all station types. Contrasting re-its formulation. Especially, we have built different BECM
sults are obtained for nighttime regarding the station typesfollowing approaches recently used in the field: either by
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Table 5. Comparison of the accuracy measures (hourly bias, RMSE and correlation coefficient, daily maximum and maximum of the daily
eight-hour ozone mean RMSE) for the reference run and for each assimilation experiment over the evaluation set for suburban stations
(N = 187), rural stationsX = 112), and for remote stations that have altitude below 300 maMs#4 18) and above N = 27). These

statistics are computed over the whole assimilation period (i.e., from 14 August to 23 August 2009).

Accuracy Simulation Evaluation Background Rural Suburban Background
measures name set >B00m)
Bias REFERENCE -0.42 -191 0.78 -0.99 7.61
REF_ASSIM 0.18 0.67 143 -0.62 7.95
MOD_DESR 0.26 0.6 149 -052 8.12
NEWPAR 0.12 0.45 1.39 —0.67 7.89
NEWPAR_MOD_DESR 0.15 0.58 139 -0.63 8.01
TUNNING_OBS_TYPE 0.08 0.58 1.28 —0.68 7.77
RMSE (hourly) REFERENCE 10.79 8.5 11.04 10.86 15.77
REF_ASSIM 7.76 7.23 8.16 7.58 13.06
MOD_DESR 7.74 7.11  8.13 7.58 13.08
NEWPAR 7.69 7.13 8.07 7.52 12.93
NEWPAR_MOD_DESR 7.69 6.99 8.04 7.54 13.07
TUNNING_OBS_TYPE 7.8 729 814 7.65 12.96
Correlation REFERENCE 0.75 0.53 0.71 0.8 0.43
REF_ASSIM 0.87 0.69 0.85 0.9 0.67
MOD_DESR 0.87 0.69 0.85 0.91 0.67
NEWPAR 0.87 0.69 0.85 0.91 0.68
NEWPAR_MOD_DESR 0.87 0.7 0.85 0.91 0.67
TUNNING_OBS_TYPE 0.87 0.68 0.85 0.9 0.67
RMSE (8 h max) REFERENCE 7.97 6.57 8.07 8.05 11.87
REF_ASSIM 4.86 525 4.95 4.77 9.63
MOD_DESR 4.85 491 499 4.76 9.61
NEWPAR 4.79 5.04 4.89 471 9.45
NEWPAR_MOD_DESR 4.83 5.01 494 4.75 9.56
TUNNING_OBS_TYPE 4.86 525 4.95 4.77 9.55
RMSE (daily max) REFERENCE 10.83 7.85 11.19 10.9 17.16
REF_ASSIM 7.22 7.16 7.6 7.0 14.66
MOD_DESR 7.3 6.83 7.67 7.13 14.58
NEWPAR 7.13 6.93 7.5 6.93 14.44
NEWPAR_MOD_DESR 7.21 6.96 7.59 7.01 14.64
TUNNING_OBS_TYPE 7.24 7.11 7.58 7.05 14.58

adjusting the covariance inflation factor based on diagnosebservation space. This product is divided by the analyzed
tics of previous assimilations, or by perturbing physical pa-ozone average over assimilated observations. At the end of
rameters that control the background error to get a morehe day, this diurnal profile is used for the prescription of the
physical ensemble and in this way a better error represenrelative noise standard deviation for the next day. This treat-
tation. We show here the results of the three sensitivityment is important because background errors strongly vary
tests made in this respect: first we present the online tunwith the time of the day, for instance dispersion and photo-
ing of the covariance inflation factor (MOD_DESR), then chemical processes, and their associated model errors show
we present the combined perturbation of ozone and modela strong diurnal cycle (as discussed in Sect. 5.2).
parameters (NEWPAR), and finally the combination of the In an EnKF, the spread of the ensemble (i.e., square root
model parameter perturbation with the online tuning (NEW- of Eq. 3) is employed to estimate background errors, there-
PAR_MOD_DESR). In the case of the MOD_DESR experi- fore quantitatively it has to be compared with the background
ment, the diurnal cycle of the BECM profile is adjusted from error diagnostic (Eq. 6). For the REF_ASSIM experiment,
an online diagnostic (Desroziers et al., 2005). This adjustthese diagnosed background errors (light blue curve in the
ment is performed by calculating, at each analysis step, théeft panel of Fig. 8) show lower values than the ensem-
product (Eg. 6) of the differences between analysis and backble standard deviation (green curve). Thus, the diagnostic
ground and between observation and background state in theuggests an overestimation of the background error in the
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Fig. 7. Average diurnal cycle of ozone and the associated RMSE for the reference run and the REF_ASSIM analysis for the assimilation
period at validation stations (upper pargland for the summer period (lower pang), Separated panels are shown for the suburban stations
(left, N = 172), rural stations (middle lefty = 102), and for remote stations with an altitude below 300 m a.s.l. (middle ngkt,17) and

above (rightv = 27).

REF_ASSIM experiment. The comparison with the forecastexperiment. This demonstrates a rapid convergence towards
RMSE indicates that the daily variation of the backgrounda stable background error through this procedure. Thus, the
error diagnostic is more realistic than that of the initial back- ensemble standard deviation globally represents much better
ground error. In particular, the morning peak in RMSE cor- the shape of the diurnal cycle of the forecast RMSE. Partic-
responds to a peak in the background error diagnostic. In thealarly, the morning (07:00 UTC) and evening peaks (19:00
MOD_DESR experiment (Fig. 8, right panel), the ensem-and 20:00 UTC) of the RMSE are well diagnosed. However,
ble standard deviation is close to the diagnostic of the firstthe nighttime ensemble standard deviations are almost at the
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Fig. 8. Mean hourly value (over all assimilated observations) of
the RMSE for the ensemble mean analysis (red curve), the one
hour ensemble forecast (purple curve), the ensemble standard de\
ation (green) and the background error diagnostic (light blue). The
left panel displays these values for the base case assimilation ru ; :
(REF_ASSIM) and the right panel for the simulation using the on- 0.6 E & $ 13
line tuning Desroziers diagnostics (MOD_DESR). Error bars dis- Time (h)
play the temporal standard deviation.

15 18 21

Fig. 9. Mean of the reduced centered random variable (RCRV) av-
eraged over all assimilation steps for the REF_ASSIM, NEWPAR,

same level as those obtained during daytime, suggesting th&fOP_DESR, and the NEWPAR_MOD_DESR assimilation exper-
the higher nighttime RMSE are not due to errors in model™MeNts:
formulation, but rather to observational (i.e., representative-
ness) errors. The reduction of the ensemble variance gives
more weight to the model (compared to the observationsYensemble spread) between two analyses, i.e., during a one-
and therefore increases the RMSE of the analysis againdiour time step, to avoid a more and more reduced ensemble
assimilated stations. Thus, the lower background error varispread. Thus we choose to combine this perturbation of the
ances in the MOD_DESR experiment reduce the magnitudenodel parameters with the classical perturbation of the ozone
and the spatial extent of the analysis increment. This is illus-field itself, in this way creating a hybrid ensemble. We then
trated by the analyzed maps (Fig. 5b and c): over large areaseproduce the two previous experiments with the addition
for instance in Spain (one station near Madrid) or in Greeceof the parameter perturbations, namely NEWPAR associated
(one station near Athens), the ozone field is controlled bywith the REF_ASSIM one and NEWPAR_MOD_DESR for
only a few assimilated observations. This is an advantagé¢he online tuning experiment (MOD_DESR). Note that in
when errors are spatially correlated; it leads to a reducedhese experiments, the model parameters are not included in
RMSE against evaluation stations for daily peaks. Howeverthe state vector.
8h mean average and hourly statistics are not substantially In order to check and compare the ensemble dispersion
modified. from these simulations, we calculate the RCRV (Eg. 8). Fig-
A further sensitivity study is performed by creating differ- ure 9 displays the spatially and hourly averaged mean of the
ent ensemble members using perturbations of the uncertaiRCRV. It indicates that the ensemble predictions have a weak
input data of the model, instead of the ozone fields directly.positive bias in the afternoon and in the evening and a nega-
Choices of the perturbed parameter, their standard deviatiotive bias at 07:00 UTC and around 19:00 UTC. In the morn-
and spatio—temporal correlation (Table 1) are inspired froming and in the early evening, the bias is larger and is formed
several previous studies (Hanna et al., 2001; Beekmann andapidly. At that time, the model simulation can be very un-
Derognat, 2003; Hanea et al., 2004; Wu et al., 2008; Boynardertain, due to increasing or still large emissions and a de-
etal., 2010). The scheme of the perturbations is similar to theveloping (in the morning) or fading (in the evening) of the
one applied to the ozone fields with fixed horizontal spatial PBL height. These processes are locally variable, and thus
decorrelation (Evensen et al., 2003), but this time the distri-lead to a reduced site representativeness that is not resolved
bution is log-normal and we also include a temporal correla-at the models’ horizontal and vertical resolution. An evalua-
tion. The standard deviation of the 20 ensemble members dfion of the time evolution of the spatial pattern of the ensem-
the free run (without assimilation) with a perturbed parame-ble bias indicates a large variability in space and time, but
ter reaches a maximum of 8 ppb at some locations after fouthe morning bias is more pronounced at suburban stations
days of simulation, but is only about 1 ppb on average, soand especially at those located in the Po Valley and in south-
it generally strongly underestimates the background error. lieastern Europe (not shown). Globally, a slightly lower bias
turns out that this ensemble cannot create enough variabilitys found for REF_ASSIM and NEWPAR, for which analyses
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areas where observations are scarce or even absent; this may
Fig. 10. Standard deviation of the RCRV averaged over all assim-lead to unrealistic spatial correlation of the error fields, see
ilation steps for REF_ASSIM, NEWPAR, MOD_DESR, and the for instance the differences in the ozone fields in Spain or in
NEWPAR_MOD_DESR assimilation experiment. Greece when only one or two observations are assimilated

(Fig. 5b and c). Furthermore, we can notice that the model

. . parameter perturbations (slightly) improve the results in all
are closer to the observations, but only small differences are jqaq.

found between the different experiments. In fact, the analysis
field is not biased because it is removed by the assimilatiors 4  Sensitivity to the observation error formulation
procedure. The use of the diagnostic leads to an increase in
the additive noise; thus, it allows a prediction of the increaseSimilarly to the previous section (i.e., Sect. 5.3) concerning
in the ensemble spread due to the higher bias (Figs. 8 and 9)he BECM, we propose to examine the system sensitivity to
A step further would be the use of a bias correction proce-the formulation of the OECM. In the case of surface ozone
dure or to add these perturbed parameters in the state vectobservations, the measurement errors are generally weak, but
in order to improve the ensemble forecast and subsequentlihe representativeness errors can be important. This latter er-
the assimilation performance. ror depends on the horizontal and vertical model resolution.
The standard deviation of the RCRV (Fig. 10) provides In this section, we investigate different approaches to esti-
a framework for the verification of the ensemble spread,mate the observation error variance, which should lead to a
namely, if it is greater/lower than one. This means that themore realistic and detailed error estimation, rather than fixing
ensemble is underdispersive/overdispersive. The tuned simutto a constant value as done in the previous sections. Besides
lations (MOD_DESR and NEWPAR_MOD_DESR) display this modification, the ensemble configuration is the same as
a correct behavior of error statistics during daytime, with for the base case experiment (REF_ASSIM). Figure 11 (left
a standard deviation of the RCRV close to 1. By contrast,panel) shows the 5ppb error (black line) prescribed for the
the ensemble is under dispersive for all simulations duringREF_ASSIM experiment, and in addition the Desroziers er-
nighttime. The addition of the perturbation for the model ror diagnostic estimated for each subset of stations follow-
parameters slightly improves the error representation duringng the FLEMO5 classification (cf. Sect. 3). Firstly, it shows
nighttime. As the observational error is considered constanthat the diagnosed errors are rather similar to the prescribed
in the calculation of the RCRV statistics, the results from error for remote stations but larger for rural and suburban
Desroziers diagnostic could also suggests that observatiogtation types. For the suburban type, it is probably linked to
errors are underestimated in the night time (see Sect. 5.4). the coarse horizontal resolution of our model {0, Wvhich is
Although we obtain different ensemble spread profiles thatnot representative enough for urbanized environments. This
change weights between model and observation in the asesult is close to the one of Chai et al. (2006) for similar
similation procedure, only small changes are found in thegrid spacing. Secondly, the diagnosed error shows a diurnal
comparison against the observations used for validation. Theycle with lowest values at noon (abotit6é ppb for subur-
ozone mean, the average bias and RMSE are not signifiban and rural sites), close to the prescribed value, but which
cantly modified in the different simulations. However, it is are higher at nighttime and in the morning. More specifi-
preferable to reduce the amount of perturbation because theally, suburban stations show an error maximum when the

9 12
Time (h)
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boundary layer develops and fades. In these cases, ozorlbe RMSE is around 7 ppb (with respect to 0.72 and 10.2 ppb
titration by NO emissions is most effective, and representafor the reference simulation). These errors exhibit a similar
tiveness errors are expected to be larger. diurnal cycle with an average value of 8 ppb during the night
Next, we use the above results in the assimilation schemeand 6 ppb in the daytime (Fig. 7b). These results indicate that
As for the tuning of the background error, we apply the di- the data assimilation system is suitable for analysis or reanal-
agnostic (Eq. 7) of the observational error diurnal profile ysis of longer periods. However, it should still be tested in
from the previous day to the OECM, as a function of the other seasons even if ozone pollution is most important dur-
station type (TUNING_OBS_TYPE experiment). Figure 11 ing the summer season.
(right panel) shows that the mean error diurnal cycle as a
function of station type is well captured, because prescribed
and newly diagnosed errors coincide (convergence). Never7 Conclusions
theless, the RMSE of the analysis does not show a signifi-
cant improvement or modification with respect to the refer-In this paper we present a data assimilation system based on
ence experiment (Table 3); only a slight reduction in errorsthe rCTM CHIMERE in an EnKF framework and using sur-
is found for the mountain stations due to their reduced preface ozone observations provided by the European Airbase
scribed error. database. These stations were classified based on their diur-
Following Egs. 6) and (7) of the diagnostics for each time nal ozone variability. 350 stations labelled as remote, rural
step, one can see that the sum of the diagnosed observand suburban were selected for assimilation with an average
tional and the background error variances must be equal talosest distance of 61 km as compared to 37 km for the en-
the mean square error of the ensemble forecast. Thereforéiye set of almost 700 stations. The system is based on a lo-
the use of the diagnostics suggests that the representativeal analysis computed using a deterministic square root filter
ness error is higher than expected and would contribute to @and is applied to an ensemble of 20 perturbed CHIMERE
major part of the total error. However, it should be noted thatrCTM simulations. The assimilation algorithm is well suited
the diagnostic efficiency can be reduced by a model bias; thiso an operational framework; an analysis of one day (includ-
can lead to an overestimation of observation error varianceing the control run) takes 5h where only CHIMERE simu-
(Li et al., 2009b). Although observational errors strongly de- lations are parallelized (and not yet the assimilation proce-
pend on the site representativeness and type, the sensitivigure). For a 10-day period in summer 2009, the reference
to the observational error is globally small. Therefore, ac-run shows good performance, with a root mean square error
curacy measures (at evaluation stations) do not show a sufRMSE) around 10 ppb and an average correlation coefficient
stantial sensitivity to the modification of observational error of 0.75. However, model simulations generally overestimate
variance. nighttime and morning concentrations, while they underesti-
mate mid-day ozone peaks in particular during the regional
ozone pollution episode that occurs during this period. This
6 Evaluation of the summer analysis error cycle is caused by physical processes during nighttime
such as vertical mixing or NO emissions titrating ozone that
Different assimilation experiments have been conducted folare not resolved at the chosen model resolution of 0.5 de-
a period of 10 days only (in August 2009). Then, in order grees. The statistical evaluation of the analyzed fields using a
to assess the performance statistics over different meteorasubstantial set of unassimilated observations indicates a 30 %
logical conditions, an analysis of 90 days has been evalureduction of RMSE, which reaches on average a minimum
ated. The period covers three months of the summer of 200@round 6 ppb in the afternoon, regardless of the station type.
(JJA, 2009), which allows the evaluation of rather different Similar performance can be found for analyzed fields for a
meteorological conditions. The configuration of the data asdarger period covering JJA 2009. These improvements are
similation system is similar to the PAR_MOD_DESR exper- similar to EnKF analyses performed in Hanea et al. (2004),
iment. An ensemble of 20 members is used; the observatiomhere background errors were estimated by the correction
error variance is set to 25 pfilihe covariance inflation factor  of the LOTOS-EUROS model parameter. The analysis incre-
is tuned every day from the hourly diagnostics of the back-ment can be propagated on a synoptic scale during the fore-
ground error and several model parameters are perturbed (Taast step, thus allowing corrections downwind to the conti-
ble 1) but not corrected in the assimilation process. The set ohental observations, as shown for example in the northern
assimilated as well as evaluation stations is unchanged witlpart of Europe. More than 95 % of the evaluation set shows
respect to the previous experiments. We employed the same decrease in RMSE. The ensemble mean of the resulting 1 h
evaluation method based on accuracy measures (Table 6) atfidrecast also shows a better performance than the reference
on analysis of the diurnal ozone and error cycle (Fig. 7b). Arun. However, it has more limited success at transitions be-
similar improvement to the analysis with regards to the ref-tween day and night and vice versa. This is mainly due to the
erence run is found for the whole summer as for the 10-dayformation of a positive bias, which is more pronounced for
period: the averaged hourly correlation coefficient is 0.87 andsuburban stations. Therefore, the background error reduction
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Table 6. Comparison of the accuracy measures (hourly bias, RMSE and correlation coefficient, daily maximum and maximum of the daily
eight-hour ozone mean RMSE) for the reference run and for the analysis over the evaluation set for suburbamvstati®T9,(rural stations

(N = 112), and for background stations that have altitude below 300 m &/s#.18) and aboveN = 27). These statistics are computed at
evaluation stations for the period from 1 June to 30 August 2009.

Accuracy measures Simulation name  Evaluation set Background Rural Suburban Backgr800dr()
Bias (ppb) REFERENCE —2.15 -0.82 -1.27 -2.81 4.9
ANALYSIS 0.0 1.14 0.94 —0.67 6.64
RMSE (ppb) REFERENCE 10.2 8.73 9.89 10.53 12.92
ANALYSIS 7.09 7.55 7.16 7.0 11.51
Correlation REFERENCE 0.72 0.55 0.68 0.76 0.47
ANALYSIS 0.87 0.7 0.84 0.89 0.7
RMSE (8 h max, ppb) REFERENCE 7.7 6.97 7.47 7.9 10.86
ANALYSIS 4.92 6.09 4.9 4.81 9.45
RMSE (daily max, ppb) REFERENCE 10.16 8.97 10.19 10.26 15.64
ANALYSIS 7.12 8.31 7.4 6.83 13.93

is in this case not sensitive to the improvement of ozone ini-for data assimilation (observation thinning), since both ob-
tial conditions at each forecast cycle. As suggested by otheservation error variances/correlations and analysis sensitiv-
studies, a step further would be the simultaneous adjustmerity can be estimated by using the a posteriori diagnostics.
of precursor initial conditions and emissions rate (Tang etindeed, stations used for assimilation or evaluation are spa-
al., 2011). Also, the application of a bias correction proce-tially close, where the ozone observations network is spa-
dure combined with the data assimilation scheme (Li et al. tially dense (over Western and Central Europe). Thus many
2009a) could improve the EnKF performance. observation sites are present with respect to a given model
A series of different assimilation experiments was per-grid cell within the localisation radius (250 km) and within
formed with different formulations of the OECM and BECM the correlation length. Then, in the assimilation procedure,
matrices. We focused on the estimation of the hourly varia-the weight of the observations will be large independently
tion of the model and observational errors using Desrozierof “not too big” variations of the background and observa-
diagnostics. We used the reduced centered random variabl®on errors; the weight of the background will remain small.
(RCRYV) standard deviation as a tool to evaluate the results ofrhus, in terms of accuracy measures, only small changes in
the tuning of the model error using the Desroziers diagnosperformance statistics are found among experiments even for
tic. By the comparison of the innovations statistics and pre-substantial changes (up to a factor of 2) in the model and ob-
scribed errors, RCRV statistics allow the evaluation of bothservation errors. However, for a dense network correlations
weighted bias and error prescription. The ensemble disperbetween assimilated observations cannot be excluded. A step
sion is more consistent with the tuned background error durfurther would be to perform an a posteriori diagnostic of the
ing daytime, while an underestimation of the background er-observation error correlation and if necessary to take it into
ror is found during nighttime; it is attributed to the larger and account in the assimilation procedure.
unaccounted observational error at that time. Generally, the For future work, the evaluation of the system performance
diagnostic indicates a large contribution of the observationakhould be made over a longer time period covering different
error, higher than expected, especially for rural stations. Asseasons. Also, ideally, to be physically consistent, the BECM
pointed out by Li et al. (2009b), an overestimation of the ob- should rely more on the perturbation of uncertain physical
servation error can be found when the model forecast showparameters instead of the ozone concentrations. This would
large bias. However, the use of the FLEMO5 classification ofalso allow assessing of the impact of an ozone correlation on
the measurement sites allowed diagnosing of observationadther chemical variables by including and updating them in
errors for specific types of sites. As expected, larger represerthe state vector (Brunner et al., 2012; Miyazaki et al., 2012).
tativeness errors were estimated for suburban and rural thaim addition to the model parameter perturbations already im-
for remote sites. These errors show as expected a daily varigslemented, or by replacing them, a new ensemble should be
tion with a minimum in the daytime and a nighttime increase designed taking the model inputs as emissions, meteorologi-
according to the increase of the ozone precursor level close toal forcing, and chemical boundary conditions from different
the sources. This underlies the need to determine a priori theources (models). Finally, due to its robustness, the present
observation representativeness such as done in the FLEMO8ystem already appears suitable for implementation in oper-
classification. As a perspective for future work, the diagnos-ational systems such as the one supported by the European
tic could provide a determination of observation data suitableFP7 MACC project.

Geosci. Model Dev., 7, 28302 2014 www.geosci-model-dev.net/7/283/2014/



B. Gaubert et al.: Regional scale ozone data assimilation 299

AcknowledgementsThis work has been supported by the MACC Burgers, G., Van Leeuwen, P. J. and Evensen, G.: Analysis scheme
and MACC-II (Monitoring Atmosphere and Climate Change) in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719—
projects from the European Community’s Seventh Framework Pro- 1724, 1998.

gramme (FP7 THEME [SPA.2011.1.5-02]) under grant agreemenitCandille, G., Cbt'e, C., Houtekamer, P. L., and Pellerin, G.: Verifi-

no. 283576 and by the French LEFE project ADOMOCA (Assimi-  cation of an Ensemble Prediction System against Observations,

lation de Données pour les Modéles de Chimie Atmosphérique). Mon. Weather Rev., 135, 2688—2699, d6i:1175/MWR3414.1

This work was performed using HPC resources from GENCI- 2007.

CCRT (Grant 2013- t2013016695). This study has been alsoCarmichael, G. R., Chai, T., Sandu, A., Constantinescu, E. M., and

supported by CNES in the framework of the IASI-TOSCA project.  Daescu, D.: Predicting air quality: Improvements through ad-

Most of the charts have been made using the Python plotting library vanced methods to integrate models and measurements, J. Comp.

Matplotlib (Hunter 2007). B. Gaubert's PhD was supported by Phys., 227, 3540-3571, 2008.

a grant from the French Ministry of Higher Education and Research.Chai, T., Carmichael, G. R., Tang, Y., Sandu, A., Hardesty, M.,

Pilewskie, P., Whitlow, S., Browell, E. V., Avery, M. A., Nédélec,
Edited by: H. Garny P., Merrill, 3. T., Thompson, A. M., and Williams, E.: Four-
dimensional data assimilation experiments with International
Consortium for Atmospheric Research on Transport and Trans-
formation ozone measurements, J. Geophys. Res., 112, D12S15,
The publication of this article is doi:10.1029/2006JD007762007.
financed by CNRS-INSU. Cheinet, S. and Teixeira, J.: A simple formulation for the eddy dif-
fusivity parameterization of cloud-topped boundary layers, Geo-
phys. Res. Lett., 30, 1930, dd0.1029/2003GL017372003.
Chevalier, A., Gheusi, F., Delmas, R., Ordéiiez, C., Sarrat, C.,
Zbinden, R., Thouret, V., Athier, G., and Cousin, J.-M.: Influ-
ence of altitude on ozone levels and variability in the lower
troposphere: a ground-based study for western Europe over

References the period 2001-2004, Atmos. Chem. Phys., 7, 4311-4326,

doi:10.5194/acp-7-4311-2002007.

Agudelo, O. M., Barrero, O., Peter, V., and De Moor, B.: As- Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G.,
similation of ozone measurements in the air quality model Gaubert, B., Ung, A., Schmechtig, C., Flaud, J.-M., and Berga-
AURORA by using the Ensemble Kalman Filter, Deci-  metti, G.: Assimilation of IASI partial tropospheric columns with
sion and Control and European Control Conference (CDC- an Ensemble Kalman Filter over Europe, Atmos. Chem. Phys.,
ECC), 2011 50th IEEE 12-15 December 2011, 4430-4435, 12,2513-2532, ddi0.5194/acp-12-2513-2012012.
doi:10.1109/CDC.2011.6160442011. Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G.:

Beekmann, M. and Derognat, C.: Monte Carlo uncertainty analy- Ensemble-based chemical data assimilation |: General approach,
sis of a regional-scale transport chemistry model constrained by Q. J. Roy. Meteorol. Soc., 133, 1229-1243, #08i1002/qj.76
measurements from the Atmospheric Pollution Over the Paris 2007a.

Area (ESQUIF) campaign, J. Geophys. Res., 108, 8559-8559Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.:
2003. Ensemble-based Chemical Data Assimilation II: Covariance Lo-

Bell, M. L., Dominici, F., and Samet, J. M.: A Meta-Analysis of calization, Q. J. Roy. Meteorol. Soc., 133, 1245-1256, 2007bh.
Time-Series Studies of Ozone and Mortality With Comparison Courtier, P. and Talagrand, O.: Variational assimilation of meteo-
to the National Morbidity, Mortality, and Air Pollution Study, rological observations with the adjointvorticity equation, 1I: Nu-
Epidemiology, 16, 436—445, 2005. merical results, Q. J. Roy. Meteorol. Soc., 113, 1329-1347, 1987.

Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S.Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Stein-
Honoré, C., Liousse, C., and Rouil, L.: Aerosol modeling with  brecher, R., Theloke, J., and Friedrich, R.: Modelling study
CHIMERE - preliminary evaluation at the continental scale, At-  of the impact of isoprene and terpene biogenic emissions
mos. Environ., 38, 2803-2817, 2004. on European ozone levels, Atmos. Environ., 43, 1444-1455,

Blond, N. and Vautard, R.: Three-dimensional ozone analyses and doi:10.1016/j.atmosenv.2008.02.QZD09.
their use for short-term ozone forecasts, J. Geophys. Res., 10 urier, R. L., Timmermans, R., Calabretta-Jongen, S., Eskes, H.,
D17303, doi10.1029/2004JD004512004. Segers, A., Swart, D., and Schaap, M.: Improving ozone fore-

Blond, N., Bel, L., and Vautard, R.: Three-dimensional ozone data casts over Europe by synergistic use of the LOTOS-EUROS
analysis with an air quality model over the Paris area, J. Geophys. chemical transport model and in-situ measurements, Atmos. En-
Res., 108, 4744, ddi0.1029/2003JD003672003. viron., 60, 217-226, 2012.

Boynard, A., Beekmann, M., Foret, G., Ung, A., Szopa, S., Desroziers, G., Berre, L., Chapnik, B., and Poli P.: Diagnosis of ob-
Schmechtig, C., and Coman, A.: An ensemble assessment of re- servation, background and analysis-error statistics in observation
gional ozone model uncertainty with an explicit error represen-  space, Q. J. Roy. Meteorol. Soc., 131, 3385-3396, 2005.
tation, Atmos. Environ., 45, 784-793, 2011. Elbern, H. and Schmidt, H.: Ozone episode analysis by four-

Brunner, D., Henne, S., Keller, C. A., Reimann, S., Vollmer, M. K., dimensional variational chemistry data assimilation, J. Geophys.
O’Doherty, S., and Maione, M.: An extended Kalman-filter for Res., 106,3569—3590, 2001.
regional scale inverse emission estimation, Atmos. Chem. Phys.,

12, 3455-3478, ddin.5194/acp-12-3455-20,12012.

www.geosci-model-dev.net/7/283/2014/ Geosci. Model Dev., 7, ZBR2-2014


http://dx.doi.org/10.1109/CDC.2011.6160444
http://dx.doi.org/10.1029/2004JD004515
http://dx.doi.org/10.1029/2003JD003679
http://dx.doi.org/10.5194/acp-12-3455-2012
http://dx.doi.org/10.1175/MWR3414.1
http://dx.doi.org/10.1029/2006JD007763
http://dx.doi.org/10.1029/2003GL017377
http://dx.doi.org/10.5194/acp-7-4311-2007
http://dx.doi.org/10.5194/acp-12-2513-2012
http://dx.doi.org/10.1002/qj.76
http://dx.doi.org/10.1016/j.atmosenv.2008.02.070

300

tion for tropospheric chemistry modeling, J. Geophys. Res., 102,
15967-15985, 1997.

rate and chemical state estimation by 4-dimensional variational
inversion, Atmos. Chem. Phys., 7, 3749-3769, Has194/acp-
7-3749-20072007.

Parliament and of the council of 21 May 2008 on ambient air
quality and cleaner air for Europe.

Evensen, G.. Sequential data assimilation with a nonlinear

B. Gaubert et al.: Regional scale ozone data assimilation

Elbern, H., Schmidt, H., and Ebel, A.: Variational data assimila- Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent

filtering of background error covariance estimates in an ensemble
Kalman filter, Mon. Weather Rev., 129, 2776-2790, 2001.

Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission Hanea, R. G., Velders, G. J. M., and Heemink, A.: Data assim-

ilation of ground-level ozone in Europe with a Kalman fil-
ter and chemistry transport, J. Geophys. Res., 109, D10302,
doi:10.1029/2003JD004282004.

European Parliament: DIRECTIVE 2008/50/EC of the EuropeanHanna, S. R., Zhigang, L., Frey C. H, Wheeler, N., Vukovich, J.,

Arunachalam, S., Fernau, M., and Hansen, A. D.: Uncertainties
in predicted ozone concentrations due to input uncertainties for
the UAM-V photochemical grid model applied to the July 1995

guasi-geostrophic model using Monte Carlo methods to fore- OTAG domain, Atmos. Environ., 35, 891-903, 2001.

cast error statistics, J. Geophys. Res., 99, 10143-10162Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., and

doi:10.1029/94JC00572994. Buchmann, B.: Assessment of parameters describing representa-
Evensen, G.: The Ensemble Kalman Filter: Theoretical Formula- tiveness of air quality in-situ measurement sites, Atmos. Chem.

tion and Practical Implementation, Ocean Dynam., 53, 343-367, Phys., 10, 3561-3581, d&D.5194/acp-10-3561-2012010.

2003. Hollingsworth, A. and Lénnberg, P.: The statistical structure
Evensen G.: Sampling strategies and square root analysis schemesof short-range forecast errors as determined from radiosonde
for the EnKF, Ocean Dynam., 54, 539-560, 2004. data, Part I: The wind field, Tellus A, 38A, 111-136,

Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and  doi:10.1111/j.1600-0870.1986.tb004601986.
Prinn, R.: Effects of ozone on net primary production and carbonHonoré, C., Rouil, L., Vautard, R., Beekmann, M., Bessagnet, B.,
sequestration in the conterminous United States using a biogeo- Dufour, A., Elichegaray, C., Flaud, J.-M., Malherbe, L., Meleux,

chemistry model, Tellus B, 56, 230—-248, 2004.

Flemming, J., Van Loon, M., and Stern, R.: Data assimilation for

CTM based on optimum interpolation and Kalman filter, in: Air
Pollution Modelling and its Application XVI, edited by: Borrego,
C. and Incecik, S., Kluwer Academic/Plenum Publishers, New
York, 373-383, 2004.

Flemming, J., Stern, R., and Yamartino, R. J.: A new air quality

regime classification scheme forgONO,, SO, and PM g ob-
servations sites, Atmos. Environ., 39, 6121-6129, 2005.

Flemming, J., Inness, A., Flentje, H., Huijnen, V., Moinat, P,

Schultz, M. G., and Stein, O.: Coupling global chemistry trans-
port models to ECMWF's integrated forecast system, Geosci.
Model Dev., 2, 253-265, ddi0.5194/gmd-2-253-2002009.

Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M.,
Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J.,

F., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson,
N.: Predictability of European air quality : Assessment of 3 years
of operational forecasts and analyses by the PREV’AIR system,
J. Geophys. Res., D113, D04301, d6i:1029/2007JD008761
2008.

Hollingsworth, A., Engelen, R. J., Textor, C., Benedetti, A.,

Boucher, O., Chevallier, F., Dethof, A., Elbern, H., Eskes, H.,
Flemming, J., Granier, C., Kaiser, J. W., Morcrette, J.-J., Rayner,
P., Peuch, V.-H., Rouil, L., Schultz, M. G., Simmons, A. J., and
the GEMS Consortium: Toward a monitoring and forecasting
system for atmospheric composition: The GEMS Project”, B.
Am. Meteorol. Soc., 89, 1147-1164, 2008.

Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an

Ensemble Kalman Filter technique, Mon. Weather Rev., 126,
796-811, 1998.

Granier, C., Neftel, A., Isaksen, I., Laj, P., Maione, M., Monks, Houtekamer, P. L. and Mitchell, H. L.: A Sequential Ensemble

P., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E.,
Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen,

Kalman Filter for Atmospheric Data Assimilation, Mon. Weather
Rev., 129, 123-137, 2001.

J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Huijnen, V., Eskes, H. J., Poupkou, A., Elbern, H., Boersma, K. F.,

Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T., Ro-Poulsen,
H., Cellier, P., Cape, J., Horvath, L., Loreto, F., Niinemets,
U., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D.,
Pryor, S., Gallagher, M., Vesala, T., Skiba, U., Bruggemann, N.,
Zechmeister-Boltenstern, S.,Williams, J., O'Dowd, C., Facchini,
M., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman,
J.: Atmospheric composition change: Ecosystems-Atmosphere
interactions, Atmos. Environ., 43, 5193-5267, 2009.
Frydendall, J., Brandt, J., and Christensen, J. H.: Implementation
and testing of a simple data assimilation algorithm in the regional
air pollution forecast model, DEOM, Atmos. Chem. Phys., 9,
5475-5488, doi:0.5194/acp-9-5475-2002009.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I.,

Foret, G., Sofiev, M., Valdebenito, A., Flemming, J., Stein, O.,
Gross, A., Robertson, L., D’Isidoro, M., Kioutsioukis, 1., Friese,
E., Amstrup, B., Bergstrom, R., Strunk, A., Vira, J., Zyryanov,
D., Maurizi, A., Melas, D., Peuch, V.-H., and Zerefos, C.: Com-
parison of OMI NG tropospheric columns with an ensemble of
global and European regional air quality models, Atmos. Chem.
Phys., 10, 3273-3296, dtD.5194/acp-10-3273-2012010.

Hunt, B. R., Kostelich, E. J., and Szunyogh, |.: Efficient data as-

similation for spatiotemporal chaos: A local ensemble transform
Kalman filter, Physica D: Nonlinear Phenomena, 230, 112-126,
2007.

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput.

Sci. Eng., 9, 90-95, ddi0.1109/MCSE.2007.52007.

and Geron, C.: Estimates of global terrestrial isoprene emissiondaumouillé, E., Massart, S., Piacentini, A., Cariolle, D., and Peuch,
using MEGAN (Model of Emissions of Gases and Aerosols from  V.-H.: Impact of a time-dependent background error covariance

Nature), Atmos. Chem. Phys., 6, 3181-3210, Hab194/acp-6-
3181-20062006.

Geosci. Model Dev., 7, 28302, 2014

matrix on air quality analysis, Geosci. Model Dev., 5, 1075—
1090, d0i10.5194/gmd-5-1075-2012012.

www.geosci-model-dev.net/7/283/2014/


http://dx.doi.org/10.5194/acp-7-3749-2007
http://dx.doi.org/10.5194/acp-7-3749-2007
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.5194/gmd-2-253-2009
http://dx.doi.org/10.5194/acp-9-5475-2009
http://dx.doi.org/10.5194/acp-6-3181-2006
http://dx.doi.org/10.5194/acp-6-3181-2006
http://dx.doi.org/10.1029/2003JD004283
http://dx.doi.org/10.5194/acp-10-3561-2010
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00460.x
http://dx.doi.org/10.1029/2007JD008761
http://dx.doi.org/10.5194/acp-10-3273-2010
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.5194/gmd-5-1075-2012

B. Gaubert et al.: Regional scale ozone data assimilation

301

Joly, M. and Peuch, V.-H.: Objective classification of air quality Schwinger, J. and Elbern, H.: Chemical state estimation for the

monitoring sites over Europe, Atmos. Environ., 47, 111-123,
2012.
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh,

middle atmosphere by four-dimensional variational data assim-
ilation: A posteriori validation of error statistics in observation
space, J. Geophys. Res., 115, D18307-D18307, 2010.

D. R., Sassi, F.,, Harvey, V. L., Randall, C. E., Emmons, L., Semane, N., Peuch, V.-H., Pradier, S., Desroziers, G., El Amraoui,

Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W.,
Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U.,
and Simmons, A. J.: Sensitivity of chemical tracers to meteoro-
logical parameters in the MOZART-3 chemical transport model,
J. Geophys. Res., 112, D20302, d6i:1029/2006JD007879
2007.

Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T.,
Miranda, A. I., Monteiro, A., Hirtl, M., Tarvainen, V., Boy, M.,
Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev,
M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R.,
Astitha, M., Kallos, G., Schaap, M., Reimer, E., Jakobs, H.,
and Eben, K.: A review of operational, regional-scale, chemical
weather forecasting models in Europe, Atmos. Chem. Phys., 12,
1-87, doi10.5194/acp-12-1-2012012.

Li, H., Kalnay, E., Miyoshi, T. and Danforth, C. M.: Accounting for
model errors in ensemble data assimilation, Mon. Weather Rev.,
137, 3407-3419, 2009a.

Li, H., Kalnay, E., and Miyoshi, T.: Simultaneous estimation of

L., Brousseau, P., Massart, S., Chapnik, B., and Peuch, A.: Onthe
extraction of wind information from the assimilation of ozone
profiles in Météo-France 4-D-Var operational NWP suite, At-
mos. Chem. Phys., 9, 4855-4867, d6i5194/acp-9-4855-2009
20009.

Solazzo, E., Bianconi, R., Vautard, R., Appel, K. W., Moran, M.

D., Hogrefe, C., Bessagnet, B., Brandt, J., Christensen, J. H.,
Chemel, C., Coll, I., van der Gon, H. D., Ferreira, J., Forkel,
R., Francis, X. V., Grell, G., Grossi, P., Hansen, A. B., Jerice-
vic, A., Kraljevic, L., Miranda, A. |, Nopmongcol, U., Pirovano,
G., Prank, M., Riccio, A., Sartelet, K. N., Schaap, M., Silver,
J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R., Yarwood,
G., Zhang, J., Rao, S., and Galmarini, S.: Model evaluation and
ensemble modelling of surface-level ozone in Europe and North
America in the context of AQMEII, Atmos. Environ., 53, 6074,
doi:10.1016/j.atmosenv.2012.01.Q@®12b.

Spangl, W., Schneider, J., Moosmann, L., and Nagl, C.: Represen-

tativeness and classification of air quality monitoring stations,

covariance inflation and observation errors within an ensemble Umweltbundesamt report, 2007.

Kalman filter, Q. J. Roy. Meteorol. Soc., 135, 523-533, 2009b. Talagrand, O. and Courtier, P.: Variational assimilation of meteoro-
Mallet, V. and Sportisse, B.: Ensemble-based air quality forecasts: logical observations with the adjointvorticity equation. I: Theory,

A multimodel approach applied to ozone, J. Geophys. Res., 111, Q. J. Roy. Meteorol. Soc., 113, 13111328, 1987.

D18302, doi10.1029/2005JD006673006. Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement
Massart, S., Piacentini, A., and Pannekoucke, O.: Importance of of ozone forecast over Beijing based on ensemble Kalman fil-

using ensemble estimated background error covariances for the ter with simultaneous adjustment of initial conditions and emis-

quality of atmospheric ozone analyses, Q. J. Roy. Meteorol. Soc.,
138, 889905, 2012.

sions, Atmos. Chem. Phys., 11, 12901-12916,1d05194/acp-
11-12901-20112011.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Tarasova, O. A., Brenninkmeijer, C. A. M., Jockel, P., Zvyagint-

Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic,
A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G.,
Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.:
CHIMERE 2013: a model for regional atmospheric composition
modelling, Geosci. Model Dev., 6, 981-1028, d6i:5194/gmd-
6-981-20132013.

Miyazaki, K.,Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M.,

sev, A. M., and Kuznetsov, G. I.: A climatology of surface ozone
in the extra tropics: cluster analysis of observations and model
results, Atmos. Chem. Phys., 7, 6099-6117, dhB194/acp-7-
6099-20072007.

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and

Whitaker J. S.: Ensemble Square Root Filters*, Mon. Weather
Rev., 131, 1485-1490, 2003.

and Boersma, K. F.: Simultaneous assimilation of satellite NO Troen, |. and Mahrt, L.: A simple model of the atmospheric bound-

O3, CO, and HNQ@ data for the analysis of tropospheric chemi-

ary layer: Sensitivity to surface evaporation, Bound.-Lay. Mete-

cal composition and emissions, Atmos. Chem. Phys., 12, 9545— orol., 37, 129-148, 1986.

9579, doi10.5194/acp-12-9545-20,12012.
Rouil, L., Honore, C., Vautard, R., Beekmann, M., Bessagnet, B.,
Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., Flaud, J.-

Valari, M. and Menut, L.: Does an Increase in Air Quality Models

Resolution Bring Surface Ozone Concentrations Closer to Real-
ity?, J. Atmos. Ocean. Technol., 25, 1955-1968, 2008.

M., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson, Van Loon, M., Builtjes, P. J. H., and Segers, A. J.: Data assimilation

N.: PREV'AIR: An Operational Forecasting and Mapping Sys-
tem for Air Quality in Europe, B. Am. Meteorol. Soc., 90, 73-83,
2009.

Sakov, P. and Bertino, L.: Relation between two common localisa-
tion methods for the EnKF, Comput. Geosci., 15, 225-237, 2010.

Sandu, A. and Chai, T. Chemical Data Assimilation — An Overview,
Atmos. Environ., 2, 426-463, 2011.

Schmidt, H., Derognat, C., Vautard, R., and Beekmann, M.: A com-

of ozone in the atmospheric transport chemistry model LOTOS,
Environ. Model. Softw., 15, 603-609, 2000.

Vautard, R., Builtjes, P., Thunis, P., Cuvelier, K., Bedogni, M.,

Bessagnet, B., Honoré, C., Moussiopoulos, N., Schaap, M.,
Stern, R., Tarrason, L., and van Loon, M.: Evaluation and
intercomparison of Ozone and PM10 simulations by several
chemistry-transport models over 4 European cities within the
City-Delta project, Atmos. Environ., 41, 173-188, 2007.

parison of simulated and observed ozone mixing ratios for theVautard, R., Schaap, M., Bergstrém, R., Bessagnet, B., Brandt, J.,

summer of 1998 in Western Europe, Atmos. Environ., 35, 6277—
6297, 2001.

www.geosci-model-dev.net/7/283/2014/

Builtjes, P., Christensen, J., Cuvelier, C., Foltescu, V., Graff, A.,
Kerschbaumer, A., Krol, M., Roberts, P., Rouil, L., Stern, R., Tar-
rason, L., Thunis, P., Vignati, E., and Wind, P.: Skill and uncer-

Geosci. Model Dev., 7, 2ZBR-2014


http://dx.doi.org/10.1029/2006JD007879
http://dx.doi.org/10.5194/acp-12-1-2012
http://dx.doi.org/10.1029/2005JD006675
http://dx.doi.org/10.5194/gmd-6-981-2013
http://dx.doi.org/10.5194/gmd-6-981-2013
http://dx.doi.org/10.5194/acp-12-9545-2012
http://dx.doi.org/10.5194/acp-9-4855-2009
http://dx.doi.org/10.1016/j.atmosenv.2012.01.003
http://dx.doi.org/10.5194/acp-11-12901-2011
http://dx.doi.org/10.5194/acp-11-12901-2011
http://dx.doi.org/10.5194/acp-7-6099-2007
http://dx.doi.org/10.5194/acp-7-6099-2007

302 B. Gaubert et al.: Regional scale ozone data assimilation

tainty of a regional air quality model ensemble, Atmos. Environ., Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
43, 4822-4832, 2009. Real-time air quality forecasting, part Il: State of the science,
Visschedijk, A. J. H., Zandveld, P. Y. J., and Denier Van Der Gon, H.  current research needs, and future prospects, Atmos. Environ.,

A. C.: A high resolution gridded European emission database for 60, 656—676, dol:0.1016/j.atmosenv.2012.02.04£D12.
the EU Integrate Project GEMS, TNO, Apeldoorn, Netherlands, Zyryanov, D., Foret, G., Eremenko, M., Beekmann, M., Cam-
TNO report, 2007. mas, J.-P., D’lsidoro, M., Elbern, H., Flemming, J., Friese, E.,
Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation Kioutsioutkis, ., Maurizi, A., Melas, D., Meleux, F., Menut, L.,
without Perturbed Observations, Mon. Weather Rev., 130, 1913— Moinat, P., Peuch, V.-H., Poupkou, A., Razinger, M., Schultz,
1924, 2002. M., Stein, O., Suttie, A. M., Valdebenito, A., Zerefos, C., Du-
World Health Organization (WHO): Health aspects of air pollution  four, G., Bergametti, G., and Flaud, J.-M.: 3-D evaluation of tro-
with particulate matter, ozone and nitrogen dioxide, Report on a pospheric ozone simulations by an ensemble of regional Chem-
WHO Working Group, Regional Office for Europe; Bonn, Ger- istry Transport Model, Atmos. Chem. Phys., 12, 3219-3240,
many, EUR/03/5042688, 13—15 January 2003. doi:10.5194/acp-12-3219-2012012.
Wu, L., Mallet, V., Bocquet, M., and Sportisse, B.: A comparison
study of data assimilation algorithms for ozone forecasts, J. Geo-
phys. Res., 113 D20310, db0.1029/2008JD009992008.

Geosci. Model Dev., 7, 28302 2014 www.geosci-model-dev.net/7/283/2014/


http://dx.doi.org/10.1029/2008JD009991
http://dx.doi.org/10.1016/j.atmosenv.2012.02.041
http://dx.doi.org/10.5194/acp-12-3219-2012

