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Abstract Studies were carried out in the iron and coal basins of Lorraine (North-East of France) which indicated 

that oxygen-depleted air and carbon dioxide was being emitted into built-up areas related to former mine workings. 

Investigations were carried out to determine the origin of this gas production indicated that carbon dioxide 

production could be caused by the oxidation of iron sulphide minerals (pyrite and marcasite) and reaction of 

sulphuric acid with carbonates minerals to produce carbon dioxide gas.  These reactions have produced highly 

mineralised mine water with circum-neutral pH values and a low content of dissolved metals and metalloids. 

Through a bibliographic study, similar neutral mine drainage has been observed and assumptions were made on the 

reactions which could take place. A conceptual model is proposed to explain the gas emissions. 
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Introduction 

 

The aim of this paper is to understand through the studies carried out by INERIS on two different old mine basins 

(an iron one and a coal one), what we observe as noxious gas emissions in built-up areas, how this gas production 

occurred, what is the explanation of this phenomena through several in situ investigations and which are the 

consequences on water characteristics like its pH and its mineralisation. 

In a town (whose name will not be cited) located in the Lorraine coal basin (in the North-East of France), above a 

former coal mine, variations of atmospheric air composition are observed in the basements of some houses. They 

are characterised by a high concentration of CO2 gas (up to 8%vol.) in the atmosphere and a low concentration of 

O2 (down to 7%vol.). These gas emissions occur generally during atmospheric pressure drops. They can affect 

people who are exposed; in the past, some people lost consciousness (Pokryszka, 1999). Some residential areas of 

the iron basin of Lorraine are affected by noxious gas emissions (under-oxygenated and carbon dioxide-loaded air 

mixtures) too.  

The most spectacular phenomenon occurred in Moyeuvre-Grande town, especially in the district located very close 

to the former underground mine workings. Some inhabitants observed faulty working gas cookers and boilers 

located in cellars (Grabowski and Pokryszka, 2003). In France, legal requirements indicate that air should contain 

no more than 1%vol. for CO2 and at least 19%vol. for O2. 

The average atmospheric volumetric content is 20.9%vol. for oxygen and 0.03%vol. for carbon dioxide. 

The potential health effects of air with excess CO2 and depleted oxygen concentration decrease are numerous and 

their significance depends on the gas composition: specific symptoms (excitation and depression moments, central 

temperature and blood pressure decrease, and skin blood flow increase) are known to take place for CO2 

concentrations around 3% and O2 concentration between 15 to 17% (Bonnard et al., 2005). Death can occur for 

CO2 concentrations higher than 10% or with O2 concentration lower than 6% (Falcy et al., 2012). Apart from these 

clinical effects, CO2 polluted and under-oxygenated air is likely to increase CO production risks in affected houses. 

To understand the source of the problem, some accesses in these old mines (iron and coal mines of Lorraine) were 

equipped with specific gas monitoring devices and samples of mine water were collected for chemical analysis and 

air and water quality was measured. These accesses were located close to the phenomena observed. A bibliographic 

study was conducted to try to explain the processes and a conceptual model is also proposed to explain the 

observations that were made. 

The work was undertaken within the framework of a program funded by the French Ministry in charge of Mines in 

collaboration with the Lorraine local administration, GEODERIS, and FEDER (Fonds Européen de Développement 

Régional) Lorraine. 
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Sites studied 
 

The Lorraine iron basin 

 

The iron-bearing horizon occurs in two basins (Fig. 1): the Briey-Longwy basin in the north and the Nancy basin 

in the south. The Briey-Longwy basin is divided into three main parts (the northern, the central and the southern 

basins, separated by faults and with a hydrogeological independence). The land surface in this basin varies in 

altitude (in the northern part, from 355 to 440 m Above Sea Level for the shafts and from 210 to 335 m ASL for 

the adits). Air intakes and gas outflows were observed by cracks generated by exploitation and by accesses which 

are not closed. 

 

 
Fig. 1 Geographic location of the Lorraine iron basin (Collon et al., 2006) 

 

In the northern part, mine dewatering ceased in 2005 and water has been discharging from mines since March 

2008 at an elevation of 205 m NGF while in the southern part, the mines were closed in 1995 and water began to 

discharge in October 1998. 

This iron deposit (10 - 65 m thick) dates from the Aalenian (Jurassic). It consists of a ferruginous limestone with 

marly intercalations. The ore is separated from the overlying marly intercalation by a layer of coarse grained shelly 

limestone (named “crassin”). The iron-bearing succession is overlain by the Bajocian Formation, a micaceous 

marl (5 - 25 m thick) which in turn is overlain by the Dogger limestone aquifer formation (40 - 80 m thick). 

The Bajocian Formation has been fractured by mining, enabling water to infiltrate into mine galleries.  

In the southern basin, five mineralised levels were mined. According to their composition and their chemical 

reactivity, three groups were differentiated (Collon et al., 2006): “shelly limestone” (or “crassin”), “marly hanging 

walls”, and “marly intercalations”. Hanging-wall rocks of the grey and yellow layers are included in the crassin 

group. It is made up of carbonates, quartz and goethite. The “marly hanging walls” are an intermediate group 

between the crassin and the marly intercalations. 

The marly intercalations contain pyrite, sulphate minerals, phyllosilicates, plagioclase and microcline, and 

carbonates, quartz and goethite like the crassin. 

 

The Lorraine coal basin 

 

The geological and hydrogeological context can be summarised by (in order of decreasing age): 

 The Carboniferous:  

 the Westphalian deposit comprises numerous exploited coal seams of different thicknesses. These seams 

are located 600 m depth below the surface.  

 the Stephanian stratigraphic units: they comprise conglomerates, shales and sandstones whose thickness 

reaches 200 m; 

 The Permian comprises dolomitic conglomerates and sandstones that are not very permeable and represents a 

stratigraphic level of 25 - 50 m thick; 

 The Triassic: sandstones of Lower Triassic age are red or yellow, and very porous; sandstones are around 200 

m thick and they contain an important aquifer used for human activities and as a source of drinking water. 

 

Carboniferous and Triassic aquifers were initially separated by an aquitard composed of rocks of Permian age. Due 

to the mining workings, fractures were induced in Permian rocks. This has induced large cone of depression to 
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develop in some part of the Triassic aquifer, and as a result hydraulically connected to Carboniferous aquifer.   

Intense dewatering was necessary to allow coal exploitation to take place. 

As dewatering was stopped in 2006, potentiometric heads in the Carboniferous level have been rising and in July 

2012, were around +135 m ASL (i.e. 90 m deep). 

Coal mining has caused discontinuous deformations subsidence between Carboniferous and Triassic stratigraphic 

levels in several areas, with a maximum collapse of 15 m (DREAL 2012). This has induced many cracks which 

can allow air and water intakes in the ground and gas outflows. 

 
 

Materials and methods 
 

The Lorraine iron basin 

 

Monitoring systems were installed on several mine accesses more or less closed to the phenomena observed in 

order to understand gas flow mechanisms and to evaluate the composition of gases over time for various old 

mines.  

 

Several parameters were measured 

 

 External parameters such as barometric pressure and air temperature on the surface;  

 Gas parameters such as gas velocity and flow direction, O2 and CO2 gas concentration, radon volumetric 

activity, gas temperature and differential pressure. 

Some of the gas monitoring stations have been in operation for more than ten years such as the stations in G37 

and G7 adits located in the low part of North iron basin at Moyeuvre-Grande town.  

Figure 2 shows a typical measurement station, put in G7 adit. 

 

 

 
Fig. 2 Monitoring station in G7 adit 

 

 

The low part of the North iron basin contains three galleries as shown on Fig. 3: Knutange, Charles and Charles 

Ferdinand galleries.  
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Fig. 3 Overflowings, shafts and water drainage areas in the North iron basin (Source: DRIRE 

Lorraine/GEODERIS, from Bentivegna and Lafortune, 2009) 

 

The reservoirs’ relations of the North basin are schematically explained on Fig. 4. 

 

 
Fig. 4 Relations between underground hydrological mining reservoirs in the North iron basin (the surface 

altitude are designed in m NGF) 

 

The overflowing of “La Paix reservoir” began in March 2008 at 207 m ASL by the Havange shaft which is 

located in Knutange gallery (Fig. 5). The river called “La Fensch” is the main river that received water overflows 

from the north iron basin. Investigations were undertaken at this location and downstream of the overflowing 

point to determine the mine water characteristics in June and in November 2008. 

In situ measurements were made by INERIS in 2008 with a multi-parameters probe and water samples were 

taken in June 2008 and sent to the laboratory to be analysed. 

 

 

 
Fig. 5 Bassompierre or Knuttange water overflowing in the Fensch River 

 

 

The Lorraine coal basin 

 

A borehole was drilled during March 2012 down to the zone where the oxidation of iron sulphides was predicted 

to occur in order to confirm the concomitant presence of water and atmospheric oxygen necessary for the 

chemical reactions to proceed. The method of continuous core drilling was employed and the core equipment 
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was outfitted with a tube that had fringes to permit the flowing of gas from the strata encountered. Gas 

composition measurements were conducted in the borehole. Some specific analyses were carried out on intact 

rock samples. 

Water analyses were made in situ (temperature, pH, and electric conductivity were measured with a multi-

parameters probe) and some samples were analysed in the laboratory for more accurate analysis (Degrelle, 

2012). The water analysed was sampled in the borehole itself.  

 

 

Results and discussion 
 

The Lorraine iron basin  

 

Noxious gas production 

 

The gas composition, monitored continuously in the Moyeuvre-Grande reservoir, for example, at G37 and G7 

adits has shown O2 consumption accompanied by a less than proportional production of CO2. 

The results of previous studies carried out between 1999 and 2003 lead us to consider pyrite oxidation coupled 

with dissolution of calcite by the produced sulphuric acid as the most convincing hypothesis to explain the CO2 

emission and O2 consumption (Pokryszka and Grabowski, 2003). 

The reaction balance can be written as 

 

FeS2+3.75O2+ 2 CaCO3+1.5H2O ↔ Fe(0H)3+2CO2+2SO4
2-+2Ca2+ (1) 

 

As a result, one mole fraction of pyrite needs - to be oxidised - the consumption of 15/4 mole fractions of oxygen 

and produces 2 mole fractions of carbon dioxide. So, the ratio between oxygen and carbon dioxide will be equal 

to 1.875 which is represented by the dark line (plotted on figure 7) whose equation is 

 

𝑦 =  −1.875𝑥 +  20.9 (2) 
 

This result is in accordance with a literature review on geochemical reactions observed in similar mining 

development cases. 

Data registered on G37 adit were partly presented beneath. Oxygen content versus carbon dioxide is plotted on 

Fig. 6. Decreases in O2 gas content (which can reach less than 13 vol%) were observed during summer periods 

with increases of CO2 content (which can reach more than 4 vol%). On the contrary, during winter periods, 

atmospheric air enters in the adit. This result confirms that the natural thermal draught temperature is the main 

driving force for gas migration from the old mining works towards the surface (Pokryszka, 1999, Pokryszka and 

Grabowski, 2003, Lagny, 2011 and 2014). 

 

 
 

Fig. 6 Part of the data registered on G37 adit (Moyeuvre-Grande town) from April 2000 to April 2014 (Lorraine 

iron basin) 
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To verify the evolution of the geochemical process of noxious gas production, part of the monitoring dataset was 

examined in more detail. During summer period (gas outflow), concentration of CO2 versus O2 concentration in 

gas was plotted to observe if the proportion between the two gases verifies the supposed geochemical reaction 

(Fig. 7).   

The graphic shows that there is a great similarity with the theoretic line, though during the chosen period (between 

07/06/13 and 08/07/13), short atmospheric air entries were observed.  

This result supports the hypothesis that sulphide oxidation followed by carbonate dissolution is the source of the 

carbon dioxide and oxygen depletion observed in gas emissions from the mines. The reactions which have been 

observed in Moyeuvre-Grande since 1999 are still occurring. 

 

 

Fig.7 Oxygen concentration plotted versus carbon dioxide concentration for different reactions 

 

 

The results of the gas monitoring led us to examine the effects of mine water discharges on the Fensch River. 

 

Water chemical analysis  

 

The mine water discharges in the central and south parts of the iron basin has affected water quality in the region 

(Préfecture de la région Lorraine, 2004). The most significant changes in water quality are increases 

concentrations of soluble salts (sulphates, sodium and magnesium) and the presence of other substances including 

elevated concentrations of iron, manganese, boron, hydrocarbons, phenols have also been observed. 

The most significant change in water quality is the high concentration of sulphate due to the effects of pyrite 

oxidation.  It is likely that similar water quality changes will also take place in mine water discharges in the 

northern part of the basin.  

Water analysis which were collected at Knuttange water overflowing are listed in table 1 (Bentivegna and 

Lafortune, 2009). 

 

 

Table 1 Data collected above and downstream of the water overflowing (Bentivegna and Lafortune, 2009) 

 

Date upstream downstream 

 Temperature (°C) pH Electric conductivity 

[μS/cm] at 25°C 

Temperature (°C) pH Electric conductivity 

[μS/cm] at 25°C 

June 2008 16.1 7.8 637 13.6 7.5 2 660 

November 2008 10.2 7.7 595 12.9 7.2 2 538 

 

The mine water discharges induce a decrease of the river’s temperature in summer and an increase in winter. This 

result demonstrates the buffer effect of the underground mine water whose temperature is relatively stable, around 

13°C. The pH variation is not very important between upstream and downstream but a small pH decrease can be 

observed downstream of the discharge point. However there was a significant increase in the electrical conductivity 

of the river water downstream of the discharge point (Table 1). The water of the river is around four times more 
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mineralized downstream of the discharge point. These values are depending on the water flow value which was  

0.86 m3/s, the 16th of June 2008. In March 2008, the flow of water reached 2.87 m3/s. It is even so representative of 

a mine water mineralisation which was confirmed by laboratory analyses. 

Water samples from the river were collected in June 2008 and analysed at the laboratory (table 2).  

 

 

Table 2 Water analyses on samples collected upstream and downstream the overflowing point (Bentivegna and 

Lafortune, 2009) 

 
Parameter Upstream the overflowing point (mg/l) Downstream the overflowing point (mg/l) 

bicarbonates 321 550 

chlorides 22 26 

nitrates 7 3 

sulphates 111 1 550 

calcium 111 301 

magnesium 14 217 

potassium 2 7 

sodium 15 176 

Total Dissolved Solids 603 2 831 

 

 

Great differences in the chemical composition of river water were observed upstream and downstream of the 

discharge point, especially for sulphates, calcium, magnesium and sodium where concentration increases of up to 

400 per cent were observed. Through the parameters measured in this study, the Fensh river quality is falling at the 

discharge point of “Lapaix reservoir”. Downstream, the punctual measurements clearly show the influence of the 

mine water from the old workings with a great variation of mineralisation and especially a great increase in 

sulphates, calcium, magnesium and sodium ions. Similar observations have been made in the past in other part of 

the iron Loraine basin by Collon (2004), specifically, in the southern and central parts of the basin, where the pH 

can range from 6.8 to 7.8, and relatively high concentrations of sulphate, sodium, magnesium, manganese and 

boron were measured in discharges from mine dewatering. The concentrations of some chemical constituents in the 

discharge water tend to decrease with time in particular, sulphate, sodium, magnesium, calcium, bicarbonate, 

chloride and potassium.  

Metals (trace metals) and metalloids in solution were not found in significant concentration neither in the coal. 

 

The Lorraine coal basin 

 

Noxious gas production 

 

The presence of high content of CO2 and the lack of O2 were confirmed by gas measurements conducted by 

INERIS in the borehole, at different times during and after the drilling. This was achieved with a portable gas 

analyser, a pump and a flexible associated to a measuring tape to know the depth. The measures were done as 

quickly as possible and the pump was stopped between each measure in order to perturb the less as possible the 

gas distribution in the borehole.  

One of the numerous gas compositions (CO2 and O2 gas contents) with depth is presented below (Fig. 8). 
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Fig 8. Distribution of CO2 and O2 gas content with depth, two months after the drilling (Degrelle, 2012) 

 

The gas distribution evolves regularly during the fifty first meters. Also, the CO2 gas content is increasing from 

3.9% (2 m depth) to 8.2% (50 m depth) while the O2 gas content is decreasing from 12.8 to 3.4 vol%. 

 

Then, the gas contents are relatively stable until 80 m depth after what CO2 gas content is rising to 9.3 vol%. and 

O2 gas content is decreasing to 2 vol%.   

 

After these measures have been realised several times in various meteorological conditions, experiments were 

conducted to explain this gas production which is characterised by a high CO2 gas content and a low O2 gas 

content. 

Investigations were carried out on rock samples from the borehole with a SEM (Scanning Electron Microscope) 

in order to determine their mineralogy. 

 

Core samples (one core was around 2 m length) were selected in order to have all types of facies encountered on 

the drilling and a homogeneous spatial repartition of the samples. 

The analyses showed that ferrous sulphurs (pyrite or marcasite) were identified in twelve samples (among 21), 

associated or not with carbonates, and located between 50 and 100 m depth. 

 

Figure 9 shows one example of a negative obtained where marcasite can be observed. 
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Fig. 9 Example of a negative obtained with the SEM (Lagny et al., 2013) 

 

Marcasite (or white iron pyrite) was found on several samples both in a pristine and a partially oxidised state. It 

is a ferrous sulphide mineral which is more easily oxidised than pyrite. 

Rock samples were put in batches with demineralised water in order to examine, if possible whether sulphide 

oxidation and carbonate reactions would continue. 

It is also possible to test the interaction between water and sandstones collected at Cocheren in the borehole and 

to observe if noxious gas can be produced as it can be observed in the borehole. The experimental protocol 

consists on CO2 and O2 concentrations measurements of a rock sample put in a batch with water. The rock 

sample was chosen depending on gas analysis results in the borehole and core samples characterisations. 

 The samples selected are located where noxious gaseous compositions were measured in the borehole or where 

ferrous sulphurs were observed. In order to increase the speed of the reaction, the samples were crushed. Half of 

the batch (see Fig. 10) was filled in with rock samples and water was added so as to create a saturated and an 

unsaturated part. Rock samples and each element of the batches were sterilised to eradicate bacteria which were 

not those implied in the reaction.  

 
Fig. 10 Experiments conducted in batches (Degrelle, 2012) 

 

The same analyser which was used in situ was taken to observe gas variations. The gas sampled for analysis was 

reinserted in the batch. 

It was observed for batches containing rock samples with marcasite that O2 was consumed and CO2 was 

produced in the proportion of the supposed theoretic reaction, as the line plots on Figure 7. 

Sample view 

Extracted mineral 

Increase in size view 

Chemical composition 

Chemical formulae : FeS2 

Name : Marcasite 
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The oxidation of iron sulphide minerals (pyrite or marcasite) usually takes place in a number of steps [Agrinier 

(2010)]. 

In a first step, soluble ferrous ions are produced: 

 

4FeS2+14O2(gas)+4H2O→ 4Fe2+(aqueous phase)+8SO4
2-(aq.)+8H+ (3) 

 

Then, ferrous ions are oxidised to form ferric ions via the following reaction: 

 

4Fe2+(aq.)+O2(g.)+4H+(aq.)→ 4Fe3+(aq.)+2H2O  (4) 

 

And then, iron hydroxides precipitate: 

4Fe3+(aq.)+12H2O→ 4Fe(OH)3+12H+(aq.) (5) 

 

Hence, O2 is consumed and the water is acidified by the cumulated production of 16 H+. If carbonates are present, 

these can interact and generate CO2 production, according to: 

 

16H+(aq.)+8CaCO3→ 8CO2(g.)+8Ca2++8H20  (6) 

 

In fact, calcite is acidified, according to: 

 

CaCO3+2H+↔ Ca2++H2CO3(aq.) (7) 

 

In case of gaseous phase presence, H2CO3 (aq.) is decomposing as: 

 

H2CO3(aq.) ↔ CO2(g.)+H2O (8) 

 

The results of the study on gas production led us to examine water. 

 

Water chemical analysis  

 

During and after the drilling, physical and chemical parameters of water were measured as its temperature, its pH and 

its electric conductivity. 

The Triassic sandstone groundwater has a conductivity ranged between 2.3 and 3.1 mS/cm and a temperature 

comprised between 14 and 18.5 °C at 100 m depth (Lafortune, 2011), few kilometres far from the borehole. 

The water level in the borehole was around 90 m depth. Water samples were collected and analysed in situ with a 

multiparameter probe. Some laboratory analyses were also conducted. 

Data after the drilling are shown on Tables 3 and 4.  The first analysis corresponds to an equilibrium period of the 

borehole with its environment. 

 

 

Table 3 In situ water measurement in the borehole (Degrelle, 2012) 

 

Date Parameters   

 Temperature (°C) pH Electric conductivity 
[μS/cm] 

14 and 15 of May 2012 13.5 8.0 3 360 

14 to 16 of November 

2012 

13.5 7.6 3 151 

 

The pH value is representative of near neutral pH. Water temperature is the temperature of the ground at such depth 

and electric conductivity is indicative of an increase in the Total Dissolved Solids content which was around  

300 µs/cm during the drilling.  

Some samples were taken in May 2012 and sent to the laboratory to be analysed. The results are shown in  

Table 4. 
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Table 4 Laboratory results on water samples taken in May 2012 at the borehole (Degrelle, 2012) 

 

𝐹− 

(mg/l) 

𝐶𝑙− 

(mg/l) 

𝑁𝑂2
− 

(mg/l) 

𝐵𝑟− 

(mg/l) 

𝑁𝑂2
− 

(mg/l) 
𝑃𝑂4

3− 
(mg/l) 

𝑆𝑂4
2− 

(mg/l) 

Ca2+ 

(mg/l) 
M𝑔2+ 

(mg/l) 

Na+ 

(mg/l) 
𝐾+ 

(mg/l) 

Si 

(mg/l) 
HC𝑂3

− 

(mg/l) 

0.0 89.9 0 0 0 0 819.9 22 6.4 815 10.6 4.3 976.7 

 

 

Concentrations in sulphate, sodium and carbonate ions are around 800 mg/l, which is relatively high compared to 

the drinking water guidelines. 

The values of conductivity measured during the drilling were around 300µS/cm whereas those measured at the 

bottom of the borehole after a given time can be multiplied by ten. The pH is circum-neutral and high concentrations 

of sulphate, sodium and carbonate ions are observed. 

These observations are typical of a neutral mine drainage. 

 

Discussion 

 

In the coal and iron Lorraine basins studied, the same type of gaseous phenomenon is observed. The presence of 

iron sulphide, with oxygen and water, induces its oxidation and carbonates presence brings on CO2 gas production. 

Related to water characteristics, the pH is near-neutral, high mineralisation is observed with great sulphate, sodium 

and carbonate ion concentrations. 

Heavy metals (trace metals) in solution were not found in significant concentration neither in the coal Lorraine 

basin (though metals like iron and manganese were present), nor in the iron Lorraine basin. 

In order to enhance knowledge on this phenomenon and to know if reactions of the same type are possible elsewhere, 

we have done a bibliographic study on pyrite oxidation processes which is exposed below and we have proposed a 

conceptual model to describe the likely processes. 

 

 

Bibliographic study and modelling proposal 

 

Active draining waters and in particular in closed mines are usually acidic and neutral drainage is just a result of acid 

mine drainage (AMD), when buffer phenomenon occurs. 

Acid waters (Jonhson and Hallberg, 2005) typically pose a risk to the environment by their usually high 

concentration of metals (iron, aluminium, manganese and possibly other heavy metals) and metalloids (of which 

arsenic is generally of greatest concern).  

In brief, the main cause of acidic metal rich mine drainage waters (Johnson, 2003) is the accelerated oxidation of iron 

pyrite (FeS2) and/or other sulphides minerals, mainly due to air entry caused by dewatering. 

The exposure of these minerals to both oxygen and water, as a consequence of the mining and processing of metal 

ores and coals, induces sulphides minerals oxidation.  

These phenomena tend to be usually associated with the oxidation of pyrite, which is the most abundant sulphide 

mineral on the planet. Likewise, coal deposits contain variable amounts of “pyritic sulphur” (a generic term that 

includes other iron sulphide minerals such as marcasite) as well as organic sulphur. 

At pH value above 4, this may be mediated chemically or biologically, while below pH 4, abiotic iron oxidation is 

negligible. 

When mines are closed or abandoned and pumps turned off, the rising of the water table can lead to soluble sulphates 

leaching inducing contaminated groundwater being discharged, sometimes in a catastrophe vent which is not the case 

in the two cases studied here. 

Another important problem is the potential of long-term pollution problem, as production of AMD may continue for 

many years after mines are closed (see BRGM, Agence de l’eau Rhin-Meuse, Direction régionale de l’environnement 

Lorraine, 2008 for the evolution of Lorraine iron basin). 

Some AMD streams remain neutral to alkaline, although others show a marked decline in pH as they oxygenate. This 

is chiefly in the form of bicarbonate (HC𝑂3
−) deriving from the dissolution of basic minerals (calcium carbonate) 

though as noted below, biological processes may also generate alkalinity in AMD streams.  

 

This is the case (Mayo et al., 2000) in Wasatch Plateau located in Utah (USA) where there is an old coal mine. The 

coal was mined at a depth of about 350 m below the surface. Collapses occurred within hours or days, after coal was 

mined, forming roof-rock rubble composed of coal, sandstone, and mudstone. Until June 1993, all exposed mine-

floor, wall and roof areas were dusted with gypsum rock dust to retard fire and prevent explosion. In July 1993, 

dolomite was substituted for gypsum and pure limestone was substituted for the dolomite in October 1993. 

Pyrite oxidation does not always result in acid drainage because of the buffering effect of abundant carbonate 

minerals. Indeed, the dissolution of gypsum (both native and gypsum dust used as rock dust) is also a significant 
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contributor of SO4
2-. Ion exchange of Ca2+ on the sodium zeolite analcime, which occurs in the coal, accounts for an 

increase in Na+ concentrations.  Oxidation of fugitive longwall emulsion fluids may also produce abundant gaseous 

CO2 some of which indirectly affect the total dissolved solid (TDS) content of mine drainage. It is postulated that the 

bacterial oxidation of the organic portion of the fugitive longwall mining machine emulsion fluid may liberate this 

gas which in turn may form carbonic acid and may result in the dissolution of carbonate minerals.  

What we observed in Lorraine coal basin is quite similar in terms of observed substances concentrations. SO4
2- ions 

are linked to the presence of major cations (calcium, magnesium and sodium). Sodium may be liberating by 

argillaceous minerals that keep calcium in exchange which is not the case in the iron Lorrain basin. Moreover, are 

likely to be insufficient aluminosilicate minerals available in the system to neutralise acidic water. 

So, for near-neutral pH, the processes that are taking place can be quite various. Moses and Herman (1990) interested 

themselves to pyrite oxidation at circum-neutral pH where proton and metal concentration are low which is the case 

in our two case studies. They retained the reaction mechanism proposed by Goldhaber (1983) which considers that 

the initiation pyrite oxidation is due to the direct attachment of a dissolved oxygen (DO) molecule to the partially 

protonated pyrite surface. It has commonly been assumed that at near-neutral pH, DO must be the direct oxidant due 

to the low solubility of Fe(III). Smith et al. (1968) and Moses et al. (1987) showed that Fe(III) is a very effective 

pyrite oxidant at this pH value.  

Pyrite oxidation is typically far from equilibrium, whether represented by reaction (9) or reaction (10), which is the 

sum of reaction (9) and 14 X reaction (11): 

 

FeS2+ 14 Fe3++8H2O→15Fe2++ 2SO4
2-+ 16H+ (9) 

 

FeS2+ 7
2⁄ O2(aq)+H2O→Fe2++2SO4

2-
+2H+ (10) 

 

Fe2++ 1
4⁄ O2(aq)+H+→Fe3++ 1

2⁄ H2O (11) 

 

Moses et al.  (1987) proposed an extension of the Singer-Stumm model of pyrite oxidation to circum neutral pH 

where the solubility of Fe(III) is so low that the reservoir of Fe (III) (aq.) is rapidly depleted by reduction on pyrite 

and Fe(II) oxidation becomes rate limiting because it is needed to maintain Fe(III) (aq.) concentrations. 

They assumed that the reaction is zero-order in [SO4
2-] and [Fe(II) (aq.)] which are reaction products. They begin 

their low rate formulation (a macroscopic one) with the assumption that dependence on the ratio of total surface 

area to reaction solution volume (A/V) is first-order. With this consideration, the rate expression is writing with 

pyrite concentration measured in units consistent with the measurement of SO4
2- concentrations: 

  

rate= 
-d[pyrite]

dt
=

(0.5)d[SO4
2-]

dt
  (12) 

 

The (0.5) factor reflects the stoeichiometric relationship between moles of pyrite oxidized and moles of SO4
2- 

produced (reactions 9 and 10). 

The rate law is the product of the rate coefficient k and the concentration of each species that participates in the 

reaction rose to a power that reflects the reaction order (reaction 13): 

 

rate=k (
A

V
)

1

[Fe(II)(aq.))]0[S04
2-]0[H+]0[Fe(III)(aq.)]0[DO]0 

 

or 

 

rate=k (
A

V
) (13) 

 

The rate coefficient was determined by experimental data, but some others assumptions have been made by the 

authors by considering (Lasaga, 1981) that the reaction order of equation (11) could be n and so could be written 

like                                                                          rate=k (
𝐴

𝑉
)

𝑛

 (14) 

They found with their laboratory experiments results that the reaction at near-neutral pH was first-order with 

respect to A/V. 

According to the results, the Singer-Stumm model could be extended for pyrite oxidation. 

But they also added that there is a need to develop relationships between understanding of these processes in simple 

systems like in their experiments, and in natural systems. Natural systems are more complicated, for example, due 

to the solution and solid phase compositions, the activity of biota (mainly bacteria) that could alter the rate or 
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mechanisms of the reactions. Moreover, the proposed pyrite oxidation mechanism of this study is, in fact, 

compatible with their understanding of the means by which Thiobacillus bacteria accelerate pyrite oxidation. 

As measured water pH in the Lorraine and coal basin studied parts is near-neutral, as Fe(III) appears not to be the 

major component of the reaction but oxygen seems to be essential in the reaction and as pyrite presence has been 

verified, the Singer-Stumm model might be proper for understanding and modelling in situ observed phenomena. 

 

 

Conclusion 

 

The presence of a high content of CO2 and the lack of O2 in gas emissions from mine accesses were confirmed by 

measurements in the borehole located in the Lorraine coal basin. Drilling and mineralogical investigations confirmed 

that marcasite, water, and carbonates are present on the site in the ground at different depths. 

The hypothesis of marcasite or pyrite oxidation is proposed to explain noxious gas production. 

Historical observations suggest that the same processes are taking place in the Lorraine iron basin. Past experiences 

and actual data support the hypothesis that the observed gas emissions are associated with the oxidation of iron 

sulphide minerals coupled with the dissolution of carbonates. 

The oxidation of iron sulphides in the presence of carbonate minerals could account for the observed emissions of 

carbon dioxide and oxygen-depleted air, and can produce drainage with a circum-neutral pH value, that has high 

dissolved salt content, and contains low concentrations of metals other than iron and manganese.  

Such drainage is usually called neutral mine drainage. 

In the future, some new water samples should be taken to measure Fe(II) and Fe(III) concentrations in order to 

confirm that the Singer-Stumm model is appropriate to the case of these parts of iron or coal Lorraine basins studied. 
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