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ABSTRACT: Many countries are now facing problems related to their past mining activities. One of 

the greatest problems they have to deal with concerns the potential surface instability. In areas 

where a bord-and-pillar extraction method was used, deterministic methodologies are generally 

used to assess the risk of surface collapses. However those methodologies suffer from not being 

able to take into account all the uncertainties existing in any risk analysis. Through the practical 

example of the assessment of a single pillar stability in a very simple mining layout, this paper 

introduces a logical framework that can be used to incorporate the different kinds of uncertainties 

related to data, models as well as to specific expert’s choices in the risk analysis process. Practical 

recommendations and efficient tools are also provided to help engineers and experts in their daily 

work.  
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RESUME : De nombreux pays se trouvent aujourd’hui confrontés à des problèmes liés à leur histoire 

minière passée, et notamment à celui de l’instabilité des terrains de surface. Des méthodes 

déterministes sont généralement utilisées dans les zones anciennement exploitées par la méthode 

des chambres et piliers, pour évaluer le risque d’effondrement de surface. Cependant, ces méthodes 

ne permettent pas de prendre en compte les différentes incertitudes qui existent dans toute analyse 

de risque. Cette étude, à travers l’exemple du calcul de stabilité d’un pilier de mine extrait d’un 

environnement très simple, présente une démarche logique pouvant être utilisée pour incorporer les 

incertitudes, liées aux données aussi bien qu’aux modèles ou aux choix spécifiques des experts, 

dans les processus d’analyse de risque. Des recommandations pratiques et des outils efficaces 

pouvant permettre d’aider les ingénieurs et les experts dans leur travail de tous les jours sont 

également présentés. 

MOTS-CLEFS : Incertitudes, Analyse de risque, Simulations de Monte Carlo, Stabilité de pilier. 

1. Introduction  

Many countries are facing problems related to abandoned underground mines. In France, iron ore 

has been industrially mined all around the Lorraine Region (North-Eastern France) from the middle 

of 19
th

 to the end of the 20
th

 century. The most common mining method was pillar extraction but a 

bord-and-pillar partial extraction method was sometimes used under sensitive zones to protect 

houses and surface infrastructures from subsidence during the exploitation. In those areas, some 

collapses already occurred, either during the mining operation or a long time after it. Even though 

numerous studies have already been carried out, researchers still go on developing and improving 

their works in order to understand the reasons of such collapses. 

Today, one of the greatest issues of the work of state organisations having to manage the 

consequences of those past mining activities is to deal with the problem of potential surface 

instability. In the Lorraine region, INERIS and GEODERIS developed a multi-criteria analysis in 



order to realise a risk map covering all the iron ore mining areas (Merad et al., 2004). In The 

Netherlands, a deterministic method was applied successfully in the recent past to investigate the 

necessity of underground support measures to protect the surface from collapsing above shallow 

abandoned bord-and-pillar limestone workings (Bekendam, 2004). Even though those methods are 

perfectly efficient in their field of competence, they suffer from not being able to take into account 

all the uncertainties inherent to geotechnical problems.  

In the past decades, literature about the use of probabilistic methods in geotechnical engineering 

became more and more comprehensive (Einstein, 1996; Baecher and Christian, 2003). For the 

purposes of any risk analysis, one may distinguish between four classes of uncertainty ranging from 

a very general to a very specific degree. Uncertainty can thus be attributed to (1) the scientific, 

economical and politic context of the study; (2) the expertise laying on deterministic human 

choices; (3) the use of models; and (4) the randomness and/or the lack of knowledge on data (figure 

1). It can be shown from figure 1 that these four classes of uncertainty are not totally independent 

and that dealing with the uncertainty associated to a specific class may have impact on uncertainties 

of lower classes. However, the way of treating uncertainties is different between all the categories. 

In the higher classes, uncertainties are very difficult to deal within a quantitative way while tools 

exist to help considering lower classes uncertainties. 

 

Figure 1. Possible scheme distinguishing between the different categories of uncertainty in engineering risk analysis. 

In geotechnical engineering, most of the probabilistic studies that have been undertaken concern 

slope stability analysis. This geotechnical field indeed offers a really efficient framework for the 

incorporation of uncertainty into slope design (El-Ramly et al., 2003) because physical phenomena 

are relatively well known and modelled. Nevertheless probabilistic studies are relatively rare in the 

mining field. Efforts have started to be made for the last couple of years in New-Zealand (Richards 

et al., 2002) or in Great Britain (Swift and Reddish, 2002) after surface collapse events in order to 



determine where further such collapses are likely to occur in the future. Even though those studies 

give really interesting results and make it possible to quantify the risk of future surface collapses, 

they do not take into account all the different kinds of uncertainties.  

The study presented herein focus on the practical assessment of a single pillar stability in a very 

simple mining layout. It provides a methodology to incorporate different kind of uncertainties 

related to data, models or specific expert’s choices. Different engineered recommendations will thus 

be given. 

2. Classical deterministic approach 

Bord-and-pillar method of mining is commonly used to extract ore from horizontally bedded 

sedimentary strata. Pillars are often left intact to provide permanent support to the undermined roof. 

In such a context of exploitation, economical considerations and safety assessment are the two most 

important issues at stake. Over the past few decades, several works about pillars have been carried 

out by a number of researchers and engineers either to determine optimal design pillar sizes 

(Salamon and Munro, 1967; Van der Merwe, 2003) or to assess long-term pillar stability 

(Bekendam, 2004). 

The conventional methods used to assess the stability of mine pillars are based on deterministic 

(empiric or analytic) approaches. They usually adopt the safety factor (SF) as an indicator of the 

stability of the pillar. This safety factor is defined as the ratio of the pillar strength (R) over the 

mean vertical stress acting on pillar (S). Theoretically, a SF value greater than 1 thus means the 

system is stable while a SF value lower than 1 means it is unstable. In practice, a threshold value 

higher than 1 is generally used at the design level to incorporate uncertainties. 

Several methods can be used to determine both of S and R. S is generally calculated using the 

Tributary Area Theory, which considers the total overburden load directly over the pillar and the 

portion of the galleries at its perimeter: 
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where l and L are the pillar width and length, bl and bL the bord width and length, γ the average 

volumic weight of the overburden and D, the mining depth. 

Pillar strength can be calculated by laboratory measurements on samples or by back analysis of past 

collapses. In the Lorraine region, several field investigations have been made after the historical 

surface collapses events and a back-analysis of the data lead experts to evaluate the long-term 

strength of the pillars to be 7.5 MPa.  

In the present approach, the mining layout being studied is very simple. It consists in a grid of 3 by 

3 rectangular pillars that allows to take into account the mining environment of the central pillar 

(figure 2). Dimensions of pillars and characteristics of the mining area have been extracted from a 

huge database containing information about all the Lorraine mines. The exploitation panel selected 

for the purpose of the study is between 130 and 150 m deep and 500 m wide. Pillars have a 12 by 8 

m rectangular shape, roads are 4 m wide and the seam is 4 m high. The overburden is assumed to 

have a mean volumic weight of 25 kN.m
-3

. Using the tributary area theory and a constant strength 

value of 7.5 MPa, the pillar is assessed to be stable with a safety factor equal to 1.09. 



 

Figure 2. Extract of a mining map and selection of the nine pillar mining layout. 

3. Taking into account the uncertainty on input parameters 

Considering figure 1, uncertainty on input data can be linked to the spatial and temporal natural 

variability of mechanical and geological parameters as well as to the lack of knowledge making it 

difficult to assess exactly the parameter values used in models. 

In our case of interest, both kinds of input data uncertainty can be found. ‘Physical’ parameters, as 

γ, are affected by natural variability. They are indeed geological averaged values obtained from 

sample measurements. On the other side, epistemic uncertainty is predominant for parameters as the 

long-term strength of the pillar (R) that has been evaluated from a statistical back-analysis of 

several surface collapses occurred in the iron ore basin.  

The determination of the nature of the uncertainty is far more difficult for the geometrical 

parameters such as pillar dimensions or mining depth. These are usually determined from mining 

paper maps archived by mining companies or regional authorities, and which are generally at a 

1:5000 scale. At such a scale, a pencil line thickness on the map is equivalent to more than 1m in 

the mine. For classical Lorraine pillars, such a map inaccuracy may lead to a 10 % error on the 

values used for pillar dimensions and obviously to significant errors in the risk analysis process. It 

has been considered in this study that uncertainty due to the map inaccuracy belongs to ‘model 

uncertainties’ as maps are models aiming to help engineers to represent the reality. 

In geotechnical engineering, a very efficient way of taking into account uncertainty on input 

parameters is to define statistical distribution functions for each of the parameters (Kim and Gao, 

1995). Unfortunately, available information is frequently poor and test data are often inefficient to 

characterize the statistical moments required in the distribution functions. When test data are 

unavailable, those parameters may be estimated from literature or judgement and experience of 

experts (USACE, 1999).  

Once distribution functions are defined, Monte Carlo simulations may be used to propagate 

uncertainties in the deterministic model. The principle of such simulations is to take one random 

value from the distribution of each input parameter and to calculate the output value of the function. 

Each calculation gives one outcome. A great number of simulations allows to obtain a frequency 

distribution of the output values. Mean value, standard deviation or other statistical moments of the 



studied parameter may thus be estimated. The greater the number of simulations, the more accurate 

the computed statistical moments. 

For this study, a simulation method has been built allowing all the parameters to be defined by a 

mean value and a standard deviation. This method has been computed using Mathematica software. 

For the construction of the mining layout, each position of the corners of the nine pillars is 

randomly distributed around a mean value. In order to respect mine design reality, the assumption 

was made here that the roads are cut in a straight line. Map inaccuracy is supposed to lead to a 1 m 

error on pillar dimensions. Figure 3 presents different layouts that can be obtained from random 

simulations. For illustrating the difference between them, safety factors (SF) and extraction ratios 

(τ) were calculated for a 140 m thick overburden. 

 

Figure 3. Three mining layouts computed from random simulations. 

In order to describe statistically other input parameters, several assumptions had been made. All 

parameters had been characterized by a mean and a maximal error. Normal distributions were 

chosen to fit all the parameters. Such an assumption may be valid for parameters that have been 

determined from back-analysis of several past events (as R) or that are considered to be traditional 

mean values of sedimentary rock properties (as γ). It is more opened to criticism for parameters, as 

h or D, that are described in the available database by a minimal and maximal value. However, it 

will be shown later that the choice of a specific distribution function has only a weak influence on 

the result (see table 2). The maximal errors chosen for the parameters are considered to be the 

boundaries of the 95 % confidence interval of those normal distributions. When no information was 

available, maximal errors were roughly assumed to be 10 % of the mean value. Table 1 summarizes 

the statistical values chosen for each of the input parameters. 

 

 

 

 

 



Table 1. Statistical values used for input parameters. 

Parameter Symbol Mean value Maximal error Distribution law

Pillar length                                       (m) L 12 1 Uniform 

Pillar width                                        (m) l 8 1 Uniform 

Bord length = bord width                  (m) b 4 1 Uniform 

Pillar height                                       (m) h 4 0.5 Normal 

Mining depth                                     (m) D 140 10 Normal 

Average volumic weight         (MN.m
-3

) γ 0.025 2.5e
-3

Normal 

Long-term strength                       (MPa) R 7.5 0.5 Normal 

k-Strength constant                       (MPa) k 4.4 (–) Constant 

Mining span                                      (m) A 500 (–) Constant 

Number of pillars                               (–) N 31 (–) Constant 

Coefficient of geostatic stress            (–) K0 0.5 (–) Constant 

Young modulus of pillar material (GPa) Ep 13 (–) Constant 

Young modulus of wall material   (GPa) Ew 5 (–) Constant 

Poisson ratio of pillar material           (–) νp 0.33 (–) Constant 

Poisson ratio of wall material             (–) νw 0.33 (–) Constant 

 

Using the previously described method, the statistical analysis of a large number of computed 

simulations made it possible to evaluate the mean value and the standard deviation of the safety 

factor. Figure 4 presents the obtained distribution function. From a practical viewpoint, it would be 

of interest to estimate pf, the probability of ‘design failure’, defined as the probability that the 

computed safety factor is less than the target value of stability, i.e. 1:  

 )1SF(obPrp f <= . (2) 

pf  is in this case equal to 23.5 %. 

 

Figure 4. Distribution of the safety factor when uncertainties exist on input parameters. 

While using of Monte Carlo method, an important parameter to take into account is the number of 

computed simulations. The greater the number of simulations, the more accurate the computed 

statistical moments but the longer the computation. In this study, a parametrical study has been 

carried out in order to investigate this parameter. Figure 5 presents for different numbers of 

simulations the ranges of variation of computed means of safety factors, as well as times to compute 

them. It can be shown that, for 10000 simulations, the computation time is still reasonable and the 

range of variation of the computed safety factor is less than 1 %. 



 

Figure 5. Range of variation of results and computation times for different numbers of simulation. 

4. Taking into account the uncertainty related to the choice of a specific model 

As presented earlier, uncertainty in risk analysis can also be attributed to some of the expert’s 

choices. Assessing a risk generally requires using specific methodologies and mathematical models. 

For example, in our current example of pillar stability assessment, the choice has been made to 

compare the strength of the pillar to the stress acting on it. Two models have thus been used to 

estimate both of those parameters. Actually, models are no more than abstractions of the state of 

nature and no matter how sophisticated they are, they are unable to capture the nature entirely. The 

most effective approach to estimate the previously named ‘model uncertainty’ would be to rely on 

field observations and use databases to do back-analyses. However, in geotechnical studies, it is 

usually very difficult to have historical observations to compare with results of model predictions 

and most of the times, only the uncertainty related to the choice of specific models (classified as 

‘expert uncertainty’) is taken into account. 

In a study by Husein Malkawi et al. (2000), uncertainty associated with the use of different slope 

stability models was addressed by evaluating the relative performance of some simplified methods 

compared to the most rigorous and accurate one. In this study, it has been chosen to consider 

models as input parameters. Such a choice allows taking into account both the existence of several 

mathematical models and the inability of the analyst to identify the best one. 

In our work previously described, two mathematical models have been used: the tributary area 

method has been chosen to calculate the stress acting on the central pillar of the mining layout and a 

constant value model has been used to evaluate the strength of a pillar. Nevertheless, even if both of 

the models are really convenient because simple, they also have disadvantages. 

The two main drawbacks of the tributary area method are that (1) it makes the assumption that each 

pillar is carrying the load of a vertical rock column over it, this may only be valid for central pillars 

from large horizontally stratified mining environments, and (2) it does not take into account the 

nature of the overburden. Even though numerical simulations such as finite elements methods are 

today the most common methods used to compute stresses acting on pillars, they can only be used 

for specific sites where geology and mining geometry are known. Nevertheless, for the purpose of 

this study, whose aim is to be as general as possible, it has been chosen to use results from Coates’ 

work about stresses acting on pillars (Coates, 1970). His approach makes it possible to take into 

account the extent of the mined area, the stress component parallel to the seam, the relative 



deformation properties of pillar, roof and floor rocks, and the positions of the pillars in the mining 

zone. The general solution for the mean pillar stress becomes: 
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where τ is the extraction ratio, K0 the coefficient of geostatic stress, A the extend of the mining area, 

N the number of pillars, Ep, Ew and νp, νw the Young modulus and Poisson ratios of pillar and wall 

(roof and floor) materials.  

For the purpose of the study, the assumption had been made that only the parameters that are 

present both in equations (1) and (3) are aleatory. The impacts of those equations on the result may 

thus really be compared. Table 1 presents the values chosen for all the parameters. Some of these 

had been extracted from local databases and some are roughly estimated. 

In our case of study, the use of the tributary area theory leads to a stress value of 6.87 MPa while 

Coates’ formula gives a value of 6.66 MPa. It confirms the general belief that the tributary area 

theory is rather a conservative approach. 

Concerning the strength of a pillar, it is now common cause that it depends on the strength of the 

material of which it is composed as well as its dimensions, and more specially its width-to-height 

ratio (Salamon and Munro, 1967; Van der Merwe, 2003). Using Van der Merwe’s method on a very 

extensive database of failed and stable Lorraine iron ore pillars, it was found that the strength of 

those pillars can be expressed as follows (Cauvin, 2004): 
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Here, w is the equivalent width that has to be used for rectangular pillars and k a constant value that 

can be related to the strength of the pillar material. The determination of k lays on the assumption 

that, on average, pillar failure occurs for a safety factor equal to 1.  

 

Figure 6. Comparison between the two different models estimating pillar strength. 



Figure 6 shows the comparison between the two different models (constant-value versus equation 

(5)). For a w/h-ratio higher than 2.9, R2 is bigger than 7.5 MPa.  

Those different physical models have been implemented in the simulation method. Basically, like 

for input parameters, one random model is chosen among the two that exist to evaluate the strength 

of the pillar and the stress acting on it.  The computation is then done following the same procedure 

as described in part 3. A degree of confidence can be chosen for models allowing taking into 

account decisions of experts as well as historical considerations. For example, if in a panel of 5 

experts, 3 think that it is better to use a constant-strength value to express the strength of the pillar, 

the strength model used in the computation have a probability of 3/5 (0.6) to be this one. In one 

other way, in the Lorraine region the tributary area theory was originally used by miners to design 

the underground workings. It thus seems logical to preferably use this formula to assess the risk of 

pillar failure. Figure 7 shows the results obtained by the simulation method, assuming that the input 

parameters are perfectly known. It has been chosen here to assign a confidence degree of 75 % for 

the tributary area theory while the models for the pillar strength are equally “trusted”.  

 

 

Figure 7. Computed safety factors, taking into account the existence of different models. 

It can then be shown in this case that one on the four combinations gives a safety factor less than 1. 

This Safety Factor corresponds to the ratio between R2 (equation 5) and S (equation 1).  

Figure 8 presents the distribution function obtained for the safety factor when uncertainties on input 

parameters and on models are simultaneously taken into account. In comparison with the previous 

results, the probability of ‘design failure’ increases from 23.5 % to 34 %.  

 

 

Figure 8. Distribution of the safety factor when uncertainties exist both on input parameters and models. 



5. Taking into account the method used to “propagate” uncertainties 

Monte Carlo simulations have been chosen as the method used to propagate uncertainty on input 

parameters into deterministic models. We are fortunately here in a case within which it is possible 

to do so. Problems with Monte Carlo simulations are that they may require huge time of 

computation. 

However others methods exist to “transfer” the uncertainty concerning the input parameters on the 

output of a model. The Point Estimate Method (PEM) is one of them. It is known for its simplicity 

and is commonly used in geotechnical studies. One of the greatest advantages of such a method is 

that it is easily computable in numerical simulation processes. In PEM, each random variable is 

defined by two numbers: the mean value plus or minus the standard deviations of the variable. 

Using those points, it allows to obtain accurate approximations of the mean value and the variance 

of unknown output variables. For more details about the method, a detailed algorithm is presented 

in Isaksson (2002). The main drawback of PEM is that it does not provide any information about 

the shape of the distribution of the output parameter. Moreover, using complex functions or 

numerous correlated variables may lead to an inaccuracy of the results.  

In our case of interest, Monte Carlo simulations allowed to obtain the distribution function of the 

pillar safety factor (figure 4). The mean value and the standard deviation of this parameter can thus 

be estimated to be respectively 1.095 and 0.126 after 10000 simulations. Using PEM, they have 

been found to be respectively 1.104 and 0.163. 

6. Analysis of variance 

Engineers and experts clearly ask today for efficient tools that can help them to solve the tough 

dilemma they face. They indeed have to give quick and accurate answers to problems full of 

uncertainties. One of their greatest needs is thus to reduce the uncertainty on the results they give 

(in this study, the standard deviation of the calculated safety factor is about 0.14) in a rapid and 

cheap way.  For time and economic reasons, it is obvious that engineers cannot study all the sources 

of uncertainty but can only try to focus on some of them. The study presented herein provides a tool 

that makes it possible to identify the parameters whose uncertainty has the greatest impact on the 

result.  

Table 2 presents the relative influences of five different sources of uncertainty on the total variance 

of the computed safety factor. The map inaccuracy and the use of human-made database, expert-

made hypothesis or models (as back-analysis) to estimate parameter values may have impacts on 

the input parameters. But, as presented in part 4, the choice of specific models to deal with a 

problem may also have impacts on the result. In order to obtain Table 2, each source of uncertainty 

has been investigated separately. Normal and uniform distribution have been used in the Monte 

Carlo simulations to fit the input parameters. It can be shown that the choice of a specific 

distribution function has only a weak influence on the result. It can also be highlighted that in our 

case of interest, almost half of the total variance of the computed safety factor is due to the map 

inaccuracy. It has also to be specified here that the differences between the relative influences of D, 

γ and R on the total variance can be totally explained by the differences between the maximal error 

on mean ratios as the rule they play in the calculation of the safety factor is exactly the same (see 

equation 1). 

 

 



Table 2. Relative influence of the different sources of uncertainty on the computed safety factor. 

Variance of the 

computed safety factor 
Source of uncertainty 

Concerned 

parameters 

Maximal error / 

Mean Normal 

distribution

Uniform 

distribution 

Variance / Total 

variance (%) 

Map inaccuracy L, l, b ~ 0.10 7.78e
-3

9.89e
-3

47 

Use of database D 0.07 1.59e
-3

2.05e
-3

9 

Expert-made hypothesis γ 0.10 3.18e
-3

4.05e
-3

19 

Use of models R 0.07 1.37e
-3

1.77e
-3

8 

Choice of models (–) (–) 2.82e
-3

17 

 

7. Conclusions and practical recommendations 

Table 1 introduced a possible scheme to classify the different categories of uncertainty that can be 

encountered in a risk analysis study. This paper provides a logical framework that can be used to 

reduce several kinds of uncertainties. Defining statistical distribution functions for input parameters 

may help engineers to deal with the problem of ‘data uncertainties’ inherent to the study of a 

natural system. It can also be pointed out here that the definition of the characteristics of those 

distribution functions requires the expert to make some choices (evaluation of mean values, 

maximal errors, …), so that the ‘expertise uncertainty’ is also involved. Choices had also to be 

made regarding the nature of the distribution functions fitting the parameters. In our study, normal 

and uniform distributions have both been used and it can be shown that such a choice has only a 

weak influence on the results. Table 2 illustrates that the variance of the computed safety factor is 

only slightly bigger when uniform distributions have been chosen for all the input parameters (in 

this case, pf equals 24.6 %) than when normal distributions have only been used (pf = 21.4 %). 

More generally about ‘expertise uncertainty’, this work may guide engineers through their analysis 

process in giving them a methodology to follow. It thus allows to break free from the individual 

ability or from the deterministic choices of the expert in charge of the analysis.  

It has been said in introduction that the methods currently used to assess the risk of surface collapse 

do not generally integrate the taking into account of all the uncertainties inherent to the study of a 

natural system. In fact, it is not exactly true. Most of the times, uncertainties are introduced in the 

evaluation process in an indirect, if not unconscious, way. This integration is basically part of the 

expert’s analysis process and is affected by ‘expertise uncertainty’. For instance, in the example we 

used, finding a safety factor greater than 1 means the system has to be stable. However the value of 

1.092 is very close to 1, meaning that we are thus very close to the stability. Experts usually use 

deterministic threshold values for safety factor (1.2/1.3/1.5/3) in order to integrate uncertainties 

inherent to the evaluation and to be side of the safety. Generally, the more damaging the 

consequences of an event, the greater the chosen threshold value. 

Nevertheless, using such threshold values does not allow the expert to assess ‘how stable the 

situation is’. Taking explicitly into account uncertainties on input parameters by the use of 

distribution functions makes it possible for the expert to represent himself an order of magnitude of 

what he is talking about, e.g. in our case of interest 23.5 % of the computed safety factors are less 

than 1. Expressing such a quantified result now sets the problem of its interpretation. In fact, we are 

now talking in terms of risk and acceptance. It is now up to the stakeholders, not either to the 

engineers, to decide whether the situation is acceptable or not, and whether uncertainty on the result 

has to be reduced or not. 
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