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ABSTRACT

When a rockburst occurs, consequences can be of great importance both for the safety of the

mineworkers and the extraction in progress. After the recent dramatic accident that occurred

in Lassing, Austria (1998), where miners were deadly injured, the French national coal

industry has initiated a project for the development of a system for the detection of trapped

miners.

We have been asked to develop a system based on the location of microseismic events

generated by miners on the sidewalls of a gallery. A preliminary estimate of the quarters and

galleries where the miners are expected to be trapped allows the installation of seismic

sensors in a sensible place. The system is designed for a real time acquisition and processing

of any microseismic event recorded in the rock mass. This paper presents the description of

the experimental equipment and results of the preliminary test conducted in the French

national coal mining company (Charbonnages de France) test site.

INTRODUCTION

World history of post disaster survival and rescue operations shows that, after a rock fall or

rockburst, early knowledge of the number of trapped miners and their location dramatically

increases their chances of survival  l. Such information could be obtained if there were some

kind of communication between the trapped miner and the rescue team, or if location

equipment were available. A fast location of the trapped miners, with a reasonable accuracy,

increases the efficiency of the mechanised operations for the retrieval of the miners and

reduces the time rescue personnel are exposed to a potentially hazardous environment. In

many instances, rescue teams have risked their lives in areas where there were no trapped

miners only to learn later that if the rescue effort had been directed into other areas of the

mine, lives could have been saved 2. This problem was emphasized for example in the 1968



explosion at the Consol Number 9 Mine in Farmington (US)3 when the accurate location, the

number and the condition of the trapped miners remained totally unknown until their rescue.

More recently (1998), the worst Austrian mining accident since the 1940's happened in

Lassing where ten miners were deadly injured when the talc mine caved in. A lack of

information provided to the emergency services on the accurate locations of the buried miners

contributed to delay the rescue operations.

Following this accident, the French colliery company decided to renew its equipment for the

detection of trapped miners developed in the 1970's. The system was designed to work from a

set of geophones deployed from the underground and provided a location from a graphical

interpretation of seismic signals. Due to the development of new technologies and its

expertise in the treatment and seismic data, we developed a system based on the same

concept, using seismic sensors, with the objective to enhance the location accuracy whatever

the gallery geometry.

This paper describes the existing systems for the detection of trapped miners, the main

characteristics of the new developed system and its first experimental results.

STATE OF THE ART

Numerous trapped miners detection systems have been developed by the mining countries to

match one or all the following objectives:

1. provide information so that rescue efforts could be initiated and directed toward the

proper area in the mine;

2. guide the rescue team to trapped or injured miners who might be within a few metres

but buried under rocks or obscured by smoke and debris;

3. keep the communication between the members of the rescue team when progress is

rendered difficult by the smoke and debris in hazardous environment;



The purpose of this paper is to concentrate on point 1.

The principal requirement for the location of trapped miners is the set up of a communication

between the buried and/or injured miners and rescue teams. This establishment of information

through the rock mass can either be done by generating a noise source by striking the mine

gallery or by carrying some kind of transponder or tag in the miners cap lamp battery. In the

first case, a seismic based technique has to be deployed whereas a communication using

electro magnetic waves is required in the second case. We recall in the following section the

main principles of both techniques 4.

Electromagnetic methods

The potential to communicate with underground trapped miners was realised in the 1920's,

when simple investigation of underground reception of Long Wave commercial stations

where made 5. Nowadays, the most commonly developed materials are based on the use of

electromagnetic waves between a source carried in the miner's belt and an array deployed by

the rescue team 6> 7. The Integrated Miner Safety Device developed by CSIR1 uses this

technology, which appear to be very suitable for deep conditions in local hard rock mines.

Using a tag transmitter with a 40-60 mW output and a 2.9Mhz operational frequency for the

antenna, could provide at least 30 metres location range though the rock. The Bureau's

Pittsburgh Research centre developed the Electromagnetic method considering the advantage

of this technique for the voice communication 8. Results from this technique showed that the

probability of detecting a signal from an underground transmitter is 45 per cent at a depth of

3000 metres and 90 per cent when the depth is reduced to 1500 metres. Further developments

by SELECTRONIC (called Sirius) in South Africa (1995) for through-rock communications

were carried out using modulation of electromagnetic waves by the heart beat and/or the

movement of human chest while breathing.



Seismic Methods

A limited number of systems working with the seismic method have been listed in the

literature. The US Bureau of Mines in 1970, following the suggestions of the National

Academy of Engineering 9, undertook the use of the seismic technique for the detection of

trapped miners. The principles of this technique consist in the use of a network of geophones

placed on the surface above the area where the miners are suspected to be trapped. As

displayed on Figure 1, the miners are supposed to hit a part of the mine with any heavy object

available in the surrounding. The generated seismic waves are then recorded on the sensors at

the surface and the analysis of the travel time differences between the different sensors allows

a location of the seismic noise. The resolution of an inverse problem trying to determine the

best location with the only knowledge of the travel time of the seismic wave between a source

and the receivers at the surface is highly dependent on two main parameters: the sensor

distribution relative to the location of the seismic source and the choice of the velocity model.

This system, which is still maintained operational and deployed as one element of the Mine

Safety and Health Administration, consists in the use of seven subarrays of sensors; each

subarray is composed of either 7 or 24 geophones. Tests carried out at various sites have

shown that the detection with a single subarray was sufficient to identify the signal as coming

from an underground miner 10 . The identification can be more precise if several subarrays can

detect the signal; a location becomes possible with at least three subarrays but a minimum of

five is required for a reasonable accuracy (less than 300 metres). It appeared that the expected

accuracy of a few metres for the positioning of the rescue borehole was not realistic and the

main source of error was attributed to the topographic relief and geologic conditions that

expectedly varied with position.

The equipment developed by "Charbonnages de France" followed the demands from France

and Germany to the European Community in 1968 and 1973. One of the objectives was to



reduce the duration of the rescue the trapped miners by operating directly from the

underground galleries rather than operating from the surface u . The main advantage of this

technique is the reduced scale of the trapped miners search, limited to the vicinity of the

rescue team gallery (less than a few hundred metres). Sensors were deployed along a line in

the closest gallery to where the miners were trapped and the location procedure was based on

a graphical interpretation of the seismograms (Figure 2). Depending upon the position of the

source relative to the geometry of the sensor array, the accuracy of the location could vary

from two metres (when the source was located in a gallery parallel to the geophones and at the

position described on Figure 2), up to several tens of metres for perpendicular galleries. The

paper graphical display of the seismograms was not constantly working and made the system

not optimal for the purpose of the trapped miners rescue.

The new system, SYDEM (SYstème de Détection des EMmurés)12 developed for

"Charbonnages de France" is based on the same hypothesis but uses state-of-the-art seismic

acquisition and processing techniques.

SYDEM : SYSTEM INSTRUMENTATION

Equipment description

The operation of the system is displayed in . The signals generated by the miners are recorded

on the seismic probes. The geophone used, the Geospace GS-20-DH with a at 28Hz - 1kHz

frequency range, is housed in the seismic probe as well as the pre-amplifier. Signal is

amplified with a selectable gain from 10 to 60 dB depending upon the in situ conditions and

signal to noise ratio. The probes are inserted in 50 mm diameter boreholes and are coupled to

the rock mass using a plastic wedge. The installation of the probes can be done for a borehole

up to a depth of 5 to 10 metres. Metal cables fixed to the probes and wedges allow a fast



unclamping of the probes in case they have to be quickly removed due to a damaged borehole

or a low signal to noise ratio. The analog signal is sent to the acquisition unit via a cable.

The acquisition unit is composed of a filtering unit that is switch-able by the operator in case

of the presence of electrical noise in the gallery (50 Hz characteristic frequency). This initial

processing step eliminates interference that would, in some instance, limit the system

performance. Waveforms are then stored with a length sufficient for a full recording of the

signal for P and S wave arrivals, at 16-bit, 15 kHz sampling. Once the installation of the seven

probes has been completed, the data acquisition can be tested using an AUTOtest function.

The response of the system to a ± 2.5 V spike is an essential control of the connection quality

and satisfactory operation of each element for the acquisition after the installation.

The number of sensors for the triggering can be set depending upon environment interference

(electrical or man-made) during acquisition. The acquisition is set by default to run

continuously with an automatic display of the last recorded event. The automatic display

option has to be unselected to perform interactive signal processing on the data. Waveform

processing was manually done with the picking of the P wave on each channel of the event

and the location algorithm is directly run from the acquisition software. The result of the

three-dimensional location is automatically displayed on a graphical interface superposed to a

drawing of the area of investigation.

Al l the system settings and the processing are conducted through a lap top personal computer

connected to the main acquisition box. The acquisition unit is equipped with two 12 Volt

batteries for an operation estimated at a maximum of 12 hours. The PC is limited to the of the

battery life of 3 hours.

Location procedure

The location of a seismic source is often a complex issue due to the number of parameters

affecting the solution, coming up from a non-linear problem, such as the number and



geometry of the sensors, accuracy of the velocity model and the in situ conditions. In the case

of a location with an acquisition unit working from the underground excavation, the geometry

of the sensor array is forced by the geometry of the gallery i.e. without any boreholes,

geophones are necessarily deployed along a Une.

I t was possible to overcome the poor sensor coverage by using the hypothesis provided by

Charbonnages de France that the system would be used in a case where the location of the

trapped miners is unknown but in the limits of a given gallery. This assumption has allowed

the development of a "grid search" procedure based on a comparison of calculated travel

times with observed travel times (Figure 4). The gallery where the miners are suspected to be

trapped is discretised with elementary volumes and travel times are calculated with straight

ray paths for each gravity centre of the volume and compared to the observed travel times.

The residual of the two travel times is defined as :

R . M . S. — ( £ ( T calculated propagation"" T observed propagation "*" A Origin))

and it is chosen as the quality criterion for the location. A high value of the R.M.S., in

comparison with the rest of data set, is an indication of a large discrepancy between the

observed and calculated travel times. The principal origin of these errors is usually attributed

to a wrong picking of the P arrival on one or several channels, and/or a significant difference

between the effective velocity field and the propagation model. On the contrary, for a given

velocity model and with the experimental uncertainties (wrong picking, errors in the sensor

locations), the minimum of the R.M.S. criterion is chosen as the location of the trapped

miners.

Seismic noise

Seismic noise can at times be a major problem with detecting small amplitude seismic signals.

Since the signal from a trapped miner can be on the order of a few mV, a normal background
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noise can perturb the signal. There are three common sources of noise typically encountered

in the field: (a) natural seismic background noise, (b) manmade seismic noise, and (c) electric

interferences. The latter may be readily eliminated by use of the 50 Hz filter previously

discussed. Since natural and man-made seismic noises tend to vary widely as a function of the

geographic location and time, it is not possible to make any predictions. The solutions

adopted to overcome this problem are two fold: (1) use a stacking routine during acquisition

in order to enhance the signal to noise ratio, and (2) apply a numerical filter adapted to the

characteristic frequency of the noise during the processing.

The data analysis has shown the miners were not likely to strike identical shots at one point of

the sidewall. This implies that stacked data should be used very cautiously as the addition of

two different signals on the same channel may give a wrong waveform with strong

uncontrolled artefacts, perturbing the true location of the trapped miners.

EXPERIMENTAL PROCEDURE

The SYDEM was tested in different geometries with several objectives: to evaluate the

efficiency of the system to locate trapped miners, estimate the influence of local parameters

such as noise sources and the velocity model, and make a first estimate of the necessary time

for a complete installation of the system. Since the situation the miner wil l face in the case of

a rock burst is very unpredictable, we have conducted location tests using various types of

sources that a miner may typically have around him, such as metal bars, wood pieces and a

plastic helmet.

Experimental site

The system was tested in two gallery configurations : (a) parallel galleries 60 metres long and

20 metres distant, and (b) two perpendicular galleries (Figure 5). The seismic probes were

installed on the sidewall facing the trapped miner gallery. The spacing between the probes



was chosen to ensure the maximum coverage (10 metres average). The geology of the two test

pillars is sandstone.

Different sections were selected in the trapped miner gallery in order to measure the location

error. Four points were defined for each section, on the sidewalls (facing and opposite to the

trapped miners gallery), the roof and the floor (see Figure 5c for notations).

Installation

When an alert occurs where trapped miners are involved, the following operations have to be

undertaken prior to any actual seismic investigations :

o meeting of the rescue operating people;

o transport of the SYDEM to the gallery identified has being the closest to the gallery

where miners are trapped;

o drilling of seven boreholes in the direction of the gallery of investigation;

o accurate survey of the borehole coordinates. The surveyors also have to provide the

three-dimensional orientation of the trapped miner gallery in order to set up the

discretisation grid;

o installation of the seismic probes and connection to the acquisition system;

o testing for successful installation (AUTOtest) and set up of the acquisition parameters

(noise level, amplification of the signal, coordinates of the sensors, geometry of the

experiment, acquisition data);

The required time for all these operations was measured to 4 hours before the first signals

were recorded. This time, however, does not take into account a realistic delay for the

transport of the equipment to an underground gallery with all the constraints this may

suppose. A minimum additional time of 3 to 4 hours would have to be added.

10



I f the detection had to be carried in a mine area with the standard 5000 V in the mine, an

adapted 230 V power transformer would have to be installed in the mean time.

Results

Parallel galleries

In our tests the signals were recorded with a maximum amplification of 60 dB and 15 kHz

sampling. A typical event recorded on a minimum of 5 channels is presented at figure 6. The

signal frequency of the signals ranged between 150 and 270 Hz using a heavy metal piece as a

source and 70 to 180 Hz with a plastic helmet. The trapped miner gallery was discretised with

0.5 m elementary cubes.

Due to the limited distances between sources and receivers in both experiments, errors in the

picking of the arrival and in the velocity model are prone to significantly affect the accuracy

of the location. The velocity model is usually unknown when arriving at a site. In this case we

have compared the propagation model obtained from direct measurements (2000 m/s) with an

indirect measure. A seismic probe located 5 metres ahead of the rest of the seismic line, noted

S9 on Figure 5a, was placed in order to measure a travel time difference between sensor S8

and S2. For a ray propagating directly across the pillar facing the two sensors, a velocity equal

to 1800 m/s was measured. In the case of parallel galleries, the 11 per cent velocity variation

does not affect the location result by more than 10 per cent and can, so, be considered as a

good approximation for the wave propagation model.

At each test points, miners were asked to hit a minimum of ten times in order to use the

information provided by the stacked signals. Locations of some points in the different sections

are presented in Table 1. The minimum location error is found when the miners are striking

directly on the sidewall facing the sensors (point B2, C2 and E2). The difference for section D

shots is not significant as the sidewall (shot point D2) is cemented with a poor coupling with

the rock mass, causing a strong perturbation of the waveforms.

11



Errors on the other points in the sections (points 1, 3 and 4) are due to the variation in the

velocity field. The basement of the trapped miner gallery is grouted and a higher velocity

model estimated at 3000 m/s improves the location of the point B3 to less than 1.5 metres. In

the case of the roof and the sidewall opposite to the seismic base, the distortion of the

waveforms generated and travelling around the gallery up to the sensors cannot be taken into

account in the location calculations and, as such, explains the discrepancy with the observed

travel times.

Sectio n
B
B
B
B
C
C
D
D
E

Poin t
1
2
3
4
1
2
1
2
2

Error (m)
4.2
0,9
2,5
3,0
3,0
1,5
2,3
2,2
1,0

maximu m erro r (m)
53

5
7

4,7
3
3

3,5
4,3

Table I: Locations for parallel galleries at different points in the sections (see Figure 5a and
Figure 5c for notations).

The different material tested showed a significant decrease of the signal to noise ratio (40per

cent) and, thus, altered the quality of the picking. The soft materials used as sources like a

miner helmet caused a decrease of the signal frequency. This induced an increase of the error

in the location greater than 2 metres, and up to 7.9 metres when striking the sidewall with a

miner safety shoe (Table 2).

Metal suppor t
Helmet
Plasti c piece
Rock laggin g

poin t
B2
B2
B2
F2

Error (m)
2.5
2,0
7,9
3,1

maximu m erro r (m)
39
3,5
9,8
7

Table II : Location results with different materials for the source.

Perpendicular galleries

Three sections noted from G to I (Figure5b) have been defined in the trapped miner gallery

and sources were limited to points 1 and 2. The average spacing between the probes is eight

12



metres. The locations calculated for the six points are presented in Table III . Errors are larger

than in the case of parallel galleries and this is attributed to a combination of factors.

Firstly, the seismic array is perpendicular to the direction of the sources and the solution is

highly unconstrained in the direction of the trapped miner gallery. Locations found in Table

II I were determined for a minimum in the RMS for various velocity models. The best location

was found for a velocity model of 1450 m/s. We calculated that a ± 3 per cent variation

caused a 30 per cent increase of the location error and a 10 per cent velocity variation an error

in location of 300 per cent, less than 15 metres in this particular case.

Secondly, the signal to noise ratio in this part of the mine was significantly lower than for the

parallel galleries due to a strong attenuation of the seismic energy (Figure 8). This caused an

increase in the uncertainty in picking the P arrival. This can be overcome by choosing to pick

the first peak, and good quality signals to be distinctly recorded on a smaller number of

channels.

Point
ni
\* 1
G2
HI
H2
11
12

Error (m)
5,00
3,0
5,3
1,7
2,0
3,8

maximu m erro r (m)
7,5
4

4,3
4
4

5,5

Table III : Locations for perpendicular galleries at different points of the sections (see
Figure5b for notations).

DISCUSSION

In a configuration where miners are confined to a 60 metres long gaËery parallel to the

seismic base, the S YDEM is able to provide a location of the miners with an accuracy better

than 2 m in 70 per cent of the case and less than 5 m in 90 per cent of the cases. The

maximum accuracy (less than a meter) is obtained when the miners are striking the sidewall

facing the sensors. If the miners were hitting some parts of the gallery with non-rigid objects,

we have always been able to detect and locate them within a 10 metres maximum error

13



around the true location. Al l these locations, however, are subjected to the choice of a velocity

model as close as possible to the true P wave velocity in the rock mass. The addition of a

shifted sensor from the seismic base Une allows a good estimate of the velocity when we are

considering a ray path travelling directly across the pillar.

The configuration of perpendicular galleries has shown a significant sensitivity of the location

algorithm to the input velocity parameter. Further developments are currently in progress for

the implementation of additional parameters to help the operator in the choice of the most

probable location. These complementary calculations wil l be validated in a set of tests

planned with more complex gallery geometries and in a coal environment.

CONCLUSION

The choice of a detection technique for trapped miners is motivated with the twofold

objective of efficiency and accuracy. The other techniques reviewed in the literature were not

sufficiently adapted to the requirement of "Charbonnages de France" and, thus, the adopted

option was to improve the existing seismic based technique. Compared to the graphical

system previously used in the French colliery, the SYDEM is easy to set up with a delay no

longer than eight hours between the alert and the recording of the first signals. Its ability to

conduct real time and continuous acquisition make this system a more adapted equipment for

rescue operations. The accuracy of the system, shown on the tests described, is sufficient to

make a decision on the drilling of a rescue borehole: close enough to the trapped miners but at

a reasonable distance in order to not injure the miners with the drilling.
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FIGURES

Figure 1 : Detection of trapped miners from a set of geophones deployed from the surface.
The miners are hitting the sidewalls of the underground gallery and shot are located from the
analysis of P-wave arrival times on the sensors, (from Dobroski and Stolarsczy, 1982).



Uncertainty
/ \

Figure 2: Graphical technique previously used at Charbonnages de France for the detection of
trapped miners in a simple configuration. Two Unes joining the P wave arrival times are
drawn. The intersection of the two Unes is indicating the direction and the location of the
seismic source. Depending upon the experimental and picking errors, an uncertainty has to be
estimated (Grisard et al, 1981).



a)
Seismic event from a trapped

miner

c)

d) Real time processing of the P wave
arrivals with a grid search location on

lap top PC

i
e)

Automatic 2-D or 3-D visualisation of the
trapped miner location

Figure 3: SYDEM operational description, (a) A seismic event from a trapped miner is
recorded on the seismic probes, (b) Probes are clamped to the rock mass through a plastic
wedge system, (c) The analogue seismic event is sent to the acquisition system for filtering
and A/D conversion, (d) The analysis of the P wave arrivals on the PC provides locations of
the trapped miner, (e) Automatic two or three-dimensional display of the trapped miner
location.



Criterion

Figure 4: Grid search technique for the detection of trapped miners. A grid size is defined for
the calculation of travel times in each pixel. For a velocity model and with the experimental
errors, the minimum of the criterion between calculated and observed travel times is chosen as
the location of the trapped miners.
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Figure 6: Example of seismic event recorded on four channels at shot point 2 from section E
(sidewall facing the rescue team gallery for parallel galleries). The waveforms are 0.6 seconds
long with a 15 kHz sampling frequency. The P-wave arrivals have been picked for a grid
search location processing.
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with dots.
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